Home | History | Annotate | Download | only in bugpoint
      1 //===- BugDriver.h - Top-Level BugPoint class -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class contains all of the shared state and information that is used by
     11 // the BugPoint tool to track down errors in optimizations.  This class is the
     12 // main driver class that invokes all sub-functionality.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef BUGDRIVER_H
     17 #define BUGDRIVER_H
     18 
     19 #include "llvm/ADT/ValueMap.h"
     20 #include "llvm/Transforms/Utils/ValueMapper.h"
     21 #include <vector>
     22 #include <string>
     23 
     24 namespace llvm {
     25 
     26 class Value;
     27 class PassInfo;
     28 class Module;
     29 class GlobalVariable;
     30 class Function;
     31 class BasicBlock;
     32 class AbstractInterpreter;
     33 class Instruction;
     34 class LLVMContext;
     35 
     36 class DebugCrashes;
     37 
     38 class GCC;
     39 
     40 extern bool DisableSimplifyCFG;
     41 
     42 /// BugpointIsInterrupted - Set to true when the user presses ctrl-c.
     43 ///
     44 extern bool BugpointIsInterrupted;
     45 
     46 class BugDriver {
     47   LLVMContext& Context;
     48   const char *ToolName;            // argv[0] of bugpoint
     49   std::string ReferenceOutputFile; // Name of `good' output file
     50   Module *Program;             // The raw program, linked together
     51   std::vector<std::string> PassesToRun;
     52   AbstractInterpreter *Interpreter;   // How to run the program
     53   AbstractInterpreter *SafeInterpreter;  // To generate reference output, etc.
     54   GCC *gcc;
     55   bool run_find_bugs;
     56   unsigned Timeout;
     57   unsigned MemoryLimit;
     58   bool UseValgrind;
     59 
     60   // FIXME: sort out public/private distinctions...
     61   friend class ReducePassList;
     62   friend class ReduceMisCodegenFunctions;
     63 
     64 public:
     65   BugDriver(const char *toolname, bool find_bugs,
     66             unsigned timeout, unsigned memlimit, bool use_valgrind,
     67             LLVMContext& ctxt);
     68   ~BugDriver();
     69 
     70   const char *getToolName() const { return ToolName; }
     71 
     72   LLVMContext& getContext() const { return Context; }
     73 
     74   // Set up methods... these methods are used to copy information about the
     75   // command line arguments into instance variables of BugDriver.
     76   //
     77   bool addSources(const std::vector<std::string> &FileNames);
     78   void addPass(std::string p) { PassesToRun.push_back(p); }
     79   void setPassesToRun(const std::vector<std::string> &PTR) {
     80     PassesToRun = PTR;
     81   }
     82   const std::vector<std::string> &getPassesToRun() const {
     83     return PassesToRun;
     84   }
     85 
     86   /// run - The top level method that is invoked after all of the instance
     87   /// variables are set up from command line arguments. The \p as_child argument
     88   /// indicates whether the driver is to run in parent mode or child mode.
     89   ///
     90   bool run(std::string &ErrMsg);
     91 
     92   /// debugOptimizerCrash - This method is called when some optimizer pass
     93   /// crashes on input.  It attempts to prune down the testcase to something
     94   /// reasonable, and figure out exactly which pass is crashing.
     95   ///
     96   bool debugOptimizerCrash(const std::string &ID = "passes");
     97 
     98   /// debugCodeGeneratorCrash - This method is called when the code generator
     99   /// crashes on an input.  It attempts to reduce the input as much as possible
    100   /// while still causing the code generator to crash.
    101   bool debugCodeGeneratorCrash(std::string &Error);
    102 
    103   /// debugMiscompilation - This method is used when the passes selected are not
    104   /// crashing, but the generated output is semantically different from the
    105   /// input.
    106   void debugMiscompilation(std::string *Error);
    107 
    108   /// debugPassMiscompilation - This method is called when the specified pass
    109   /// miscompiles Program as input.  It tries to reduce the testcase to
    110   /// something that smaller that still miscompiles the program.
    111   /// ReferenceOutput contains the filename of the file containing the output we
    112   /// are to match.
    113   ///
    114   bool debugPassMiscompilation(const PassInfo *ThePass,
    115                                const std::string &ReferenceOutput);
    116 
    117   /// compileSharedObject - This method creates a SharedObject from a given
    118   /// BitcodeFile for debugging a code generator.
    119   ///
    120   std::string compileSharedObject(const std::string &BitcodeFile,
    121                                   std::string &Error);
    122 
    123   /// debugCodeGenerator - This method narrows down a module to a function or
    124   /// set of functions, using the CBE as a ``safe'' code generator for other
    125   /// functions that are not under consideration.
    126   bool debugCodeGenerator(std::string *Error);
    127 
    128   /// isExecutingJIT - Returns true if bugpoint is currently testing the JIT
    129   ///
    130   bool isExecutingJIT();
    131 
    132   /// runPasses - Run all of the passes in the "PassesToRun" list, discard the
    133   /// output, and return true if any of the passes crashed.
    134   bool runPasses(Module *M) const {
    135     return runPasses(M, PassesToRun);
    136   }
    137 
    138   Module *getProgram() const { return Program; }
    139 
    140   /// swapProgramIn - Set the current module to the specified module, returning
    141   /// the old one.
    142   Module *swapProgramIn(Module *M) {
    143     Module *OldProgram = Program;
    144     Program = M;
    145     return OldProgram;
    146   }
    147 
    148   AbstractInterpreter *switchToSafeInterpreter() {
    149     AbstractInterpreter *Old = Interpreter;
    150     Interpreter = (AbstractInterpreter*)SafeInterpreter;
    151     return Old;
    152   }
    153 
    154   void switchToInterpreter(AbstractInterpreter *AI) {
    155     Interpreter = AI;
    156   }
    157 
    158   /// setNewProgram - If we reduce or update the program somehow, call this
    159   /// method to update bugdriver with it.  This deletes the old module and sets
    160   /// the specified one as the current program.
    161   void setNewProgram(Module *M);
    162 
    163   /// compileProgram - Try to compile the specified module, returning false and
    164   /// setting Error if an error occurs.  This is used for code generation
    165   /// crash testing.
    166   ///
    167   void compileProgram(Module *M, std::string *Error) const;
    168 
    169   /// executeProgram - This method runs "Program", capturing the output of the
    170   /// program to a file.  A recommended filename may be optionally specified.
    171   ///
    172   std::string executeProgram(const Module *Program,
    173                              std::string OutputFilename,
    174                              std::string Bitcode,
    175                              const std::string &SharedObjects,
    176                              AbstractInterpreter *AI,
    177                              std::string *Error) const;
    178 
    179   /// executeProgramSafely - Used to create reference output with the "safe"
    180   /// backend, if reference output is not provided.  If there is a problem with
    181   /// the code generator (e.g., llc crashes), this will return false and set
    182   /// Error.
    183   ///
    184   std::string executeProgramSafely(const Module *Program,
    185                                    std::string OutputFile,
    186                                    std::string *Error) const;
    187 
    188   /// createReferenceFile - calls compileProgram and then records the output
    189   /// into ReferenceOutputFile. Returns true if reference file created, false
    190   /// otherwise. Note: initializeExecutionEnvironment should be called BEFORE
    191   /// this function.
    192   ///
    193   bool createReferenceFile(Module *M, const std::string &Filename
    194                                             = "bugpoint.reference.out");
    195 
    196   /// diffProgram - This method executes the specified module and diffs the
    197   /// output against the file specified by ReferenceOutputFile.  If the output
    198   /// is different, 1 is returned.  If there is a problem with the code
    199   /// generator (e.g., llc crashes), this will return -1 and set Error.
    200   ///
    201   bool diffProgram(const Module *Program,
    202                    const std::string &BitcodeFile = "",
    203                    const std::string &SharedObj = "",
    204                    bool RemoveBitcode = false,
    205                    std::string *Error = 0) const;
    206 
    207   /// EmitProgressBitcode - This function is used to output M to a file named
    208   /// "bugpoint-ID.bc".
    209   ///
    210   void EmitProgressBitcode(const Module *M, const std::string &ID,
    211                            bool NoFlyer = false) const;
    212 
    213   /// deleteInstructionFromProgram - This method clones the current Program and
    214   /// deletes the specified instruction from the cloned module.  It then runs a
    215   /// series of cleanup passes (ADCE and SimplifyCFG) to eliminate any code
    216   /// which depends on the value.  The modified module is then returned.
    217   ///
    218   Module *deleteInstructionFromProgram(const Instruction *I, unsigned Simp);
    219 
    220   /// performFinalCleanups - This method clones the current Program and performs
    221   /// a series of cleanups intended to get rid of extra cruft on the module.  If
    222   /// the MayModifySemantics argument is true, then the cleanups is allowed to
    223   /// modify how the code behaves.
    224   ///
    225   Module *performFinalCleanups(Module *M, bool MayModifySemantics = false);
    226 
    227   /// ExtractLoop - Given a module, extract up to one loop from it into a new
    228   /// function.  This returns null if there are no extractable loops in the
    229   /// program or if the loop extractor crashes.
    230   Module *ExtractLoop(Module *M);
    231 
    232   /// ExtractMappedBlocksFromModule - Extract all but the specified basic blocks
    233   /// into their own functions.  The only detail is that M is actually a module
    234   /// cloned from the one the BBs are in, so some mapping needs to be performed.
    235   /// If this operation fails for some reason (ie the implementation is buggy),
    236   /// this function should return null, otherwise it returns a new Module.
    237   Module *ExtractMappedBlocksFromModule(const std::vector<BasicBlock*> &BBs,
    238                                         Module *M);
    239 
    240   /// runPassesOn - Carefully run the specified set of pass on the specified
    241   /// module, returning the transformed module on success, or a null pointer on
    242   /// failure.  If AutoDebugCrashes is set to true, then bugpoint will
    243   /// automatically attempt to track down a crashing pass if one exists, and
    244   /// this method will never return null.
    245   Module *runPassesOn(Module *M, const std::vector<std::string> &Passes,
    246                       bool AutoDebugCrashes = false, unsigned NumExtraArgs = 0,
    247                       const char * const *ExtraArgs = NULL);
    248 
    249   /// runPasses - Run the specified passes on Program, outputting a bitcode
    250   /// file and writting the filename into OutputFile if successful.  If the
    251   /// optimizations fail for some reason (optimizer crashes), return true,
    252   /// otherwise return false.  If DeleteOutput is set to true, the bitcode is
    253   /// deleted on success, and the filename string is undefined.  This prints to
    254   /// outs() a single line message indicating whether compilation was successful
    255   /// or failed, unless Quiet is set.  ExtraArgs specifies additional arguments
    256   /// to pass to the child bugpoint instance.
    257   ///
    258   bool runPasses(Module *Program,
    259                  const std::vector<std::string> &PassesToRun,
    260                  std::string &OutputFilename, bool DeleteOutput = false,
    261                  bool Quiet = false, unsigned NumExtraArgs = 0,
    262                  const char * const *ExtraArgs = NULL) const;
    263 
    264   /// runManyPasses - Take the specified pass list and create different
    265   /// combinations of passes to compile the program with. Compile the program with
    266   /// each set and mark test to see if it compiled correctly. If the passes
    267   /// compiled correctly output nothing and rearrange the passes into a new order.
    268   /// If the passes did not compile correctly, output the command required to
    269   /// recreate the failure. This returns true if a compiler error is found.
    270   ///
    271   bool runManyPasses(const std::vector<std::string> &AllPasses,
    272                      std::string &ErrMsg);
    273 
    274   /// writeProgramToFile - This writes the current "Program" to the named
    275   /// bitcode file.  If an error occurs, true is returned.
    276   ///
    277   bool writeProgramToFile(const std::string &Filename, const Module *M) const;
    278 
    279 private:
    280   /// runPasses - Just like the method above, but this just returns true or
    281   /// false indicating whether or not the optimizer crashed on the specified
    282   /// input (true = crashed).
    283   ///
    284   bool runPasses(Module *M,
    285                  const std::vector<std::string> &PassesToRun,
    286                  bool DeleteOutput = true) const {
    287     std::string Filename;
    288     return runPasses(M, PassesToRun, Filename, DeleteOutput);
    289   }
    290 
    291   /// initializeExecutionEnvironment - This method is used to set up the
    292   /// environment for executing LLVM programs.
    293   ///
    294   bool initializeExecutionEnvironment();
    295 };
    296 
    297 /// ParseInputFile - Given a bitcode or assembly input filename, parse and
    298 /// return it, or return null if not possible.
    299 ///
    300 Module *ParseInputFile(const std::string &InputFilename,
    301                        LLVMContext& ctxt);
    302 
    303 
    304 /// getPassesString - Turn a list of passes into a string which indicates the
    305 /// command line options that must be passed to add the passes.
    306 ///
    307 std::string getPassesString(const std::vector<std::string> &Passes);
    308 
    309 /// PrintFunctionList - prints out list of problematic functions
    310 ///
    311 void PrintFunctionList(const std::vector<Function*> &Funcs);
    312 
    313 /// PrintGlobalVariableList - prints out list of problematic global variables
    314 ///
    315 void PrintGlobalVariableList(const std::vector<GlobalVariable*> &GVs);
    316 
    317 // DeleteFunctionBody - "Remove" the function by deleting all of it's basic
    318 // blocks, making it external.
    319 //
    320 void DeleteFunctionBody(Function *F);
    321 
    322 /// SplitFunctionsOutOfModule - Given a module and a list of functions in the
    323 /// module, split the functions OUT of the specified module, and place them in
    324 /// the new module.
    325 Module *SplitFunctionsOutOfModule(Module *M, const std::vector<Function*> &F,
    326                                   ValueToValueMapTy &VMap);
    327 
    328 } // End llvm namespace
    329 
    330 #endif
    331