Home | History | Annotate | Download | only in rtl
      1 //===-- tsan_rtl_thread.cc ------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "sanitizer_common/sanitizer_placement_new.h"
     15 #include "tsan_rtl.h"
     16 #include "tsan_mman.h"
     17 #include "tsan_platform.h"
     18 #include "tsan_report.h"
     19 #include "tsan_sync.h"
     20 
     21 namespace __tsan {
     22 
     23 #ifndef TSAN_GO
     24 const int kThreadQuarantineSize = 16;
     25 #else
     26 const int kThreadQuarantineSize = 64;
     27 #endif
     28 
     29 static void MaybeReportThreadLeak(ThreadContext *tctx) {
     30   if (tctx->detached)
     31     return;
     32   if (tctx->status != ThreadStatusCreated
     33       && tctx->status != ThreadStatusRunning
     34       && tctx->status != ThreadStatusFinished)
     35     return;
     36   ScopedReport rep(ReportTypeThreadLeak);
     37   rep.AddThread(tctx);
     38   OutputReport(rep);
     39 }
     40 
     41 void ThreadFinalize(ThreadState *thr) {
     42   CHECK_GT(thr->in_rtl, 0);
     43   if (!flags()->report_thread_leaks)
     44     return;
     45   Context *ctx = CTX();
     46   Lock l(&ctx->thread_mtx);
     47   for (unsigned i = 0; i < kMaxTid; i++) {
     48     ThreadContext *tctx = ctx->threads[i];
     49     if (tctx == 0)
     50       continue;
     51     MaybeReportThreadLeak(tctx);
     52   }
     53 }
     54 
     55 static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
     56   Context *ctx = CTX();
     57   CHECK_GT(thr->in_rtl, 0);
     58   CHECK(tctx->status == ThreadStatusRunning
     59       || tctx->status == ThreadStatusFinished);
     60   DPrintf("#%d: ThreadDead uid=%zu\n", thr->tid, tctx->user_id);
     61   tctx->status = ThreadStatusDead;
     62   tctx->user_id = 0;
     63   tctx->sync.Reset();
     64 
     65   // Put to dead list.
     66   tctx->dead_next = 0;
     67   if (ctx->dead_list_size == 0)
     68     ctx->dead_list_head = tctx;
     69   else
     70     ctx->dead_list_tail->dead_next = tctx;
     71   ctx->dead_list_tail = tctx;
     72   ctx->dead_list_size++;
     73 }
     74 
     75 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
     76   CHECK_GT(thr->in_rtl, 0);
     77   Context *ctx = CTX();
     78   Lock l(&ctx->thread_mtx);
     79   StatInc(thr, StatThreadCreate);
     80   int tid = -1;
     81   ThreadContext *tctx = 0;
     82   if (ctx->dead_list_size > kThreadQuarantineSize
     83       || ctx->thread_seq >= kMaxTid) {
     84     if (ctx->dead_list_size == 0) {
     85       TsanPrintf("ThreadSanitizer: %d thread limit exceeded. Dying.\n",
     86                  kMaxTid);
     87       Die();
     88     }
     89     StatInc(thr, StatThreadReuse);
     90     tctx = ctx->dead_list_head;
     91     ctx->dead_list_head = tctx->dead_next;
     92     ctx->dead_list_size--;
     93     if (ctx->dead_list_size == 0) {
     94       CHECK_EQ(tctx->dead_next, 0);
     95       ctx->dead_list_head = 0;
     96     }
     97     CHECK_EQ(tctx->status, ThreadStatusDead);
     98     tctx->status = ThreadStatusInvalid;
     99     tctx->reuse_count++;
    100     tctx->sync.Reset();
    101     tid = tctx->tid;
    102     DestroyAndFree(tctx->dead_info);
    103   } else {
    104     StatInc(thr, StatThreadMaxTid);
    105     tid = ctx->thread_seq++;
    106     void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
    107     tctx = new(mem) ThreadContext(tid);
    108     ctx->threads[tid] = tctx;
    109   }
    110   CHECK_NE(tctx, 0);
    111   CHECK_GE(tid, 0);
    112   CHECK_LT(tid, kMaxTid);
    113   DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
    114   CHECK_EQ(tctx->status, ThreadStatusInvalid);
    115   ctx->alive_threads++;
    116   if (ctx->max_alive_threads < ctx->alive_threads) {
    117     ctx->max_alive_threads++;
    118     CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
    119     StatInc(thr, StatThreadMaxAlive);
    120   }
    121   tctx->status = ThreadStatusCreated;
    122   tctx->thr = 0;
    123   tctx->user_id = uid;
    124   tctx->unique_id = ctx->unique_thread_seq++;
    125   tctx->detached = detached;
    126   if (tid) {
    127     thr->fast_state.IncrementEpoch();
    128     // Can't increment epoch w/o writing to the trace as well.
    129     TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
    130     thr->clock.set(thr->tid, thr->fast_state.epoch());
    131     thr->fast_synch_epoch = thr->fast_state.epoch();
    132     thr->clock.release(&tctx->sync);
    133     StatInc(thr, StatSyncRelease);
    134 
    135     tctx->creation_stack.ObtainCurrent(thr, pc);
    136   }
    137   return tid;
    138 }
    139 
    140 void ThreadStart(ThreadState *thr, int tid) {
    141   CHECK_GT(thr->in_rtl, 0);
    142   uptr stk_addr = 0;
    143   uptr stk_size = 0;
    144   uptr tls_addr = 0;
    145   uptr tls_size = 0;
    146   GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
    147 
    148   if (tid) {
    149     if (stk_addr && stk_size) {
    150       MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
    151     }
    152 
    153     if (tls_addr && tls_size) {
    154       // Check that the thr object is in tls;
    155       const uptr thr_beg = (uptr)thr;
    156       const uptr thr_end = (uptr)thr + sizeof(*thr);
    157       CHECK_GE(thr_beg, tls_addr);
    158       CHECK_LE(thr_beg, tls_addr + tls_size);
    159       CHECK_GE(thr_end, tls_addr);
    160       CHECK_LE(thr_end, tls_addr + tls_size);
    161       // Since the thr object is huge, skip it.
    162       MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
    163       MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
    164     }
    165   }
    166 
    167   Lock l(&CTX()->thread_mtx);
    168   ThreadContext *tctx = CTX()->threads[tid];
    169   CHECK_NE(tctx, 0);
    170   CHECK_EQ(tctx->status, ThreadStatusCreated);
    171   tctx->status = ThreadStatusRunning;
    172   tctx->epoch0 = tctx->epoch1 + 1;
    173   tctx->epoch1 = (u64)-1;
    174   new(thr) ThreadState(CTX(), tid, tctx->unique_id,
    175       tctx->epoch0, stk_addr, stk_size,
    176       tls_addr, tls_size);
    177 #ifdef TSAN_GO
    178   // Setup dynamic shadow stack.
    179   const int kInitStackSize = 8;
    180   thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
    181       kInitStackSize * sizeof(uptr));
    182   thr->shadow_stack_pos = thr->shadow_stack;
    183   thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
    184 #endif
    185   tctx->thr = thr;
    186   thr->fast_synch_epoch = tctx->epoch0;
    187   thr->clock.set(tid, tctx->epoch0);
    188   thr->clock.acquire(&tctx->sync);
    189   StatInc(thr, StatSyncAcquire);
    190   DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
    191           "tls_addr=%zx tls_size=%zx\n",
    192           tid, (uptr)tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
    193   thr->is_alive = true;
    194 }
    195 
    196 void ThreadFinish(ThreadState *thr) {
    197   CHECK_GT(thr->in_rtl, 0);
    198   StatInc(thr, StatThreadFinish);
    199   // FIXME: Treat it as write.
    200   if (thr->stk_addr && thr->stk_size)
    201     MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
    202   if (thr->tls_addr && thr->tls_size) {
    203     const uptr thr_beg = (uptr)thr;
    204     const uptr thr_end = (uptr)thr + sizeof(*thr);
    205     // Since the thr object is huge, skip it.
    206     MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
    207     MemoryResetRange(thr, /*pc=*/ 5,
    208         thr_end, thr->tls_addr + thr->tls_size - thr_end);
    209   }
    210   thr->is_alive = false;
    211   Context *ctx = CTX();
    212   Lock l(&ctx->thread_mtx);
    213   ThreadContext *tctx = ctx->threads[thr->tid];
    214   CHECK_NE(tctx, 0);
    215   CHECK_EQ(tctx->status, ThreadStatusRunning);
    216   CHECK_GT(ctx->alive_threads, 0);
    217   ctx->alive_threads--;
    218   if (tctx->detached) {
    219     ThreadDead(thr, tctx);
    220   } else {
    221     thr->fast_state.IncrementEpoch();
    222     // Can't increment epoch w/o writing to the trace as well.
    223     TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
    224     thr->clock.set(thr->tid, thr->fast_state.epoch());
    225     thr->fast_synch_epoch = thr->fast_state.epoch();
    226     thr->clock.release(&tctx->sync);
    227     StatInc(thr, StatSyncRelease);
    228     tctx->status = ThreadStatusFinished;
    229   }
    230 
    231   // Save from info about the thread.
    232   tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
    233       ThreadDeadInfo();
    234   internal_memcpy(&tctx->dead_info->trace.events[0],
    235       &thr->trace.events[0], sizeof(thr->trace.events));
    236   for (int i = 0; i < kTraceParts; i++) {
    237     tctx->dead_info->trace.headers[i].stack0.CopyFrom(
    238         thr->trace.headers[i].stack0);
    239   }
    240   tctx->epoch1 = thr->fast_state.epoch();
    241 
    242 #ifndef TSAN_GO
    243   AlloctorThreadFinish(thr);
    244 #endif
    245   thr->~ThreadState();
    246   StatAggregate(ctx->stat, thr->stat);
    247   tctx->thr = 0;
    248 }
    249 
    250 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
    251   CHECK_GT(thr->in_rtl, 0);
    252   Context *ctx = CTX();
    253   Lock l(&ctx->thread_mtx);
    254   int res = -1;
    255   for (unsigned tid = 0; tid < kMaxTid; tid++) {
    256     ThreadContext *tctx = ctx->threads[tid];
    257     if (tctx != 0 && tctx->user_id == uid
    258         && tctx->status != ThreadStatusInvalid) {
    259       tctx->user_id = 0;
    260       res = tid;
    261       break;
    262     }
    263   }
    264   DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
    265   return res;
    266 }
    267 
    268 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
    269   CHECK_GT(thr->in_rtl, 0);
    270   CHECK_GT(tid, 0);
    271   CHECK_LT(tid, kMaxTid);
    272   DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
    273   Context *ctx = CTX();
    274   Lock l(&ctx->thread_mtx);
    275   ThreadContext *tctx = ctx->threads[tid];
    276   if (tctx->status == ThreadStatusInvalid) {
    277     TsanPrintf("ThreadSanitizer: join of non-existent thread\n");
    278     return;
    279   }
    280   CHECK_EQ(tctx->detached, false);
    281   CHECK_EQ(tctx->status, ThreadStatusFinished);
    282   thr->clock.acquire(&tctx->sync);
    283   StatInc(thr, StatSyncAcquire);
    284   ThreadDead(thr, tctx);
    285 }
    286 
    287 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
    288   CHECK_GT(thr->in_rtl, 0);
    289   CHECK_GT(tid, 0);
    290   CHECK_LT(tid, kMaxTid);
    291   Context *ctx = CTX();
    292   Lock l(&ctx->thread_mtx);
    293   ThreadContext *tctx = ctx->threads[tid];
    294   if (tctx->status == ThreadStatusInvalid) {
    295     TsanPrintf("ThreadSanitizer: detach of non-existent thread\n");
    296     return;
    297   }
    298   if (tctx->status == ThreadStatusFinished) {
    299     ThreadDead(thr, tctx);
    300   } else {
    301     tctx->detached = true;
    302   }
    303 }
    304 
    305 void ThreadFinalizerGoroutine(ThreadState *thr) {
    306   thr->clock.Disable(thr->tid);
    307 }
    308 
    309 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
    310                        uptr size, bool is_write) {
    311   if (size == 0)
    312     return;
    313 
    314   u64 *shadow_mem = (u64*)MemToShadow(addr);
    315   DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
    316       thr->tid, (void*)pc, (void*)addr,
    317       (int)size, is_write);
    318 
    319 #if TSAN_DEBUG
    320   if (!IsAppMem(addr)) {
    321     TsanPrintf("Access to non app mem %zx\n", addr);
    322     DCHECK(IsAppMem(addr));
    323   }
    324   if (!IsAppMem(addr + size - 1)) {
    325     TsanPrintf("Access to non app mem %zx\n", addr + size - 1);
    326     DCHECK(IsAppMem(addr + size - 1));
    327   }
    328   if (!IsShadowMem((uptr)shadow_mem)) {
    329     TsanPrintf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
    330     DCHECK(IsShadowMem((uptr)shadow_mem));
    331   }
    332   if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
    333     TsanPrintf("Bad shadow addr %p (%zx)\n",
    334                shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
    335     DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
    336   }
    337 #endif
    338 
    339   StatInc(thr, StatMopRange);
    340 
    341   FastState fast_state = thr->fast_state;
    342   if (fast_state.GetIgnoreBit())
    343     return;
    344 
    345   fast_state.IncrementEpoch();
    346   thr->fast_state = fast_state;
    347   TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
    348 
    349   bool unaligned = (addr % kShadowCell) != 0;
    350 
    351   // Handle unaligned beginning, if any.
    352   for (; addr % kShadowCell && size; addr++, size--) {
    353     int const kAccessSizeLog = 0;
    354     Shadow cur(fast_state);
    355     cur.SetWrite(is_write);
    356     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
    357     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
    358         shadow_mem, cur);
    359   }
    360   if (unaligned)
    361     shadow_mem += kShadowCnt;
    362   // Handle middle part, if any.
    363   for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
    364     int const kAccessSizeLog = 3;
    365     Shadow cur(fast_state);
    366     cur.SetWrite(is_write);
    367     cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
    368     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
    369         shadow_mem, cur);
    370     shadow_mem += kShadowCnt;
    371   }
    372   // Handle ending, if any.
    373   for (; size; addr++, size--) {
    374     int const kAccessSizeLog = 0;
    375     Shadow cur(fast_state);
    376     cur.SetWrite(is_write);
    377     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
    378     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
    379         shadow_mem, cur);
    380   }
    381 }
    382 
    383 void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr) {
    384   MemoryAccess(thr, pc, addr, 0, 0);
    385 }
    386 
    387 void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr) {
    388   MemoryAccess(thr, pc, addr, 0, 1);
    389 }
    390 
    391 void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr) {
    392   MemoryAccess(thr, pc, addr, 3, 0);
    393 }
    394 
    395 void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr) {
    396   MemoryAccess(thr, pc, addr, 3, 1);
    397 }
    398 }  // namespace __tsan
    399