Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 
     18 /*! \file LowerJump.cpp
     19     \brief This file lowers the following bytecodes: IF_XXX, GOTO
     20 */
     21 #include <math.h>
     22 #include "libdex/DexOpcodes.h"
     23 #include "libdex/DexFile.h"
     24 #include "Lower.h"
     25 #include "NcgAot.h"
     26 #include "enc_wrapper.h"
     27 #include "interp/InterpDefs.h"
     28 #include "NcgHelper.h"
     29 
     30 LabelMap* globalMap;
     31 LabelMap* globalShortMap;//make sure for each bytecode, there is no duplicated label
     32 LabelMap* globalWorklist = NULL;
     33 LabelMap* globalShortWorklist;
     34 
     35 int globalMapNum;
     36 int globalWorklistNum;
     37 int globalDataWorklistNum;
     38 int VMAPIWorklistNum;
     39 int globalPCWorklistNum;
     40 int chainingWorklistNum;
     41 
     42 LabelMap* globalDataWorklist = NULL;
     43 LabelMap* globalPCWorklist = NULL;
     44 LabelMap* chainingWorklist = NULL;
     45 LabelMap* VMAPIWorklist = NULL;
     46 
     47 char* ncgClassData;
     48 char* ncgClassDataPtr;
     49 char* ncgMethodData;
     50 char* ncgMethodDataPtr;
     51 int   ncgClassNum;
     52 int   ncgMethodNum;
     53 
     54 NCGWorklist* globalNCGWorklist;
     55 DataWorklist* methodDataWorklist;
     56 #ifdef ENABLE_TRACING
     57 MapWorklist* methodMapWorklist;
     58 #endif
     59 /*!
     60 \brief search globalShortMap to find the entry for the given label
     61 
     62 */
     63 LabelMap* findItemForShortLabel(const char* label) {
     64     LabelMap* ptr = globalShortMap;
     65     while(ptr != NULL) {
     66         if(!strcmp(label, ptr->label)) {
     67             return ptr;
     68         }
     69         ptr = ptr->nextItem;
     70     }
     71     return NULL;
     72 }
     73 //assume size of "jump reg" is 2
     74 #define JUMP_REG_SIZE 2
     75 #define ADD_REG_REG_SIZE 3
     76 /*!
     77 \brief update value of the immediate in the given jump instruction
     78 
     79 check whether the immediate is out of range for the pre-set size
     80 */
     81 int updateJumpInst(char* jumpInst, OpndSize immSize, int relativeNCG) {
     82 #ifdef DEBUG_NCG_JUMP
     83     ALOGI("update jump inst @ %p with %d", jumpInst, relativeNCG);
     84 #endif
     85     if(immSize == OpndSize_8) { //-128 to 127
     86         if(relativeNCG >= 128 || relativeNCG < -128) {
     87             ALOGE("pre-allocated space for a forward jump is not big enough");
     88             dvmAbort();
     89         }
     90     }
     91     if(immSize == OpndSize_16) { //-2^16 to 2^16-1
     92         if(relativeNCG >= 32768 || relativeNCG < -32768) {
     93             ALOGE("pre-allocated space for a forward jump is not big enough");
     94             dvmAbort();
     95         }
     96     }
     97     encoder_update_imm(relativeNCG, jumpInst);
     98     return 0;
     99 }
    100 
    101 /*!
    102 \brief insert a label
    103 
    104 It takes argument checkDup, if checkDup is true, an entry is created in globalShortMap, entries in globalShortWorklist are checked, if there exists a match, the immediate in the jump instruction is updated and the entry is removed from globalShortWorklist;
    105 otherwise, an entry is created in globalMap.
    106 */
    107 int insertLabel(const char* label, bool checkDup) {
    108     LabelMap* item = NULL;
    109     if(!checkDup) {
    110         item = (LabelMap*)malloc(sizeof(LabelMap));
    111         if(item == NULL) {
    112             ALOGE("Memory allocation failed");
    113             return -1;
    114         }
    115         snprintf(item->label, LABEL_SIZE, "%s", label);
    116         item->codePtr = stream;
    117         item->nextItem = globalMap;
    118         globalMap = item;
    119 #ifdef DEBUG_NCG_CODE_SIZE
    120         ALOGI("insert global label %s %p", label, stream);
    121 #endif
    122         globalMapNum++;
    123         return 0;
    124     }
    125 
    126     item = (LabelMap*)malloc(sizeof(LabelMap));
    127     if(item == NULL) {
    128         ALOGE("Memory allocation failed");
    129         return -1;
    130     }
    131     snprintf(item->label, LABEL_SIZE, "%s", label);
    132     item->codePtr = stream;
    133     item->nextItem = globalShortMap;
    134     globalShortMap = item;
    135 #ifdef DEBUG_NCG
    136     ALOGI("insert short-term label %s %p", label, stream);
    137 #endif
    138     LabelMap* ptr = globalShortWorklist;
    139     LabelMap* ptr_prevItem = NULL;
    140     while(ptr != NULL) {
    141         if(!strcmp(ptr->label, label)) {
    142             //perform work
    143             int relativeNCG = stream - ptr->codePtr;
    144             unsigned instSize = encoder_get_inst_size(ptr->codePtr);
    145             relativeNCG -= instSize; //size of the instruction
    146 #ifdef DEBUG_NCG
    147             ALOGI("perform work short-term %p for label %s relative %d", ptr->codePtr, label, relativeNCG);
    148 #endif
    149             updateJumpInst(ptr->codePtr, ptr->size, relativeNCG);
    150             //remove work
    151             if(ptr_prevItem == NULL) {
    152                 globalShortWorklist = ptr->nextItem;
    153                 free(ptr);
    154                 ptr = globalShortWorklist; //ptr_prevItem is still NULL
    155             }
    156             else {
    157                 ptr_prevItem->nextItem = ptr->nextItem;
    158                 free(ptr);
    159                 ptr = ptr_prevItem->nextItem;
    160             }
    161         }
    162         else {
    163             ptr_prevItem = ptr;
    164             ptr = ptr->nextItem;
    165         }
    166     } //while
    167     return 0;
    168 }
    169 /*!
    170 \brief search globalMap to find the entry for the given label
    171 
    172 */
    173 char* findCodeForLabel(const char* label) {
    174     LabelMap* ptr = globalMap;
    175     while(ptr != NULL) {
    176         if(!strcmp(label, ptr->label)) {
    177             return ptr->codePtr;
    178         }
    179         ptr = ptr->nextItem;
    180     }
    181     return NULL;
    182 }
    183 /*!
    184 \brief search globalShortMap to find the entry for the given label
    185 
    186 */
    187 char* findCodeForShortLabel(const char* label) {
    188     LabelMap* ptr = globalShortMap;
    189     while(ptr != NULL) {
    190         if(!strcmp(label, ptr->label)) {
    191             return ptr->codePtr;
    192         }
    193         ptr = ptr->nextItem;
    194     }
    195     return NULL;
    196 }
    197 int insertLabelWorklist(const char* label, OpndSize immSize) {
    198     LabelMap* item = (LabelMap*)malloc(sizeof(LabelMap));
    199     if(item == NULL) {
    200         ALOGE("Memory allocation failed");
    201         return -1;
    202     }
    203     snprintf(item->label, LABEL_SIZE, "%s", label);
    204     item->codePtr = stream;
    205     item->size = immSize;
    206     item->nextItem = globalWorklist;
    207     globalWorklist = item;
    208 #ifdef DEBUG_NCG
    209     ALOGI("insert globalWorklist: %s %p", label, stream);
    210 #endif
    211     return 0;
    212 }
    213 
    214 int insertShortWorklist(const char* label, OpndSize immSize) {
    215     LabelMap* item = (LabelMap*)malloc(sizeof(LabelMap));
    216     if(item == NULL) {
    217         ALOGE("Memory allocation failed");
    218         return -1;
    219     }
    220     snprintf(item->label, LABEL_SIZE, "%s", label);
    221     item->codePtr = stream;
    222     item->size = immSize;
    223     item->nextItem = globalShortWorklist;
    224     globalShortWorklist = item;
    225 #ifdef DEBUG_NCG
    226     ALOGI("insert globalShortWorklist: %s %p", label, stream);
    227 #endif
    228     return 0;
    229 }
    230 /*!
    231 \brief free memory allocated for globalMap
    232 
    233 */
    234 void freeLabelMap() {
    235     LabelMap* ptr = globalMap;
    236     while(ptr != NULL) {
    237         globalMap = ptr->nextItem;
    238         free(ptr);
    239         ptr = globalMap;
    240     }
    241 }
    242 /*!
    243 \brief free memory allocated for globalShortMap
    244 
    245 */
    246 void freeShortMap() {
    247     LabelMap* ptr = globalShortMap;
    248     while(ptr != NULL) {
    249         globalShortMap = ptr->nextItem;
    250         free(ptr);
    251         ptr = globalShortMap;
    252     }
    253     globalShortMap = NULL;
    254 }
    255 
    256 int insertGlobalPCWorklist(char * offset, char * codeStart)
    257 {
    258     LabelMap* item = (LabelMap*)malloc(sizeof(LabelMap));
    259     if(item == NULL) {
    260         ALOGE("Memory allocation failed");
    261         return -1;
    262     }
    263     snprintf(item->label, LABEL_SIZE, "%s", "export_pc");
    264     item->size = OpndSize_32;
    265     item->codePtr = offset; //points to the immediate operand
    266     item->addend = codeStart - streamMethodStart; //relative code pointer
    267     item->nextItem = globalPCWorklist;
    268     globalPCWorklist = item;
    269     globalPCWorklistNum ++;
    270 
    271 #ifdef DEBUG_NCG
    272     ALOGI("insert globalPCWorklist: %p %p %p %x %p", globalDvmNcg->streamCode,  codeStart, streamCode, item->addend, item->codePtr);
    273 #endif
    274     return 0;
    275 }
    276 
    277 int insertChainingWorklist(int bbId, char * codeStart)
    278 {
    279     LabelMap* item = (LabelMap*)malloc(sizeof(LabelMap));
    280     if(item == NULL) {
    281         ALOGE("Memory allocation failed");
    282         return -1;
    283     }
    284     item->size = OpndSize_32;
    285     item->codePtr = codeStart; //points to the move instruction
    286     item->addend = bbId; //relative code pointer
    287     item->nextItem = chainingWorklist;
    288     chainingWorklist = item;
    289 
    290 #ifdef DEBUG_NCG
    291     ALOGI("insertChainingWorklist: %p basic block %d", codeStart, bbId);
    292 #endif
    293     return 0;
    294 }
    295 
    296 int insertGlobalDataWorklist(char * offset, const char* label)
    297 {
    298     LabelMap* item = (LabelMap*)malloc(sizeof(LabelMap));
    299     if(item == NULL) {
    300         ALOGE("Memory allocation failed");
    301         return -1;
    302     }
    303     snprintf(item->label, LABEL_SIZE, "%s", label);
    304     item->codePtr = offset;
    305     item->size = OpndSize_32;
    306     item->nextItem = globalDataWorklist;
    307     globalDataWorklist = item;
    308     globalDataWorklistNum ++;
    309 
    310 #ifdef DEBUG_NCG
    311     ALOGI("insert globalDataWorklist: %s %p", label, offset);
    312 #endif
    313 
    314     return 0;
    315 }
    316 
    317 int insertVMAPIWorklist(char * offset, const char* label)
    318 {
    319     LabelMap* item = (LabelMap*)malloc(sizeof(LabelMap));
    320     if(item == NULL) {
    321         ALOGE("Memory allocation failed");
    322         return -1;
    323     }
    324     snprintf(item->label, LABEL_SIZE, "%s", label);
    325     item->codePtr = offset;
    326     item->size = OpndSize_32;
    327 
    328     item->nextItem = VMAPIWorklist;
    329     VMAPIWorklist = item;
    330 
    331     VMAPIWorklistNum ++;
    332 
    333 #ifdef DEBUG_NCG
    334     ALOGI("insert VMAPIWorklist: %s %p", label, offset);
    335 #endif
    336     return 0;
    337 }
    338 ////////////////////////////////////////////////
    339 
    340 
    341 int updateImmRMInst(char* moveInst, const char* label, int relativeNCG); //forward declaration
    342 //////////////////// performLabelWorklist is defined differently for code cache
    343 void performChainingWorklist() {
    344     LabelMap* ptr = chainingWorklist;
    345     while(ptr != NULL) {
    346         int tmpNCG = traceLabelList[ptr->addend].lop.generic.offset;
    347         char* NCGaddr = streamMethodStart + tmpNCG;
    348         updateImmRMInst(ptr->codePtr, "", (int)NCGaddr);
    349         chainingWorklist = ptr->nextItem;
    350         free(ptr);
    351         ptr = chainingWorklist;
    352     }
    353 }
    354 void freeChainingWorklist() {
    355     LabelMap* ptr = chainingWorklist;
    356     while(ptr != NULL) {
    357         chainingWorklist = ptr->nextItem;
    358         free(ptr);
    359         ptr = chainingWorklist;
    360     }
    361 }
    362 
    363 //Work only for initNCG
    364 void performLabelWorklist() {
    365     LabelMap* ptr = globalWorklist;
    366     while(ptr != NULL) {
    367 #ifdef DEBUG_NCG
    368         ALOGI("perform work global %p for label %s", ptr->codePtr, ptr->label);
    369 #endif
    370         char* targetCode = findCodeForLabel(ptr->label);
    371         assert(targetCode != NULL);
    372         int relativeNCG = targetCode - ptr->codePtr;
    373         unsigned instSize = encoder_get_inst_size(ptr->codePtr);
    374         relativeNCG -= instSize; //size of the instruction
    375         updateJumpInst(ptr->codePtr, ptr->size, relativeNCG);
    376         globalWorklist = ptr->nextItem;
    377         free(ptr);
    378         ptr = globalWorklist;
    379     }
    380 }
    381 void freeLabelWorklist() {
    382     LabelMap* ptr = globalWorklist;
    383     while(ptr != NULL) {
    384         globalWorklist = ptr->nextItem;
    385         free(ptr);
    386         ptr = globalWorklist;
    387     }
    388 }
    389 
    390 ///////////////////////////////////////////////////
    391 /*!
    392 \brief update value of the immediate in the given move instruction
    393 
    394 */
    395 int updateImmRMInst(char* moveInst, const char* label, int relativeNCG) {
    396 #ifdef DEBUG_NCG
    397     ALOGI("perform work ImmRM inst @ %p for label %s with %d", moveInst, label, relativeNCG);
    398 #endif
    399     encoder_update_imm_rm(relativeNCG, moveInst);
    400     return 0;
    401 }
    402 //! maximum instruction size for jump,jcc,call: 6 for jcc rel32
    403 #define MAX_JCC_SIZE 6
    404 //! minimum instruction size for jump,jcc,call: 2
    405 #define MIN_JCC_SIZE 2
    406 /*!
    407 \brief estimate size of the immediate
    408 
    409 Somehow, 16 bit jump does not work. This function will return either 8 bit or 32 bit
    410 EXAMPLE:
    411   native code at A: ...
    412   native code at B: jump relOffset (target is A)
    413   native code at B':
    414   --> relOffset = A - B' = A - B - size of the jump instruction
    415   Argument "target" is equal to A - B. To determine size of the immediate, we check tha value of "target - size of the jump instructoin"
    416 */
    417 OpndSize estOpndSizeFromImm(int target) {
    418     if(target-MIN_JCC_SIZE < 128 && target-MAX_JCC_SIZE >= -128) return OpndSize_8;
    419 #ifdef SUPPORT_IMM_16
    420     if(target-MIN_JCC_SIZE < 32768 && target-MAX_JCC_SIZE >= -32768) return OpndSize_16;
    421 #endif
    422     return OpndSize_32;
    423 }
    424 /*!
    425 \brief return size of a jump or call instruction
    426 
    427 */
    428 unsigned getJmpCallInstSize(OpndSize size, JmpCall_type type) {
    429     if(type == JmpCall_uncond) {
    430         if(size == OpndSize_8) return 2;
    431         if(size == OpndSize_16) return 4;
    432         return 5;
    433     }
    434     if(type == JmpCall_cond) {
    435         if(size == OpndSize_8) return 2;
    436         if(size == OpndSize_16) return 5;
    437         return 6;
    438     }
    439     if(type == JmpCall_reg) {
    440         assert(size == OpndSize_32);
    441         return JUMP_REG_SIZE;
    442     }
    443     if(type == JmpCall_call) {
    444         assert(size != OpndSize_8);
    445         if(size == OpndSize_16) return 4;
    446         return 5;
    447     }
    448     return 0;
    449 }
    450 /*!
    451 \brief check whether a branch target is already handled, if yes, return the size of the immediate; otherwise, call insertShortWorklist or insertLabelWorklist.
    452 
    453 If the branch target is not handled, call insertShortWorklist or insertLabelWorklist depending on isShortTerm, unknown is set to true, immSize is set to 32 if isShortTerm is false, set to 32 if isShortTerm is true and target is check_cast_null, set to 8 otherwise.
    454 
    455 If the branch target is handled, call estOpndSizeFromImm to set immSize for jump instruction, returns the value of the immediate
    456 */
    457 int getRelativeOffset(const char* target, bool isShortTerm, JmpCall_type type, bool* unknown, OpndSize* immSize) {
    458     char* targetPtrInStream = NULL;
    459     if(isShortTerm) targetPtrInStream = findCodeForShortLabel(target);
    460     else targetPtrInStream = findCodeForLabel(target);
    461 
    462     int relOffset;
    463     *unknown = false;
    464     if(targetPtrInStream == NULL) {
    465         //branch target is not handled yet
    466         relOffset = 0;
    467         *unknown = true;
    468         if(isShortTerm) {
    469             /* for backward jump, at this point, we don't know how far the target is from this jump
    470                since the lable is only used within a single bytecode, we assume OpndSize_8 is big enough
    471                but there are special cases where we should use 32 bit offset
    472             */
    473             if(!strcmp(target, ".check_cast_null") || !strcmp(target, ".stackOverflow") ||
    474                !strcmp(target, ".invokeChain") ||
    475                !strcmp(target, ".new_instance_done") ||
    476                !strcmp(target, ".new_array_done") ||
    477                !strcmp(target, ".fill_array_data_done") ||
    478                !strcmp(target, ".inlined_string_compare_done") ||
    479                !strncmp(target, "after_exception", 15)) {
    480 #ifdef SUPPORT_IMM_16
    481                 *immSize = OpndSize_16;
    482 #else
    483                 *immSize = OpndSize_32;
    484 #endif
    485             } else {
    486                 *immSize = OpndSize_8;
    487             }
    488 #ifdef DEBUG_NCG_JUMP
    489             ALOGI("insert to short worklist %s %d", target, *immSize);
    490 #endif
    491             insertShortWorklist(target, *immSize);
    492         }
    493         else {
    494 #ifdef SUPPORT_IMM_16
    495             *immSize = OpndSize_16;
    496 #else
    497             *immSize = OpndSize_32;
    498 #endif
    499             insertLabelWorklist(target, *immSize);
    500         }
    501         if(type == JmpCall_call) { //call sz16 does not work in gdb
    502             *immSize = OpndSize_32;
    503         }
    504         return 0;
    505     }
    506     else if (!isShortTerm) {
    507 #ifdef SUPPORT_IMM_16
    508         *immSize = OpndSize_16;
    509 #else
    510         *immSize = OpndSize_32;
    511 #endif
    512         insertLabelWorklist(target, *immSize);
    513     }
    514 
    515 #ifdef DEBUG_NCG
    516     ALOGI("backward branch @ %p for label %s", stream, target);
    517 #endif
    518     relOffset = targetPtrInStream - stream;
    519     if(type == JmpCall_call) *immSize = OpndSize_32;
    520     else
    521         *immSize = estOpndSizeFromImm(relOffset);
    522 
    523     relOffset -= getJmpCallInstSize(*immSize, type);
    524     return relOffset;
    525 }
    526 
    527 /*!
    528 \brief generate a single native instruction "jcc imm" to jump to a label
    529 
    530 */
    531 void conditional_jump(ConditionCode cc, const char* target, bool isShortTerm) {
    532     if(jumpToException(target) && currentExceptionBlockIdx >= 0) { //jump to the exceptionThrow block
    533         condJumpToBasicBlock(stream, cc, currentExceptionBlockIdx);
    534         return;
    535     }
    536     Mnemonic m = (Mnemonic)(Mnemonic_Jcc + cc);
    537     bool unknown;
    538     OpndSize size;
    539     int imm = 0;
    540     imm = getRelativeOffset(target, isShortTerm, JmpCall_cond, &unknown, &size);
    541     dump_label(m, size, imm, target, isShortTerm);
    542 }
    543 /*!
    544 \brief generate a single native instruction "jmp imm" to jump to ".invokeArgsDone"
    545 
    546 */
    547 void goto_invokeArgsDone() {
    548     unconditional_jump_global_API(".invokeArgsDone", false);
    549 }
    550 /*!
    551 \brief generate a single native instruction "jmp imm" to jump to a label
    552 
    553 If the target is ".invokeArgsDone" and mode is NCG O1, extra work is performed to dump content of virtual registers to memory.
    554 */
    555 void unconditional_jump(const char* target, bool isShortTerm) {
    556     if(jumpToException(target) && currentExceptionBlockIdx >= 0) { //jump to the exceptionThrow block
    557         jumpToBasicBlock(stream, currentExceptionBlockIdx);
    558         return;
    559     }
    560     Mnemonic m = Mnemonic_JMP;
    561     bool unknown;
    562     OpndSize size;
    563     if(gDvm.executionMode == kExecutionModeNcgO1) {
    564         //for other three labels used by JIT: invokeArgsDone_formal, _native, _jit
    565         if(!strncmp(target, ".invokeArgsDone", 15)) {
    566             touchEcx(); //keep ecx live, if ecx was spilled, it is loaded here
    567             beforeCall(target); //
    568         }
    569         if(!strcmp(target, ".invokeArgsDone")) {
    570             nextVersionOfHardReg(PhysicalReg_EDX, 1); //edx will be used in a function
    571             call("ncgGetEIP"); //must be immediately before JMP
    572         }
    573     }
    574     int imm = 0;
    575     imm = getRelativeOffset(target, isShortTerm, JmpCall_uncond, &unknown, &size);
    576     dump_label(m, size, imm, target, isShortTerm);
    577     if(gDvm.executionMode == kExecutionModeNcgO1) {
    578         if(!strncmp(target, ".invokeArgsDone", 15)) {
    579             afterCall(target); //un-spill before executing the next bytecode
    580         }
    581     }
    582 }
    583 /*!
    584 \brief generate a single native instruction "jcc imm"
    585 
    586 */
    587 void conditional_jump_int(ConditionCode cc, int target, OpndSize size) {
    588     Mnemonic m = (Mnemonic)(Mnemonic_Jcc + cc);
    589     dump_ncg(m, size, target);
    590 }
    591 /*!
    592 \brief generate a single native instruction "jmp imm"
    593 
    594 */
    595 void unconditional_jump_int(int target, OpndSize size) {
    596     Mnemonic m = Mnemonic_JMP;
    597     dump_ncg(m, size, target);
    598 }
    599 /*!
    600 \brief generate a single native instruction "jmp reg"
    601 
    602 */
    603 void unconditional_jump_reg(int reg, bool isPhysical) {
    604     dump_reg(Mnemonic_JMP, ATOM_NORMAL, OpndSize_32, reg, isPhysical, LowOpndRegType_gp);
    605 }
    606 
    607 /*!
    608 \brief generate a single native instruction to call a function
    609 
    610 If mode is NCG O1, extra work is performed to dump content of virtual registers to memory.
    611 */
    612 void call(const char* target) {
    613     if(gDvm.executionMode == kExecutionModeNcgO1) {
    614         beforeCall(target);
    615     }
    616     Mnemonic m = Mnemonic_CALL;
    617     bool dummy;
    618     OpndSize size;
    619     int relOffset = 0;
    620     relOffset = getRelativeOffset(target, false, JmpCall_call, &dummy, &size);
    621     dump_label(m, size, relOffset, target, false);
    622     if(gDvm.executionMode == kExecutionModeNcgO1) {
    623         afterCall(target);
    624     }
    625 }
    626 /*!
    627 \brief generate a single native instruction to call a function
    628 
    629 */
    630 void call_reg(int reg, bool isPhysical) {
    631     Mnemonic m = Mnemonic_CALL;
    632     dump_reg(m, ATOM_NORMAL, OpndSize_32, reg, isPhysical, LowOpndRegType_gp);
    633 }
    634 void call_reg_noalloc(int reg, bool isPhysical) {
    635     Mnemonic m = Mnemonic_CALL;
    636     dump_reg_noalloc(m, OpndSize_32, reg, isPhysical, LowOpndRegType_gp);
    637 }
    638 
    639 /*!
    640 \brief generate a single native instruction to call a function
    641 
    642 */
    643 void call_mem(int disp, int reg, bool isPhysical) {
    644     Mnemonic m = Mnemonic_CALL;
    645     dump_mem(m, ATOM_NORMAL, OpndSize_32, disp, reg, isPhysical);
    646 }
    647 
    648 /*!
    649 \brief insert an entry to globalNCGWorklist
    650 
    651 */
    652 int insertNCGWorklist(s4 relativePC, OpndSize immSize) {
    653     int offsetNCG2 = stream - streamMethodStart;
    654 #ifdef DEBUG_NCG
    655     ALOGI("insert NCGWorklist (goto forward) @ %p offsetPC %x relativePC %x offsetNCG %x", stream, offsetPC, relativePC, offsetNCG2);
    656 #endif
    657     NCGWorklist* item = (NCGWorklist*)malloc(sizeof(NCGWorklist));
    658     if(item == NULL) {
    659         ALOGE("Memory allocation failed");
    660         return -1;
    661     }
    662     item->relativePC = relativePC;
    663     item->offsetPC = offsetPC;
    664     item->offsetNCG = offsetNCG2;
    665     item->codePtr = stream;
    666     item->size = immSize;
    667     item->nextItem = globalNCGWorklist;
    668     globalNCGWorklist = item;
    669     return 0;
    670 }
    671 #ifdef ENABLE_TRACING
    672 int insertMapWorklist(s4 BCOffset, s4 NCGOffset, int isStartOfPC) {
    673     return 0;
    674 }
    675 #endif
    676 /*!
    677 \brief insert an entry to methodDataWorklist
    678 
    679 This function is used by bytecode FILL_ARRAY_DATA, PACKED_SWITCH, SPARSE_SWITCH
    680 */
    681 int insertDataWorklist(s4 relativePC, char* codePtr1) {
    682     //insert according to offsetPC+relativePC, smallest at the head
    683     DataWorklist* item = (DataWorklist*)malloc(sizeof(DataWorklist));
    684     if(item == NULL) {
    685         ALOGE("Memory allocation failed");
    686         return -1;
    687     }
    688     item->relativePC = relativePC;
    689     item->offsetPC = offsetPC;
    690     item->codePtr = codePtr1;
    691     item->codePtr2 = stream; //jump_reg for switch
    692     DataWorklist* ptr = methodDataWorklist;
    693     DataWorklist* prev_ptr = NULL;
    694     while(ptr != NULL) {
    695         int tmpPC = ptr->offsetPC + ptr->relativePC;
    696         int tmpPC2 = relativePC + offsetPC;
    697         if(tmpPC2 < tmpPC) {
    698             break;
    699         }
    700         prev_ptr = ptr;
    701         ptr = ptr->nextItem;
    702     }
    703     //insert item before ptr
    704     if(prev_ptr != NULL) {
    705         prev_ptr->nextItem = item;
    706     }
    707     else methodDataWorklist = item;
    708     item->nextItem = ptr;
    709     return 0;
    710 }
    711 
    712 /*!
    713 \brief work on globalNCGWorklist
    714 
    715 */
    716 int performNCGWorklist() {
    717     NCGWorklist* ptr = globalNCGWorklist;
    718     while(ptr != NULL) {
    719         ALOGV("perform NCG worklist: @ %p target block %d target NCG %x",
    720              ptr->codePtr, ptr->relativePC, traceLabelList[ptr->relativePC].lop.generic.offset);
    721         int tmpNCG = traceLabelList[ptr->relativePC].lop.generic.offset;
    722         assert(tmpNCG >= 0);
    723         int relativeNCG = tmpNCG - ptr->offsetNCG;
    724         unsigned instSize = encoder_get_inst_size(ptr->codePtr);
    725         relativeNCG -= instSize;
    726         updateJumpInst(ptr->codePtr, ptr->size, relativeNCG);
    727         globalNCGWorklist = ptr->nextItem;
    728         free(ptr);
    729         ptr = globalNCGWorklist;
    730     }
    731     return 0;
    732 }
    733 void freeNCGWorklist() {
    734     NCGWorklist* ptr = globalNCGWorklist;
    735     while(ptr != NULL) {
    736         globalNCGWorklist = ptr->nextItem;
    737         free(ptr);
    738         ptr = globalNCGWorklist;
    739     }
    740 }
    741 
    742 /*!
    743 \brief used by bytecode SWITCH
    744 
    745 targetPC points to start of the data section
    746 Code sequence for SWITCH
    747   call ncgGetEIP
    748   @codeInst: add_reg_reg %eax, %edx
    749   jump_reg %edx
    750 This function returns the offset in native code between add_reg_reg and the data section
    751 */
    752 int getRelativeNCGForSwitch(int targetPC, char* codeInst) {
    753     int tmpNCG = mapFromBCtoNCG[targetPC];
    754     int offsetNCG2 = codeInst - streamMethodStart;
    755     int relativeOff = tmpNCG - offsetNCG2;
    756     return relativeOff;
    757 }
    758 /*!
    759 \brief work on methodDataWorklist
    760 
    761 */
    762 int performDataWorklist() {
    763     DataWorklist* ptr = methodDataWorklist;
    764     if(ptr == NULL) return 0;
    765 
    766     char* codeCacheEnd = ((char *) gDvmJit.codeCache) + gDvmJit.codeCacheSize - CODE_CACHE_PADDING;
    767     u2 insnsSize = dvmGetMethodInsnsSize(currentMethod); //bytecode
    768     //align stream to multiple of 4
    769     int alignBytes = (int)stream & 3;
    770     if(alignBytes != 0) alignBytes = 4-alignBytes;
    771     stream += alignBytes;
    772 
    773     while(ptr != NULL) {
    774         int tmpPC = ptr->offsetPC + ptr->relativePC;
    775         int endPC = insnsSize;
    776         if(ptr->nextItem != NULL) endPC = ptr->nextItem->offsetPC + ptr->nextItem->relativePC;
    777         mapFromBCtoNCG[tmpPC] = stream - streamMethodStart; //offsetNCG in byte
    778 
    779         //handle fill_array_data, packed switch & sparse switch
    780         u2 tmpInst = *(currentMethod->insns + ptr->offsetPC);
    781         u2* sizePtr;
    782         s4* entryPtr_bytecode;
    783         u2 tSize, iVer;
    784         u4 sz;
    785 
    786         if (gDvmJit.codeCacheFull == true) {
    787             // We are out of code cache space. Skip writing data/code to
    788             //   code cache. Simply free the item.
    789             methodDataWorklist = ptr->nextItem;
    790             free(ptr);
    791             ptr = methodDataWorklist;
    792         }
    793 
    794         switch (INST_INST(tmpInst)) {
    795         case OP_FILL_ARRAY_DATA:
    796             sz = (endPC-tmpPC)*sizeof(u2);
    797             if ((stream + sz) < codeCacheEnd) {
    798                 memcpy(stream, (u2*)currentMethod->insns+tmpPC, sz);
    799 #ifdef DEBUG_NCG_CODE_SIZE
    800                 ALOGI("copy data section to stream %p: start at %d, %d bytes", stream, tmpPC, sz);
    801 #endif
    802 #ifdef DEBUG_NCG
    803                 ALOGI("update data section at %p with %d", ptr->codePtr, stream-ptr->codePtr);
    804 #endif
    805                 updateImmRMInst(ptr->codePtr, "", stream - ptr->codePtr);
    806                 stream += sz;
    807             } else {
    808                 gDvmJit.codeCacheFull = true;
    809             }
    810             break;
    811         case OP_PACKED_SWITCH:
    812             updateImmRMInst(ptr->codePtr, "", stream-ptr->codePtr);
    813             sizePtr = (u2*)currentMethod->insns+tmpPC + 1 /*signature*/;
    814             entryPtr_bytecode = (s4*)(sizePtr + 1 /*size*/ + 2 /*firstKey*/);
    815             tSize = *(sizePtr);
    816             sz = tSize * 4;     /* expected size needed in stream */
    817             if ((stream + sz) < codeCacheEnd) {
    818                 for(iVer = 0; iVer < tSize; iVer++) {
    819                     //update entries
    820                     s4 relativePC = *entryPtr_bytecode; //relative to ptr->offsetPC
    821                     //need stream, offsetPC,
    822                     int relativeNCG = getRelativeNCGForSwitch(relativePC+ptr->offsetPC, ptr->codePtr2);
    823 #ifdef DEBUG_NCG_CODE_SIZE
    824                     ALOGI("convert target from %d to %d", relativePC+ptr->offsetPC, relativeNCG);
    825 #endif
    826                     *((s4*)stream) = relativeNCG;
    827                     stream += 4;
    828                     entryPtr_bytecode++;
    829                 }
    830             } else {
    831                 gDvmJit.codeCacheFull = true;
    832             }
    833             break;
    834         case OP_SPARSE_SWITCH:
    835             updateImmRMInst(ptr->codePtr, "", stream-ptr->codePtr);
    836             sizePtr = (u2*)currentMethod->insns+tmpPC + 1 /*signature*/;
    837             s4* keyPtr_bytecode = (s4*)(sizePtr + 1 /*size*/);
    838             tSize = *(sizePtr);
    839             entryPtr_bytecode = (s4*)(keyPtr_bytecode + tSize);
    840             sz = tSize * (sizeof(s4) + 4); /* expected size needed in stream */
    841             if ((stream + sz) < codeCacheEnd) {
    842                 memcpy(stream, keyPtr_bytecode, tSize*sizeof(s4));
    843                 stream += tSize*sizeof(s4);
    844                 for(iVer = 0; iVer < tSize; iVer++) {
    845                     //update entries
    846                     s4 relativePC = *entryPtr_bytecode; //relative to ptr->offsetPC
    847                     //need stream, offsetPC,
    848                     int relativeNCG = getRelativeNCGForSwitch(relativePC+ptr->offsetPC, ptr->codePtr2);
    849                     *((s4*)stream) = relativeNCG;
    850                     stream += 4;
    851                     entryPtr_bytecode++;
    852                 }
    853             } else {
    854                 gDvmJit.codeCacheFull = true;
    855             }
    856             break;
    857         }
    858 
    859         //remove the item
    860         methodDataWorklist = ptr->nextItem;
    861         free(ptr);
    862         ptr = methodDataWorklist;
    863     }
    864     return 0;
    865 }
    866 void freeDataWorklist() {
    867     DataWorklist* ptr = methodDataWorklist;
    868     while(ptr != NULL) {
    869         methodDataWorklist = ptr->nextItem;
    870         free(ptr);
    871         ptr = methodDataWorklist;
    872     }
    873 }
    874 
    875 //////////////////////////
    876 /*!
    877 \brief check whether a branch target (specified by relative offset in bytecode) is already handled, if yes, return the size of the immediate; otherwise, call insertNCGWorklist.
    878 
    879 If the branch target is not handled, call insertNCGWorklist, unknown is set to true, immSize is set to 32.
    880 
    881 If the branch target is handled, call estOpndSizeFromImm to set immSize for jump instruction, returns the value of the immediate
    882 */
    883 int getRelativeNCG(s4 tmp, JmpCall_type type, bool* unknown, OpndSize* size) {//tmp: relativePC
    884     int tmpNCG = traceLabelList[tmp].lop.generic.offset;
    885 
    886     *unknown = false;
    887     if(tmpNCG <0) {
    888         *unknown = true;
    889 #ifdef SUPPORT_IMM_16
    890         *size = OpndSize_16;
    891 #else
    892         *size = OpndSize_32;
    893 #endif
    894         insertNCGWorklist(tmp, *size);
    895         return 0;
    896     }
    897     int offsetNCG2 = stream - streamMethodStart;
    898 #ifdef DEBUG_NCG
    899     ALOGI("goto backward @ %p offsetPC %d relativePC %d offsetNCG %d relativeNCG %d", stream, offsetPC, tmp, offsetNCG2, tmpNCG-offsetNCG2);
    900 #endif
    901     int relativeOff = tmpNCG - offsetNCG2;
    902     *size = estOpndSizeFromImm(relativeOff);
    903     return relativeOff - getJmpCallInstSize(*size, type);
    904 }
    905 /*!
    906 \brief a helper function to handle backward branch
    907 
    908 input: jump target in %eax; at end of the function, jump to %eax
    909 */
    910 int common_backwardBranch() {
    911     insertLabel("common_backwardBranch", false);
    912     spill_reg(PhysicalReg_EAX, true);
    913     call("common_periodicChecks_entry");
    914     unspill_reg(PhysicalReg_EAX, true);
    915     unconditional_jump_reg(PhysicalReg_EAX, true);
    916     return 0;
    917 }
    918 //when this is called from JIT, there is no need to check GC
    919 int common_goto(s4 tmp) { //tmp: target basic block id
    920     bool unknown;
    921     OpndSize size;
    922     constVREndOfBB();
    923     globalVREndOfBB(currentMethod);
    924 
    925     int relativeNCG = tmp;
    926     relativeNCG = getRelativeNCG(tmp, JmpCall_uncond, &unknown, &size);
    927     unconditional_jump_int(relativeNCG, size);
    928     return 1;
    929 }
    930 int common_if(s4 tmp, ConditionCode cc_next, ConditionCode cc) {
    931     bool unknown;
    932     OpndSize size;
    933     int relativeNCG = traceCurrentBB->taken ? traceCurrentBB->taken->id : 0;
    934 
    935     if(traceCurrentBB->taken)
    936         relativeNCG = getRelativeNCG(traceCurrentBB->taken->id, JmpCall_cond, &unknown, &size);
    937     conditional_jump_int(cc, relativeNCG, size);
    938     relativeNCG = traceCurrentBB->fallThrough ? traceCurrentBB->fallThrough->id : 0;
    939     if(traceCurrentBB->fallThrough)
    940         relativeNCG = getRelativeNCG(traceCurrentBB->fallThrough->id, JmpCall_uncond, &unknown, &size);
    941     unconditional_jump_int(relativeNCG, size);
    942     return 2;
    943 }
    944 
    945 /*!
    946 \brief helper function to handle null object error
    947 
    948 */
    949 int common_errNullObject() {
    950     insertLabel("common_errNullObject", false);
    951     move_imm_to_reg(OpndSize_32, 0, PhysicalReg_EAX, true);
    952     move_imm_to_reg(OpndSize_32, LstrNullPointerException, PhysicalReg_ECX, true);
    953     unconditional_jump("common_throw", false);
    954     return 0;
    955 }
    956 /*!
    957 \brief helper function to handle string index error
    958 
    959 */
    960 int common_StringIndexOutOfBounds() {
    961     insertLabel("common_StringIndexOutOfBounds", false);
    962     move_imm_to_reg(OpndSize_32, 0, PhysicalReg_EAX, true);
    963     move_imm_to_reg(OpndSize_32, LstrStringIndexOutOfBoundsException, PhysicalReg_ECX, true);
    964     unconditional_jump("common_throw", false);
    965     return 0;
    966 }
    967 
    968 /*!
    969 \brief helper function to handle array index error
    970 
    971 */
    972 int common_errArrayIndex() {
    973     insertLabel("common_errArrayIndex", false);
    974     move_imm_to_reg(OpndSize_32, 0, PhysicalReg_EAX, true);
    975     move_imm_to_reg(OpndSize_32, LstrArrayIndexException, PhysicalReg_ECX, true);
    976     unconditional_jump("common_throw", false);
    977     return 0;
    978 }
    979 /*!
    980 \brief helper function to handle array store error
    981 
    982 */
    983 int common_errArrayStore() {
    984     insertLabel("common_errArrayStore", false);
    985     move_imm_to_reg(OpndSize_32, 0, PhysicalReg_EAX, true);
    986     move_imm_to_reg(OpndSize_32, LstrArrayStoreException, PhysicalReg_ECX, true);
    987     unconditional_jump("common_throw", false);
    988     return 0;
    989 }
    990 /*!
    991 \brief helper function to handle negative array size error
    992 
    993 */
    994 int common_errNegArraySize() {
    995     insertLabel("common_errNegArraySize", false);
    996     move_imm_to_reg(OpndSize_32, 0, PhysicalReg_EAX, true);
    997     move_imm_to_reg(OpndSize_32, LstrNegativeArraySizeException, PhysicalReg_ECX, true);
    998     unconditional_jump("common_throw", false);
    999     return 0;
   1000 }
   1001 /*!
   1002 \brief helper function to handle divide-by-zero error
   1003 
   1004 */
   1005 int common_errDivideByZero() {
   1006     insertLabel("common_errDivideByZero", false);
   1007     move_imm_to_reg(OpndSize_32, LstrDivideByZero, PhysicalReg_EAX, true);
   1008     move_imm_to_reg(OpndSize_32, LstrArithmeticException, PhysicalReg_ECX, true);
   1009     unconditional_jump("common_throw", false);
   1010     return 0;
   1011 }
   1012 /*!
   1013 \brief helper function to handle no such method error
   1014 
   1015 */
   1016 int common_errNoSuchMethod() {
   1017     insertLabel("common_errNoSuchMethod", false);
   1018     move_imm_to_reg(OpndSize_32, 0, PhysicalReg_EAX, true);
   1019     move_imm_to_reg(OpndSize_32, LstrNoSuchMethodError, PhysicalReg_ECX, true);
   1020     unconditional_jump("common_throw", false);
   1021     return 0;
   1022 }
   1023 int call_dvmFindCatchBlock();
   1024 
   1025 #define P_GPR_1 PhysicalReg_ESI //self callee-saved
   1026 #define P_GPR_2 PhysicalReg_EBX //exception callee-saved
   1027 #define P_GPR_3 PhysicalReg_EAX //method that caused exception
   1028 /*!
   1029 \brief helper function common_exceptionThrown
   1030 
   1031 */
   1032 int common_exceptionThrown() {
   1033     insertLabel("common_exceptionThrown", false);
   1034     typedef void (*vmHelper)(int);
   1035     vmHelper funcPtr = dvmJitToExceptionThrown;
   1036     move_imm_to_reg(OpndSize_32, (int)funcPtr, C_SCRATCH_1, isScratchPhysical);
   1037     unconditional_jump_reg(C_SCRATCH_1, isScratchPhysical);
   1038     return 0;
   1039 }
   1040 #undef P_GPR_1
   1041 #undef P_GPR_2
   1042 #undef P_GPR_3
   1043 
   1044 /*!
   1045 \brief helper function to throw an exception with message
   1046 
   1047 INPUT: obj_reg(%eax), exceptionPtrReg(%ecx)
   1048 SCRATCH: C_SCRATCH_1(%esi) & C_SCRATCH_2(%edx)
   1049 OUTPUT: no
   1050 */
   1051 int throw_exception_message(int exceptionPtrReg, int obj_reg, bool isPhysical,
   1052                             int startLR/*logical register index*/, bool startPhysical) {
   1053     insertLabel("common_throw_message", false);
   1054     scratchRegs[0] = PhysicalReg_ESI; scratchRegs[1] = PhysicalReg_EDX;
   1055     scratchRegs[2] = PhysicalReg_Null; scratchRegs[3] = PhysicalReg_Null;
   1056 
   1057     move_mem_to_reg(OpndSize_32, offObject_clazz, obj_reg, isPhysical, C_SCRATCH_1, isScratchPhysical);
   1058     move_mem_to_reg(OpndSize_32, offClassObject_descriptor, C_SCRATCH_1, isScratchPhysical, C_SCRATCH_2, isScratchPhysical);
   1059     load_effective_addr(-8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1060     move_reg_to_mem(OpndSize_32, C_SCRATCH_2, isScratchPhysical, 4, PhysicalReg_ESP, true);
   1061     move_reg_to_mem(OpndSize_32, exceptionPtrReg, true, 0, PhysicalReg_ESP, true);
   1062     call_dvmThrowWithMessage();
   1063     load_effective_addr(8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1064     unconditional_jump("common_exceptionThrown", false);
   1065     return 0;
   1066 }
   1067 /*!
   1068 \brief helper function to throw an exception
   1069 
   1070 scratch: C_SCRATCH_1(%edx)
   1071 */
   1072 int throw_exception(int exceptionPtrReg, int immReg,
   1073                     int startLR/*logical register index*/, bool startPhysical) {
   1074     insertLabel("common_throw", false);
   1075     scratchRegs[0] = PhysicalReg_EDX; scratchRegs[1] = PhysicalReg_Null;
   1076     scratchRegs[2] = PhysicalReg_Null; scratchRegs[3] = PhysicalReg_Null;
   1077 
   1078     load_effective_addr(-8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1079     move_reg_to_mem(OpndSize_32, immReg, true, 4, PhysicalReg_ESP, true);
   1080     move_reg_to_mem(OpndSize_32, exceptionPtrReg, true, 0, PhysicalReg_ESP, true);
   1081     call_dvmThrow();
   1082     load_effective_addr(8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1083     unconditional_jump("common_exceptionThrown", false);
   1084     return 0;
   1085 }
   1086 
   1087 //! lower bytecode GOTO
   1088 
   1089 //!
   1090 int op_goto() {
   1091     s2 tmp = traceCurrentBB->taken->id;
   1092     int retval = common_goto(tmp);
   1093     rPC += 1;
   1094     return retval;
   1095 }
   1096 //! lower bytecode GOTO_16
   1097 
   1098 //!
   1099 int op_goto_16() {
   1100     s2 tmp = traceCurrentBB->taken->id;
   1101     int retval = common_goto(tmp);
   1102     rPC += 2;
   1103     return retval;
   1104 }
   1105 //! lower bytecode GOTO_32
   1106 
   1107 //!
   1108 int op_goto_32() {
   1109     s2 tmp = traceCurrentBB->taken->id;
   1110     int retval = common_goto((s4)tmp);
   1111     rPC += 3;
   1112     return retval;
   1113 }
   1114 #define P_GPR_1 PhysicalReg_EBX
   1115 //! lower bytecode PACKED_SWITCH
   1116 
   1117 //!
   1118 int op_packed_switch() {
   1119     u4 tmp = (u4)FETCH(1);
   1120     tmp |= (u4)FETCH(2) << 16;
   1121     u2 vA = INST_AA(inst);
   1122 
   1123 #ifdef DEBUG_EACH_BYTECODE
   1124     u2 tSize = 0;
   1125     s4 firstKey = 0;
   1126     s4* entries = NULL;
   1127 #else
   1128     u2* switchData = rPC + (s4)tmp;
   1129     if (*switchData++ != kPackedSwitchSignature) {
   1130         /* should have been caught by verifier */
   1131         dvmThrowInternalError(
   1132                           "bad packed switch magic");
   1133         return 0; //no_op
   1134     }
   1135     u2 tSize = *switchData++;
   1136     assert(tSize > 0);
   1137     s4 firstKey = *switchData++;
   1138     firstKey |= (*switchData++) << 16;
   1139     s4* entries = (s4*) switchData;
   1140     assert(((u4)entries & 0x3) == 0);
   1141 #endif
   1142 
   1143     get_virtual_reg(vA, OpndSize_32, 1, false);
   1144     //dvmNcgHandlePackedSwitch: testVal, size, first_key, targets
   1145     load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1146     move_imm_to_mem(OpndSize_32, tSize, 8, PhysicalReg_ESP, true);
   1147     move_imm_to_mem(OpndSize_32, firstKey, 4, PhysicalReg_ESP, true);
   1148 
   1149     /* "entries" is constant for JIT
   1150        it is the 1st argument to dvmJitHandlePackedSwitch */
   1151     move_imm_to_mem(OpndSize_32, (int)entries, 0, PhysicalReg_ESP, true);
   1152     move_reg_to_mem(OpndSize_32, 1, false, 12, PhysicalReg_ESP, true);
   1153 
   1154     //if value out of range, fall through (no_op)
   1155     //return targets[testVal - first_key]
   1156     scratchRegs[0] = PhysicalReg_SCRATCH_1;
   1157     call_dvmJitHandlePackedSwitch();
   1158     load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1159     //TODO: eax should be absolute address, call globalVREndOfBB, constVREndOfBB
   1160     //conditional_jump_global_API(Condition_LE, "common_backwardBranch", false);
   1161     constVREndOfBB();
   1162     globalVREndOfBB(currentMethod); //update GG VRs
   1163     //get rPC, %eax has the relative PC offset
   1164     alu_binary_imm_reg(OpndSize_32, add_opc, (int)rPC, PhysicalReg_EAX, true);
   1165     scratchRegs[0] = PhysicalReg_SCRATCH_2;
   1166     jumpToInterpNoChain();
   1167     rPC += 3;
   1168     return 0;
   1169 }
   1170 #undef P_GPR_1
   1171 
   1172 #define P_GPR_1 PhysicalReg_EBX
   1173 //! lower bytecode SPARSE_SWITCH
   1174 
   1175 //!
   1176 int op_sparse_switch() {
   1177     u4 tmp = (u4)FETCH(1);
   1178     tmp |= (u4)FETCH(2) << 16;
   1179     u2 vA = INST_AA(inst);
   1180 #ifdef DEBUG_EACH_BYTECODE
   1181     u2 tSize = 0;
   1182     const s4* keys = NULL;
   1183     s4* entries = NULL;
   1184 #else
   1185     u2* switchData = rPC + (s4)tmp;
   1186 
   1187     if (*switchData++ != kSparseSwitchSignature) {
   1188         /* should have been caught by verifier */
   1189         dvmThrowInternalError(
   1190                           "bad sparse switch magic");
   1191         return 0; //no_op
   1192     }
   1193     u2 tSize = *switchData++;
   1194     assert(tSize > 0);
   1195     const s4* keys = (const s4*) switchData;
   1196     assert(((u4)keys & 0x3) == 0);
   1197     s4* entries = (s4*)switchData + tSize;
   1198     assert(((u4)entries & 0x3) == 0);
   1199 #endif
   1200 
   1201     get_virtual_reg(vA, OpndSize_32, 1, false);
   1202     //dvmNcgHandleSparseSwitch: keys, size, testVal
   1203     load_effective_addr(-12, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1204     move_imm_to_mem(OpndSize_32, tSize, 4, PhysicalReg_ESP, true);
   1205 
   1206     /* "keys" is constant for JIT
   1207        it is the 1st argument to dvmJitHandleSparseSwitch */
   1208     move_imm_to_mem(OpndSize_32, (int)keys, 0, PhysicalReg_ESP, true);
   1209     move_reg_to_mem(OpndSize_32, 1, false, 8, PhysicalReg_ESP, true);
   1210 
   1211     scratchRegs[0] = PhysicalReg_SCRATCH_1;
   1212     //if testVal is in keys, return the corresponding target
   1213     //otherwise, fall through (no_op)
   1214     call_dvmJitHandleSparseSwitch();
   1215     load_effective_addr(12, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1216     //TODO: eax should be absolute address, call globalVREndOfBB constVREndOfBB
   1217     //conditional_jump_global_API(Condition_LE, "common_backwardBranch", false);
   1218     constVREndOfBB();
   1219     globalVREndOfBB(currentMethod);
   1220     //get rPC, %eax has the relative PC offset
   1221     alu_binary_imm_reg(OpndSize_32, add_opc, (int)rPC, PhysicalReg_EAX, true);
   1222     scratchRegs[0] = PhysicalReg_SCRATCH_2;
   1223     jumpToInterpNoChain();
   1224     rPC += 3;
   1225     return 0;
   1226 }
   1227 
   1228 #undef P_GPR_1
   1229 
   1230 #define P_GPR_1 PhysicalReg_EBX
   1231 //! lower bytecode IF_EQ
   1232 
   1233 //!
   1234 int op_if_eq() {
   1235     u2 vA = INST_A(inst);
   1236     u2 vB = INST_B(inst);
   1237     s2 tmp = (s2)FETCH(1);
   1238     get_virtual_reg(vA, OpndSize_32, 1, false);
   1239     compare_VR_reg(OpndSize_32, vB, 1, false);
   1240     constVREndOfBB();
   1241     globalVREndOfBB(currentMethod);
   1242     common_if(tmp, Condition_NE, Condition_E);
   1243     rPC += 2;
   1244     return 0;
   1245 }
   1246 //! lower bytecode IF_NE
   1247 
   1248 //!
   1249 int op_if_ne() {
   1250     u2 vA = INST_A(inst);
   1251     u2 vB = INST_B(inst);
   1252     s2 tmp = (s2)FETCH(1);
   1253     get_virtual_reg(vA, OpndSize_32, 1, false);
   1254     compare_VR_reg(OpndSize_32, vB, 1, false);
   1255     constVREndOfBB();
   1256     globalVREndOfBB(currentMethod);
   1257     common_if(tmp, Condition_E, Condition_NE);
   1258     rPC += 2;
   1259     return 0;
   1260 }
   1261 //! lower bytecode IF_LT
   1262 
   1263 //!
   1264 int op_if_lt() {
   1265     u2 vA = INST_A(inst);
   1266     u2 vB = INST_B(inst);
   1267     s2 tmp = (s2)FETCH(1);
   1268     get_virtual_reg(vA, OpndSize_32, 1, false);
   1269     compare_VR_reg(OpndSize_32, vB, 1, false);
   1270     constVREndOfBB();
   1271     globalVREndOfBB(currentMethod);
   1272     common_if(tmp, Condition_GE, Condition_L);
   1273     rPC += 2;
   1274     return 0;
   1275 }
   1276 //! lower bytecode IF_GE
   1277 
   1278 //!
   1279 int op_if_ge() {
   1280     u2 vA = INST_A(inst);
   1281     u2 vB = INST_B(inst);
   1282     s2 tmp = (s2)FETCH(1);
   1283     get_virtual_reg(vA, OpndSize_32, 1, false);
   1284     compare_VR_reg(OpndSize_32, vB, 1, false);
   1285     constVREndOfBB();
   1286     globalVREndOfBB(currentMethod);
   1287     common_if(tmp, Condition_L, Condition_GE);
   1288     rPC += 2;
   1289     return 0;
   1290 }
   1291 //! lower bytecode IF_GT
   1292 
   1293 //!
   1294 int op_if_gt() {
   1295     u2 vA = INST_A(inst);
   1296     u2 vB = INST_B(inst);
   1297     s2 tmp = (s2)FETCH(1);
   1298     get_virtual_reg(vA, OpndSize_32, 1, false);
   1299     compare_VR_reg(OpndSize_32, vB, 1, false);
   1300     constVREndOfBB();
   1301     globalVREndOfBB(currentMethod);
   1302     common_if(tmp, Condition_LE, Condition_G);
   1303     rPC += 2;
   1304     return 0;
   1305 }
   1306 //! lower bytecode IF_LE
   1307 
   1308 //!
   1309 int op_if_le() {
   1310     u2 vA = INST_A(inst);
   1311     u2 vB = INST_B(inst);
   1312     s2 tmp = (s2)FETCH(1);
   1313     get_virtual_reg(vA, OpndSize_32, 1, false);
   1314     compare_VR_reg(OpndSize_32, vB, 1, false);
   1315     constVREndOfBB();
   1316     globalVREndOfBB(currentMethod);
   1317     common_if(tmp, Condition_G, Condition_LE);
   1318     rPC += 2;
   1319     return 0;
   1320 }
   1321 #undef P_GPR_1
   1322 //! lower bytecode IF_EQZ
   1323 
   1324 //!
   1325 int op_if_eqz() {
   1326     u2 vA = INST_AA(inst);
   1327     s2 tmp = (s2)FETCH(1);
   1328     compare_imm_VR(OpndSize_32,
   1329                                   0, vA);
   1330     constVREndOfBB();
   1331     globalVREndOfBB(currentMethod);
   1332     common_if(tmp, Condition_NE, Condition_E);
   1333     rPC += 2;
   1334     return 0;
   1335 }
   1336 //! lower bytecode IF_NEZ
   1337 
   1338 //!
   1339 int op_if_nez() {
   1340     u2 vA = INST_AA(inst);
   1341     s2 tmp = (s2)FETCH(1);
   1342     compare_imm_VR(OpndSize_32,
   1343                                   0, vA);
   1344     constVREndOfBB();
   1345     globalVREndOfBB(currentMethod);
   1346     common_if(tmp, Condition_E, Condition_NE);
   1347     rPC += 2;
   1348     return 0;
   1349 }
   1350 //! lower bytecode IF_LTZ
   1351 
   1352 //!
   1353 int op_if_ltz() {
   1354     u2 vA = INST_AA(inst);
   1355     s2 tmp = (s2)FETCH(1);
   1356     compare_imm_VR(OpndSize_32,
   1357                                   0, vA);
   1358     constVREndOfBB();
   1359     globalVREndOfBB(currentMethod);
   1360     common_if(tmp, Condition_GE, Condition_L);
   1361     rPC += 2;
   1362     return 0;
   1363 }
   1364 //! lower bytecode IF_GEZ
   1365 
   1366 //!
   1367 int op_if_gez() {
   1368     u2 vA = INST_AA(inst);
   1369     s2 tmp = (s2)FETCH(1);
   1370     compare_imm_VR(OpndSize_32,
   1371                                   0, vA);
   1372     constVREndOfBB();
   1373     globalVREndOfBB(currentMethod);
   1374     common_if(tmp, Condition_L, Condition_GE);
   1375     rPC += 2;
   1376     return 0;
   1377 }
   1378 //! lower bytecode IF_GTZ
   1379 
   1380 //!
   1381 int op_if_gtz() {
   1382     u2 vA = INST_AA(inst);
   1383     s2 tmp = (s2)FETCH(1);
   1384     compare_imm_VR(OpndSize_32,
   1385                                   0, vA);
   1386     constVREndOfBB();
   1387     globalVREndOfBB(currentMethod);
   1388     common_if(tmp, Condition_LE, Condition_G);
   1389     rPC += 2;
   1390     return 0;
   1391 }
   1392 //! lower bytecode IF_LEZ
   1393 
   1394 //!
   1395 int op_if_lez() {
   1396     u2 vA = INST_AA(inst);
   1397     s2 tmp = (s2)FETCH(1);
   1398     compare_imm_VR(OpndSize_32,
   1399                                   0, vA);
   1400     constVREndOfBB();
   1401     globalVREndOfBB(currentMethod);
   1402     common_if(tmp, Condition_G, Condition_LE);
   1403     rPC += 2;
   1404     return 0;
   1405 }
   1406 
   1407 #define P_GPR_1 PhysicalReg_ECX
   1408 #define P_GPR_2 PhysicalReg_EBX
   1409 /*!
   1410 \brief helper function common_periodicChecks4 to check GC request
   1411 BCOffset in %edx
   1412 */
   1413 int common_periodicChecks4() {
   1414     insertLabel("common_periodicChecks4", false);
   1415 #if (!defined(ENABLE_TRACING))
   1416     get_self_pointer(PhysicalReg_ECX, true);
   1417     move_mem_to_reg(OpndSize_32, offsetof(Thread, suspendCount), PhysicalReg_ECX, true, PhysicalReg_EAX, true);
   1418     compare_imm_reg(OpndSize_32, 0, PhysicalReg_EAX, true); //suspendCount
   1419     conditional_jump(Condition_NE, "common_handleSuspend4", true); //called once
   1420     x86_return();
   1421 
   1422     insertLabel("common_handleSuspend4", true);
   1423     push_reg_to_stack(OpndSize_32, PhysicalReg_ECX, true);
   1424     call_dvmCheckSuspendPending();
   1425     load_effective_addr(4, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1426     x86_return();
   1427 
   1428 #else
   1429     ///////////////////
   1430     //get debuggerActive: 3 memory accesses, and $7
   1431     move_mem_to_reg(OpndSize_32, offGlue_pSelfSuspendCount, PhysicalReg_Glue, true, P_GPR_1, true);
   1432     move_mem_to_reg(OpndSize_32, offGlue_pIntoDebugger, PhysicalReg_Glue, true, P_GPR_2, true);
   1433 
   1434     compare_imm_mem(OpndSize_32, 0, 0, P_GPR_1, true); //suspendCount
   1435     conditional_jump(Condition_NE, "common_handleSuspend4_1", true); //called once
   1436 
   1437     compare_imm_mem(OpndSize_32, 0, 0, P_GPR_2, true); //debugger active
   1438 
   1439     conditional_jump(Condition_NE, "common_debuggerActive4", true);
   1440 
   1441     //recover registers and return
   1442     x86_return();
   1443 
   1444     insertLabel("common_handleSuspend4_1", true);
   1445     push_mem_to_stack(OpndSize_32, offGlue_self, PhysicalReg_Glue, true);
   1446     call_dvmCheckSuspendPending();
   1447     load_effective_addr(4, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1448     x86_return();
   1449 
   1450     insertLabel("common_debuggerActive4", true);
   1451     //%edx: offsetBC (at run time, get method->insns_bytecode, then calculate BCPointer)
   1452     move_mem_to_reg(OpndSize_32, offGlue_method, PhysicalReg_Glue, true, P_GPR_1, true);
   1453     move_mem_to_reg(OpndSize_32, offMethod_insns_bytecode, P_GPR_1, true, P_GPR_2, true);
   1454     alu_binary_reg_reg(OpndSize_32, add_opc, P_GPR_2, true, PhysicalReg_EDX, true);
   1455     move_imm_to_mem(OpndSize_32, 0, offGlue_entryPoint, PhysicalReg_Glue, true);
   1456     unconditional_jump("common_gotoBail", false); //update glue->rPC with edx
   1457 #endif
   1458     return 0;
   1459 }
   1460 //input: %edx PC adjustment
   1461 //CHECK: should %edx be saved before calling dvmCheckSuspendPending?
   1462 /*!
   1463 \brief helper function common_periodicChecks_entry to check GC request
   1464 
   1465 */
   1466 int common_periodicChecks_entry() {
   1467     insertLabel("common_periodicChecks_entry", false);
   1468     scratchRegs[0] = PhysicalReg_ESI; scratchRegs[1] = PhysicalReg_EAX;
   1469     scratchRegs[2] = PhysicalReg_Null; scratchRegs[3] = PhysicalReg_Null;
   1470     get_suspendCount(P_GPR_1, true);
   1471 
   1472     //get debuggerActive: 3 memory accesses, and $7
   1473 #if 0 //defined(WITH_DEBUGGER)
   1474     get_debuggerActive(P_GPR_2, true);
   1475 #endif
   1476 
   1477     compare_imm_reg(OpndSize_32, 0, P_GPR_1, true); //suspendCount
   1478     conditional_jump(Condition_NE, "common_handleSuspend", true); //called once
   1479 
   1480 #if 0 //defined(WITH_DEBUGGER)
   1481 #ifdef NCG_DEBUG
   1482     compare_imm_reg(OpndSize_32, 0, P_GPR_2, true); //debugger active
   1483     conditional_jump(Condition_NE, "common_debuggerActive", true);
   1484 #endif
   1485 #endif
   1486 
   1487     //recover registers and return
   1488     x86_return();
   1489     insertLabel("common_handleSuspend", true);
   1490     get_self_pointer(P_GPR_1, true);
   1491     load_effective_addr(-4, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1492     move_reg_to_mem(OpndSize_32, P_GPR_1, true, 0, PhysicalReg_ESP, true);
   1493     call_dvmCheckSuspendPending();
   1494     load_effective_addr(4, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1495     x86_return();
   1496 #ifdef NCG_DEBUG
   1497     insertLabel("common_debuggerActive", true);
   1498     //adjust PC!!! use 0(%esp) TODO
   1499     set_glue_entryPoint_imm(0); //kInterpEntryInstr);
   1500     unconditional_jump("common_gotoBail", false);
   1501 #endif
   1502     return 0;
   1503 }
   1504 #undef P_GPR_1
   1505 #undef P_GPR_2
   1506 /*!
   1507 \brief helper function common_gotoBail
   1508   input: %edx: BCPointer %esi: Glue
   1509   set %eax to 1 (switch interpreter = true), recover the callee-saved registers and return
   1510 */
   1511 int common_gotoBail() {
   1512     insertLabel("common_gotoBail", false);
   1513     //scratchRegs[0] = PhysicalReg_EDX; scratchRegs[1] = PhysicalReg_ESI;
   1514     //scratchRegs[2] = PhysicalReg_Null; scratchRegs[3] = PhysicalReg_Null;
   1515     //save_pc_fp_to_glue();
   1516     get_self_pointer(PhysicalReg_EAX, true);
   1517     move_reg_to_mem(OpndSize_32, PhysicalReg_FP, true, offsetof(Thread, interpSave.curFrame), PhysicalReg_EAX, true);
   1518     move_reg_to_mem(OpndSize_32, PhysicalReg_EDX, true, offsetof(Thread, interpSave.pc), PhysicalReg_EAX, true);
   1519 
   1520     move_mem_to_reg(OpndSize_32, offsetof(Thread, interpSave.bailPtr), PhysicalReg_EAX, true, PhysicalReg_ESP, true);
   1521     move_reg_to_reg(OpndSize_32, PhysicalReg_ESP, true, PhysicalReg_EBP, true);
   1522     load_effective_addr(FRAME_SIZE-4, PhysicalReg_EBP, true, PhysicalReg_EBP, true);
   1523     move_imm_to_reg(OpndSize_32, 1, PhysicalReg_EAX, true); //return value
   1524     move_mem_to_reg(OpndSize_32, -4, PhysicalReg_EBP, true, PhysicalReg_EDI, true);
   1525     move_mem_to_reg(OpndSize_32, -8, PhysicalReg_EBP, true, PhysicalReg_ESI, true);
   1526     move_mem_to_reg(OpndSize_32, -12, PhysicalReg_EBP, true, PhysicalReg_EBX, true);
   1527     move_reg_to_reg(OpndSize_32, PhysicalReg_EBP, true, PhysicalReg_ESP, true);
   1528     move_mem_to_reg(OpndSize_32, 0, PhysicalReg_ESP, true, PhysicalReg_EBP, true);
   1529     load_effective_addr(4, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1530     x86_return();
   1531     return 0;
   1532 }
   1533 /*!
   1534 \brief helper function common_gotoBail_0
   1535 
   1536   set %eax to 0, recover the callee-saved registers and return
   1537 */
   1538 int common_gotoBail_0() {
   1539     insertLabel("common_gotoBail_0", false);
   1540 
   1541     get_self_pointer(PhysicalReg_EAX, true);
   1542     move_reg_to_mem(OpndSize_32, PhysicalReg_FP, true, offsetof(Thread, interpSave.curFrame), PhysicalReg_EAX, true);
   1543     move_reg_to_mem(OpndSize_32, PhysicalReg_EDX, true, offsetof(Thread, interpSave.pc), PhysicalReg_EAX, true);
   1544 
   1545     /*
   1546     movl    offThread_bailPtr(%ecx),%esp # Restore "setjmp" esp
   1547     movl    %esp,%ebp
   1548     addl    $(FRAME_SIZE-4), %ebp       # Restore %ebp at point of setjmp
   1549     movl    EDI_SPILL(%ebp),%edi
   1550     movl    ESI_SPILL(%ebp),%esi
   1551     movl    EBX_SPILL(%ebp),%ebx
   1552     movl    %ebp, %esp                   # strip frame
   1553     pop     %ebp                         # restore caller's ebp
   1554     ret                                  # return to dvmMterpStdRun's caller
   1555     */
   1556     move_mem_to_reg(OpndSize_32, offsetof(Thread, interpSave.bailPtr), PhysicalReg_EAX, true, PhysicalReg_ESP, true);
   1557     move_reg_to_reg(OpndSize_32, PhysicalReg_ESP, true, PhysicalReg_EBP, true);
   1558     load_effective_addr(FRAME_SIZE-4, PhysicalReg_EBP, true, PhysicalReg_EBP, true);
   1559     move_imm_to_reg(OpndSize_32, 0, PhysicalReg_EAX, true); //return value
   1560     move_mem_to_reg(OpndSize_32, -4, PhysicalReg_EBP, true, PhysicalReg_EDI, true);
   1561     move_mem_to_reg(OpndSize_32, -8, PhysicalReg_EBP, true, PhysicalReg_ESI, true);
   1562     move_mem_to_reg(OpndSize_32, -12, PhysicalReg_EBP, true, PhysicalReg_EBX, true);
   1563     move_reg_to_reg(OpndSize_32, PhysicalReg_EBP, true, PhysicalReg_ESP, true);
   1564     move_mem_to_reg(OpndSize_32, 0, PhysicalReg_ESP, true, PhysicalReg_EBP, true);
   1565     load_effective_addr(4, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
   1566     x86_return();
   1567     return 0;
   1568 }
   1569