Home | History | Annotate | Download | only in gpu
      1 
      2 /*
      3  * Copyright 2011 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "GrPathUtils.h"
     11 #include "GrPoint.h"
     12 #include "SkGeometry.h"
     13 
     14 GrScalar GrPathUtils::scaleToleranceToSrc(GrScalar devTol,
     15                                           const GrMatrix& viewM,
     16                                           const GrRect& pathBounds) {
     17     // In order to tesselate the path we get a bound on how much the matrix can
     18     // stretch when mapping to screen coordinates.
     19     GrScalar stretch = viewM.getMaxStretch();
     20     GrScalar srcTol = devTol;
     21 
     22     if (stretch < 0) {
     23         // take worst case mapRadius amoung four corners.
     24         // (less than perfect)
     25         for (int i = 0; i < 4; ++i) {
     26             GrMatrix mat;
     27             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
     28                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
     29             mat.postConcat(viewM);
     30             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
     31         }
     32     }
     33     srcTol = GrScalarDiv(srcTol, stretch);
     34     return srcTol;
     35 }
     36 
     37 static const int MAX_POINTS_PER_CURVE = 1 << 10;
     38 static const GrScalar gMinCurveTol = GrFloatToScalar(0.0001f);
     39 
     40 uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
     41                                           GrScalar tol) {
     42     if (tol < gMinCurveTol) {
     43         tol = gMinCurveTol;
     44     }
     45     GrAssert(tol > 0);
     46 
     47     GrScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
     48     if (d <= tol) {
     49         return 1;
     50     } else {
     51         // Each time we subdivide, d should be cut in 4. So we need to
     52         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
     53         // points.
     54         // 2^(log4(x)) = sqrt(x);
     55         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
     56         int pow2 = GrNextPow2(temp);
     57         // Because of NaNs & INFs we can wind up with a degenerate temp
     58         // such that pow2 comes out negative. Also, our point generator
     59         // will always output at least one pt.
     60         if (pow2 < 1) {
     61             pow2 = 1;
     62         }
     63         return GrMin(pow2, MAX_POINTS_PER_CURVE);
     64     }
     65 }
     66 
     67 uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
     68                                               const GrPoint& p1,
     69                                               const GrPoint& p2,
     70                                               GrScalar tolSqd,
     71                                               GrPoint** points,
     72                                               uint32_t pointsLeft) {
     73     if (pointsLeft < 2 ||
     74         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
     75         (*points)[0] = p2;
     76         *points += 1;
     77         return 1;
     78     }
     79 
     80     GrPoint q[] = {
     81         { GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) },
     82         { GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) },
     83     };
     84     GrPoint r = { GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) };
     85 
     86     pointsLeft >>= 1;
     87     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
     88     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
     89     return a + b;
     90 }
     91 
     92 uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
     93                                            GrScalar tol) {
     94     if (tol < gMinCurveTol) {
     95         tol = gMinCurveTol;
     96     }
     97     GrAssert(tol > 0);
     98 
     99     GrScalar d = GrMax(
    100         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
    101         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
    102     d = SkScalarSqrt(d);
    103     if (d <= tol) {
    104         return 1;
    105     } else {
    106         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
    107         int pow2 = GrNextPow2(temp);
    108         // Because of NaNs & INFs we can wind up with a degenerate temp
    109         // such that pow2 comes out negative. Also, our point generator
    110         // will always output at least one pt.
    111         if (pow2 < 1) {
    112             pow2 = 1;
    113         }
    114         return GrMin(pow2, MAX_POINTS_PER_CURVE);
    115     }
    116 }
    117 
    118 uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
    119                                           const GrPoint& p1,
    120                                           const GrPoint& p2,
    121                                           const GrPoint& p3,
    122                                           GrScalar tolSqd,
    123                                           GrPoint** points,
    124                                           uint32_t pointsLeft) {
    125     if (pointsLeft < 2 ||
    126         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
    127          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
    128             (*points)[0] = p3;
    129             *points += 1;
    130             return 1;
    131         }
    132     GrPoint q[] = {
    133         { GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) },
    134         { GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) },
    135         { GrScalarAve(p2.fX, p3.fX), GrScalarAve(p2.fY, p3.fY) }
    136     };
    137     GrPoint r[] = {
    138         { GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) },
    139         { GrScalarAve(q[1].fX, q[2].fX), GrScalarAve(q[1].fY, q[2].fY) }
    140     };
    141     GrPoint s = { GrScalarAve(r[0].fX, r[1].fX), GrScalarAve(r[0].fY, r[1].fY) };
    142     pointsLeft >>= 1;
    143     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    144     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    145     return a + b;
    146 }
    147 
    148 int GrPathUtils::worstCasePointCount(const GrPath& path, int* subpaths,
    149                                      GrScalar tol) {
    150     if (tol < gMinCurveTol) {
    151         tol = gMinCurveTol;
    152     }
    153     GrAssert(tol > 0);
    154 
    155     int pointCount = 0;
    156     *subpaths = 1;
    157 
    158     bool first = true;
    159 
    160     SkPath::Iter iter(path, false);
    161     GrPathCmd cmd;
    162 
    163     GrPoint pts[4];
    164     while ((cmd = (GrPathCmd)iter.next(pts)) != kEnd_PathCmd) {
    165 
    166         switch (cmd) {
    167             case kLine_PathCmd:
    168                 pointCount += 1;
    169                 break;
    170             case kQuadratic_PathCmd:
    171                 pointCount += quadraticPointCount(pts, tol);
    172                 break;
    173             case kCubic_PathCmd:
    174                 pointCount += cubicPointCount(pts, tol);
    175                 break;
    176             case kMove_PathCmd:
    177                 pointCount += 1;
    178                 if (!first) {
    179                     ++(*subpaths);
    180                 }
    181                 break;
    182             default:
    183                 break;
    184         }
    185         first = false;
    186     }
    187     return pointCount;
    188 }
    189 
    190 namespace {
    191 // The matrix computed for quadDesignSpaceToUVCoordsMatrix should never really
    192 // have perspective and we really want to avoid perspective matrix muls.
    193 //  However, the first two entries of the perspective row may be really close to
    194 // 0 and the third may not be 1 due to a scale on the entire matrix.
    195 inline void fixup_matrix(GrMatrix* mat) {
    196 #ifndef SK_SCALAR_IS_FLOAT
    197     GrCrash("Expected scalar is float.");
    198 #endif
    199      static const GrScalar gTOL = 1.f / 100.f;
    200     GrAssert(GrScalarAbs(mat->get(SkMatrix::kMPersp0)) < gTOL);
    201     GrAssert(GrScalarAbs(mat->get(SkMatrix::kMPersp1)) < gTOL);
    202     float m33 = mat->get(SkMatrix::kMPersp2);
    203     if (1.f != m33) {
    204         m33 = 1.f / m33;
    205         mat->setAll(m33 * mat->get(SkMatrix::kMScaleX),
    206                     m33 * mat->get(SkMatrix::kMSkewX),
    207                     m33 * mat->get(SkMatrix::kMTransX),
    208                     m33 * mat->get(SkMatrix::kMSkewY),
    209                     m33 * mat->get(SkMatrix::kMScaleY),
    210                     m33 * mat->get(SkMatrix::kMTransY),
    211                     0.f, 0.f, 1.f);
    212     } else {
    213         mat->setPerspX(0);
    214         mat->setPerspY(0);
    215     }
    216 }
    217 }
    218 
    219 // Compute a matrix that goes from the 2d space coordinates to UV space where
    220 // u^2-v = 0 specifies the quad.
    221 void GrPathUtils::quadDesignSpaceToUVCoordsMatrix(const SkPoint qPts[3],
    222                                                   GrMatrix* matrix) {
    223     // can't make this static, no cons :(
    224     SkMatrix UVpts;
    225 #ifndef SK_SCALAR_IS_FLOAT
    226     GrCrash("Expected scalar is float.");
    227 #endif
    228     // We want M such that M * xy_pt = uv_pt
    229     // We know M * control_pts = [0  1/2 1]
    230     //                           [0  0   1]
    231     //                           [1  1   1]
    232     // We invert the control pt matrix and post concat to both sides to get M.
    233     UVpts.setAll(0,   0.5f,  1.f,
    234                  0,   0,     1.f,
    235                  1.f, 1.f,   1.f);
    236     matrix->setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
    237                    qPts[0].fY, qPts[1].fY, qPts[2].fY,
    238                    1.f,        1.f,        1.f);
    239     if (!matrix->invert(matrix)) {
    240         // The quad is degenerate. Hopefully this is rare. Find the pts that are
    241         // farthest apart to compute a line (unless it is really a pt).
    242         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
    243         int maxEdge = 0;
    244         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
    245         if (d > maxD) {
    246             maxD = d;
    247             maxEdge = 1;
    248         }
    249         d = qPts[2].distanceToSqd(qPts[0]);
    250         if (d > maxD) {
    251             maxD = d;
    252             maxEdge = 2;
    253         }
    254         // We could have a tolerance here, not sure if it would improve anything
    255         if (maxD > 0) {
    256             // Set the matrix to give (u = 0, v = distance_to_line)
    257             GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
    258             // when looking from the point 0 down the line we want positive
    259             // distances to be to the left. This matches the non-degenerate
    260             // case.
    261             lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
    262             lineVec.dot(qPts[0]);
    263             matrix->setAll(0, 0, 0,
    264                            lineVec.fX, lineVec.fY, -lineVec.dot(qPts[maxEdge]),
    265                            0, 0, 1.f);
    266         } else {
    267             // It's a point. It should cover zero area. Just set the matrix such
    268             // that (u, v) will always be far away from the quad.
    269             matrix->setAll(0, 0, 100 * SK_Scalar1,
    270                            0, 0, 100 * SK_Scalar1,
    271                            0, 0, 1.f);
    272         }
    273     } else {
    274         matrix->postConcat(UVpts);
    275         fixup_matrix(matrix);
    276     }
    277 }
    278 
    279 namespace {
    280 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
    281                                        SkScalar tolScale,
    282                                        SkTArray<SkPoint, true>* quads,
    283                                        int sublevel = 0) {
    284     SkVector ab = p[1];
    285     ab -= p[0];
    286     SkVector dc = p[2];
    287     dc -= p[3];
    288 
    289     static const SkScalar gLengthScale = 3 * SK_Scalar1 / 2;
    290     // base tolerance is 2 pixels in dev coords.
    291     const SkScalar distanceSqdTol = SkScalarMul(tolScale, 1 * SK_Scalar1);
    292     static const int kMaxSubdivs = 10;
    293 
    294     ab.scale(gLengthScale);
    295     dc.scale(gLengthScale);
    296 
    297     SkVector c0 = p[0];
    298     c0 += ab;
    299     SkVector c1 = p[3];
    300     c1 += dc;
    301 
    302     SkScalar dSqd = c0.distanceToSqd(c1);
    303     if (sublevel > kMaxSubdivs || dSqd <= distanceSqdTol) {
    304         SkPoint cAvg = c0;
    305         cAvg += c1;
    306         cAvg.scale(SK_ScalarHalf);
    307 
    308         SkPoint* pts = quads->push_back_n(3);
    309         pts[0] = p[0];
    310         pts[1] = cAvg;
    311         pts[2] = p[3];
    312 
    313         return;
    314     } else {
    315         SkPoint choppedPts[7];
    316         SkChopCubicAtHalf(p, choppedPts);
    317         convert_noninflect_cubic_to_quads(choppedPts + 0, tolScale,
    318                                           quads, sublevel + 1);
    319         convert_noninflect_cubic_to_quads(choppedPts + 3, tolScale,
    320                                           quads, sublevel + 1);
    321     }
    322 }
    323 }
    324 
    325 void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
    326                                       SkScalar tolScale,
    327                                       SkTArray<SkPoint, true>* quads) {
    328     SkPoint chopped[10];
    329     int count = SkChopCubicAtInflections(p, chopped);
    330 
    331     for (int i = 0; i < count; ++i) {
    332         SkPoint* cubic = chopped + 3*i;
    333         convert_noninflect_cubic_to_quads(cubic, tolScale, quads);
    334     }
    335 
    336 }
    337