Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the generic implementation of LoopInfo used for both Loops and
     11 // MachineLoops.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_LOOP_INFO_IMPL_H
     16 #define LLVM_ANALYSIS_LOOP_INFO_IMPL_H
     17 
     18 #include "llvm/Analysis/LoopInfo.h"
     19 #include "llvm/ADT/PostOrderIterator.h"
     20 
     21 namespace llvm {
     22 
     23 //===----------------------------------------------------------------------===//
     24 // APIs for simple analysis of the loop. See header notes.
     25 
     26 /// getExitingBlocks - Return all blocks inside the loop that have successors
     27 /// outside of the loop.  These are the blocks _inside of the current loop_
     28 /// which branch out.  The returned list is always unique.
     29 ///
     30 template<class BlockT, class LoopT>
     31 void LoopBase<BlockT, LoopT>::
     32 getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
     33   // Sort the blocks vector so that we can use binary search to do quick
     34   // lookups.
     35   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
     36   std::sort(LoopBBs.begin(), LoopBBs.end());
     37 
     38   typedef GraphTraits<BlockT*> BlockTraits;
     39   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
     40     for (typename BlockTraits::ChildIteratorType I =
     41            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
     42          I != E; ++I)
     43       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
     44         // Not in current loop? It must be an exit block.
     45         ExitingBlocks.push_back(*BI);
     46         break;
     47       }
     48 }
     49 
     50 /// getExitingBlock - If getExitingBlocks would return exactly one block,
     51 /// return that block. Otherwise return null.
     52 template<class BlockT, class LoopT>
     53 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
     54   SmallVector<BlockT*, 8> ExitingBlocks;
     55   getExitingBlocks(ExitingBlocks);
     56   if (ExitingBlocks.size() == 1)
     57     return ExitingBlocks[0];
     58   return 0;
     59 }
     60 
     61 /// getExitBlocks - Return all of the successor blocks of this loop.  These
     62 /// are the blocks _outside of the current loop_ which are branched to.
     63 ///
     64 template<class BlockT, class LoopT>
     65 void LoopBase<BlockT, LoopT>::
     66 getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
     67   // Sort the blocks vector so that we can use binary search to do quick
     68   // lookups.
     69   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
     70   std::sort(LoopBBs.begin(), LoopBBs.end());
     71 
     72   typedef GraphTraits<BlockT*> BlockTraits;
     73   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
     74     for (typename BlockTraits::ChildIteratorType I =
     75            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
     76          I != E; ++I)
     77       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
     78         // Not in current loop? It must be an exit block.
     79         ExitBlocks.push_back(*I);
     80 }
     81 
     82 /// getExitBlock - If getExitBlocks would return exactly one block,
     83 /// return that block. Otherwise return null.
     84 template<class BlockT, class LoopT>
     85 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
     86   SmallVector<BlockT*, 8> ExitBlocks;
     87   getExitBlocks(ExitBlocks);
     88   if (ExitBlocks.size() == 1)
     89     return ExitBlocks[0];
     90   return 0;
     91 }
     92 
     93 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
     94 template<class BlockT, class LoopT>
     95 void LoopBase<BlockT, LoopT>::
     96 getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
     97   // Sort the blocks vector so that we can use binary search to do quick
     98   // lookups.
     99   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    100   array_pod_sort(LoopBBs.begin(), LoopBBs.end());
    101 
    102   typedef GraphTraits<BlockT*> BlockTraits;
    103   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    104     for (typename BlockTraits::ChildIteratorType I =
    105            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    106          I != E; ++I)
    107       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    108         // Not in current loop? It must be an exit block.
    109         ExitEdges.push_back(Edge(*BI, *I));
    110 }
    111 
    112 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    113 /// loop has a preheader if there is only one edge to the header of the loop
    114 /// from outside of the loop.  If this is the case, the block branching to the
    115 /// header of the loop is the preheader node.
    116 ///
    117 /// This method returns null if there is no preheader for the loop.
    118 ///
    119 template<class BlockT, class LoopT>
    120 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
    121   // Keep track of nodes outside the loop branching to the header...
    122   BlockT *Out = getLoopPredecessor();
    123   if (!Out) return 0;
    124 
    125   // Make sure there is only one exit out of the preheader.
    126   typedef GraphTraits<BlockT*> BlockTraits;
    127   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
    128   ++SI;
    129   if (SI != BlockTraits::child_end(Out))
    130     return 0;  // Multiple exits from the block, must not be a preheader.
    131 
    132   // The predecessor has exactly one successor, so it is a preheader.
    133   return Out;
    134 }
    135 
    136 /// getLoopPredecessor - If the given loop's header has exactly one unique
    137 /// predecessor outside the loop, return it. Otherwise return null.
    138 /// This is less strict that the loop "preheader" concept, which requires
    139 /// the predecessor to have exactly one successor.
    140 ///
    141 template<class BlockT, class LoopT>
    142 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
    143   // Keep track of nodes outside the loop branching to the header...
    144   BlockT *Out = 0;
    145 
    146   // Loop over the predecessors of the header node...
    147   BlockT *Header = getHeader();
    148   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    149   for (typename InvBlockTraits::ChildIteratorType PI =
    150          InvBlockTraits::child_begin(Header),
    151          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
    152     typename InvBlockTraits::NodeType *N = *PI;
    153     if (!contains(N)) {     // If the block is not in the loop...
    154       if (Out && Out != N)
    155         return 0;             // Multiple predecessors outside the loop
    156       Out = N;
    157     }
    158   }
    159 
    160   // Make sure there is only one exit out of the preheader.
    161   assert(Out && "Header of loop has no predecessors from outside loop?");
    162   return Out;
    163 }
    164 
    165 /// getLoopLatch - If there is a single latch block for this loop, return it.
    166 /// A latch block is a block that contains a branch back to the header.
    167 template<class BlockT, class LoopT>
    168 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
    169   BlockT *Header = getHeader();
    170   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    171   typename InvBlockTraits::ChildIteratorType PI =
    172     InvBlockTraits::child_begin(Header);
    173   typename InvBlockTraits::ChildIteratorType PE =
    174     InvBlockTraits::child_end(Header);
    175   BlockT *Latch = 0;
    176   for (; PI != PE; ++PI) {
    177     typename InvBlockTraits::NodeType *N = *PI;
    178     if (contains(N)) {
    179       if (Latch) return 0;
    180       Latch = N;
    181     }
    182   }
    183 
    184   return Latch;
    185 }
    186 
    187 //===----------------------------------------------------------------------===//
    188 // APIs for updating loop information after changing the CFG
    189 //
    190 
    191 /// addBasicBlockToLoop - This method is used by other analyses to update loop
    192 /// information.  NewBB is set to be a new member of the current loop.
    193 /// Because of this, it is added as a member of all parent loops, and is added
    194 /// to the specified LoopInfo object as being in the current basic block.  It
    195 /// is not valid to replace the loop header with this method.
    196 ///
    197 template<class BlockT, class LoopT>
    198 void LoopBase<BlockT, LoopT>::
    199 addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
    200   assert((Blocks.empty() || LIB[getHeader()] == this) &&
    201          "Incorrect LI specified for this loop!");
    202   assert(NewBB && "Cannot add a null basic block to the loop!");
    203   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
    204 
    205   LoopT *L = static_cast<LoopT *>(this);
    206 
    207   // Add the loop mapping to the LoopInfo object...
    208   LIB.BBMap[NewBB] = L;
    209 
    210   // Add the basic block to this loop and all parent loops...
    211   while (L) {
    212     L->Blocks.push_back(NewBB);
    213     L = L->getParentLoop();
    214   }
    215 }
    216 
    217 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    218 /// the OldChild entry in our children list with NewChild, and updates the
    219 /// parent pointer of OldChild to be null and the NewChild to be this loop.
    220 /// This updates the loop depth of the new child.
    221 template<class BlockT, class LoopT>
    222 void LoopBase<BlockT, LoopT>::
    223 replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
    224   assert(OldChild->ParentLoop == this && "This loop is already broken!");
    225   assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    226   typename std::vector<LoopT *>::iterator I =
    227     std::find(SubLoops.begin(), SubLoops.end(), OldChild);
    228   assert(I != SubLoops.end() && "OldChild not in loop!");
    229   *I = NewChild;
    230   OldChild->ParentLoop = 0;
    231   NewChild->ParentLoop = static_cast<LoopT *>(this);
    232 }
    233 
    234 /// verifyLoop - Verify loop structure
    235 template<class BlockT, class LoopT>
    236 void LoopBase<BlockT, LoopT>::verifyLoop() const {
    237 #ifndef NDEBUG
    238   assert(!Blocks.empty() && "Loop header is missing");
    239 
    240   // Setup for using a depth-first iterator to visit every block in the loop.
    241   SmallVector<BlockT*, 8> ExitBBs;
    242   getExitBlocks(ExitBBs);
    243   llvm::SmallPtrSet<BlockT*, 8> VisitSet;
    244   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
    245   df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
    246     BI = df_ext_begin(getHeader(), VisitSet),
    247     BE = df_ext_end(getHeader(), VisitSet);
    248 
    249   // Keep track of the number of BBs visited.
    250   unsigned NumVisited = 0;
    251 
    252   // Sort the blocks vector so that we can use binary search to do quick
    253   // lookups.
    254   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    255   std::sort(LoopBBs.begin(), LoopBBs.end());
    256 
    257   // Check the individual blocks.
    258   for ( ; BI != BE; ++BI) {
    259     BlockT *BB = *BI;
    260     bool HasInsideLoopSuccs = false;
    261     bool HasInsideLoopPreds = false;
    262     SmallVector<BlockT *, 2> OutsideLoopPreds;
    263 
    264     typedef GraphTraits<BlockT*> BlockTraits;
    265     for (typename BlockTraits::ChildIteratorType SI =
    266            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
    267          SI != SE; ++SI)
    268       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
    269         HasInsideLoopSuccs = true;
    270         break;
    271       }
    272     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    273     for (typename InvBlockTraits::ChildIteratorType PI =
    274            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
    275          PI != PE; ++PI) {
    276       BlockT *N = *PI;
    277       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
    278         HasInsideLoopPreds = true;
    279       else
    280         OutsideLoopPreds.push_back(N);
    281     }
    282 
    283     if (BB == getHeader()) {
    284         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
    285     } else if (!OutsideLoopPreds.empty()) {
    286       // A non-header loop shouldn't be reachable from outside the loop,
    287       // though it is permitted if the predecessor is not itself actually
    288       // reachable.
    289       BlockT *EntryBB = BB->getParent()->begin();
    290         for (df_iterator<BlockT *> NI = df_begin(EntryBB),
    291                NE = df_end(EntryBB); NI != NE; ++NI)
    292           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
    293             assert(*NI != OutsideLoopPreds[i] &&
    294                    "Loop has multiple entry points!");
    295     }
    296     assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
    297     assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
    298     assert(BB != getHeader()->getParent()->begin() &&
    299            "Loop contains function entry block!");
    300 
    301     NumVisited++;
    302   }
    303 
    304   assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
    305 
    306   // Check the subloops.
    307   for (iterator I = begin(), E = end(); I != E; ++I)
    308     // Each block in each subloop should be contained within this loop.
    309     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
    310          BI != BE; ++BI) {
    311         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
    312                "Loop does not contain all the blocks of a subloop!");
    313     }
    314 
    315   // Check the parent loop pointer.
    316   if (ParentLoop) {
    317     assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
    318            ParentLoop->end() &&
    319            "Loop is not a subloop of its parent!");
    320   }
    321 #endif
    322 }
    323 
    324 /// verifyLoop - Verify loop structure of this loop and all nested loops.
    325 template<class BlockT, class LoopT>
    326 void LoopBase<BlockT, LoopT>::verifyLoopNest(
    327   DenseSet<const LoopT*> *Loops) const {
    328   Loops->insert(static_cast<const LoopT *>(this));
    329   // Verify this loop.
    330   verifyLoop();
    331   // Verify the subloops.
    332   for (iterator I = begin(), E = end(); I != E; ++I)
    333     (*I)->verifyLoopNest(Loops);
    334 }
    335 
    336 template<class BlockT, class LoopT>
    337 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
    338   OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
    339        << " containing: ";
    340 
    341   for (unsigned i = 0; i < getBlocks().size(); ++i) {
    342     if (i) OS << ",";
    343     BlockT *BB = getBlocks()[i];
    344     WriteAsOperand(OS, BB, false);
    345     if (BB == getHeader())    OS << "<header>";
    346     if (BB == getLoopLatch()) OS << "<latch>";
    347     if (isLoopExiting(BB))    OS << "<exiting>";
    348   }
    349   OS << "\n";
    350 
    351   for (iterator I = begin(), E = end(); I != E; ++I)
    352     (*I)->print(OS, Depth+2);
    353 }
    354 
    355 //===----------------------------------------------------------------------===//
    356 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
    357 /// result does / not depend on use list (block predecessor) order.
    358 ///
    359 
    360 /// Discover a subloop with the specified backedges such that: All blocks within
    361 /// this loop are mapped to this loop or a subloop. And all subloops within this
    362 /// loop have their parent loop set to this loop or a subloop.
    363 template<class BlockT, class LoopT>
    364 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
    365                                   LoopInfoBase<BlockT, LoopT> *LI,
    366                                   DominatorTreeBase<BlockT> &DomTree) {
    367   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    368 
    369   unsigned NumBlocks = 0;
    370   unsigned NumSubloops = 0;
    371 
    372   // Perform a backward CFG traversal using a worklist.
    373   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
    374   while (!ReverseCFGWorklist.empty()) {
    375     BlockT *PredBB = ReverseCFGWorklist.back();
    376     ReverseCFGWorklist.pop_back();
    377 
    378     LoopT *Subloop = LI->getLoopFor(PredBB);
    379     if (!Subloop) {
    380       if (!DomTree.isReachableFromEntry(PredBB))
    381         continue;
    382 
    383       // This is an undiscovered block. Map it to the current loop.
    384       LI->changeLoopFor(PredBB, L);
    385       ++NumBlocks;
    386       if (PredBB == L->getHeader())
    387           continue;
    388       // Push all block predecessors on the worklist.
    389       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
    390                                 InvBlockTraits::child_begin(PredBB),
    391                                 InvBlockTraits::child_end(PredBB));
    392     }
    393     else {
    394       // This is a discovered block. Find its outermost discovered loop.
    395       while (LoopT *Parent = Subloop->getParentLoop())
    396         Subloop = Parent;
    397 
    398       // If it is already discovered to be a subloop of this loop, continue.
    399       if (Subloop == L)
    400         continue;
    401 
    402       // Discover a subloop of this loop.
    403       Subloop->setParentLoop(L);
    404       ++NumSubloops;
    405       NumBlocks += Subloop->getBlocks().capacity();
    406       PredBB = Subloop->getHeader();
    407       // Continue traversal along predecessors that are not loop-back edges from
    408       // within this subloop tree itself. Note that a predecessor may directly
    409       // reach another subloop that is not yet discovered to be a subloop of
    410       // this loop, which we must traverse.
    411       for (typename InvBlockTraits::ChildIteratorType PI =
    412              InvBlockTraits::child_begin(PredBB),
    413              PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
    414         if (LI->getLoopFor(*PI) != Subloop)
    415           ReverseCFGWorklist.push_back(*PI);
    416       }
    417     }
    418   }
    419   L->getSubLoopsVector().reserve(NumSubloops);
    420   L->getBlocksVector().reserve(NumBlocks);
    421 }
    422 
    423 namespace {
    424 /// Populate all loop data in a stable order during a single forward DFS.
    425 template<class BlockT, class LoopT>
    426 class PopulateLoopsDFS {
    427   typedef GraphTraits<BlockT*> BlockTraits;
    428   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
    429 
    430   LoopInfoBase<BlockT, LoopT> *LI;
    431   DenseSet<const BlockT *> VisitedBlocks;
    432   std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
    433 
    434 public:
    435   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
    436     LI(li) {}
    437 
    438   void traverse(BlockT *EntryBlock);
    439 
    440 protected:
    441   void insertIntoLoop(BlockT *Block);
    442 
    443   BlockT *dfsSource() { return DFSStack.back().first; }
    444   SuccIterTy &dfsSucc() { return DFSStack.back().second; }
    445   SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
    446 
    447   void pushBlock(BlockT *Block) {
    448     DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
    449   }
    450 };
    451 } // anonymous
    452 
    453 /// Top-level driver for the forward DFS within the loop.
    454 template<class BlockT, class LoopT>
    455 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
    456   pushBlock(EntryBlock);
    457   VisitedBlocks.insert(EntryBlock);
    458   while (!DFSStack.empty()) {
    459     // Traverse the leftmost path as far as possible.
    460     while (dfsSucc() != dfsSuccEnd()) {
    461       BlockT *BB = *dfsSucc();
    462       ++dfsSucc();
    463       if (!VisitedBlocks.insert(BB).second)
    464         continue;
    465 
    466       // Push the next DFS successor onto the stack.
    467       pushBlock(BB);
    468     }
    469     // Visit the top of the stack in postorder and backtrack.
    470     insertIntoLoop(dfsSource());
    471     DFSStack.pop_back();
    472   }
    473 }
    474 
    475 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
    476 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
    477 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
    478 template<class BlockT, class LoopT>
    479 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
    480   LoopT *Subloop = LI->getLoopFor(Block);
    481   if (Subloop && Block == Subloop->getHeader()) {
    482     // We reach this point once per subloop after processing all the blocks in
    483     // the subloop.
    484     if (Subloop->getParentLoop())
    485       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
    486     else
    487       LI->addTopLevelLoop(Subloop);
    488 
    489     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
    490     // the lists, except for the loop header, which is always at the beginning.
    491     std::reverse(Subloop->getBlocksVector().begin()+1,
    492                  Subloop->getBlocksVector().end());
    493     std::reverse(Subloop->getSubLoopsVector().begin(),
    494                  Subloop->getSubLoopsVector().end());
    495 
    496     Subloop = Subloop->getParentLoop();
    497   }
    498   for (; Subloop; Subloop = Subloop->getParentLoop())
    499     Subloop->getBlocksVector().push_back(Block);
    500 }
    501 
    502 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
    503 /// interleaved with backward CFG traversals within each subloop
    504 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
    505 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
    506 /// Block vectors are then populated during a single forward CFG traversal
    507 /// (PopulateLoopDFS).
    508 ///
    509 /// During the two CFG traversals each block is seen three times:
    510 /// 1) Discovered and mapped by a reverse CFG traversal.
    511 /// 2) Visited during a forward DFS CFG traversal.
    512 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
    513 ///
    514 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
    515 /// insertions per block.
    516 template<class BlockT, class LoopT>
    517 void LoopInfoBase<BlockT, LoopT>::
    518 Analyze(DominatorTreeBase<BlockT> &DomTree) {
    519 
    520   // Postorder traversal of the dominator tree.
    521   DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
    522   for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
    523          DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
    524 
    525     BlockT *Header = DomIter->getBlock();
    526     SmallVector<BlockT *, 4> Backedges;
    527 
    528     // Check each predecessor of the potential loop header.
    529     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    530     for (typename InvBlockTraits::ChildIteratorType PI =
    531            InvBlockTraits::child_begin(Header),
    532            PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
    533 
    534       BlockT *Backedge = *PI;
    535 
    536       // If Header dominates predBB, this is a new loop. Collect the backedges.
    537       if (DomTree.dominates(Header, Backedge)
    538           && DomTree.isReachableFromEntry(Backedge)) {
    539         Backedges.push_back(Backedge);
    540       }
    541     }
    542     // Perform a backward CFG traversal to discover and map blocks in this loop.
    543     if (!Backedges.empty()) {
    544       LoopT *L = new LoopT(Header);
    545       discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
    546     }
    547   }
    548   // Perform a single forward CFG traversal to populate block and subloop
    549   // vectors for all loops.
    550   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
    551   DFS.traverse(DomRoot->getBlock());
    552 }
    553 
    554 // Debugging
    555 template<class BlockT, class LoopT>
    556 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
    557   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
    558     TopLevelLoops[i]->print(OS);
    559 #if 0
    560   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
    561          E = BBMap.end(); I != E; ++I)
    562     OS << "BB '" << I->first->getName() << "' level = "
    563        << I->second->getLoopDepth() << "\n";
    564 #endif
    565 }
    566 
    567 } // End llvm namespace
    568 
    569 #endif
    570