Home | History | Annotate | Download | only in Utils
      1 //===-- Local.cpp - Functions to perform local transformations ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DIBuilder.h"
     18 #include "llvm/DebugInfo.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/GlobalAlias.h"
     21 #include "llvm/GlobalVariable.h"
     22 #include "llvm/IRBuilder.h"
     23 #include "llvm/Instructions.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/Intrinsics.h"
     26 #include "llvm/Metadata.h"
     27 #include "llvm/Operator.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/SmallPtrSet.h"
     30 #include "llvm/Analysis/Dominators.h"
     31 #include "llvm/Analysis/InstructionSimplify.h"
     32 #include "llvm/Analysis/MemoryBuiltins.h"
     33 #include "llvm/Analysis/ProfileInfo.h"
     34 #include "llvm/Analysis/ValueTracking.h"
     35 #include "llvm/Support/CFG.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/GetElementPtrTypeIterator.h"
     38 #include "llvm/Support/MathExtras.h"
     39 #include "llvm/Support/ValueHandle.h"
     40 #include "llvm/Support/raw_ostream.h"
     41 #include "llvm/Target/TargetData.h"
     42 using namespace llvm;
     43 
     44 //===----------------------------------------------------------------------===//
     45 //  Local constant propagation.
     46 //
     47 
     48 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     49 /// constant value, convert it into an unconditional branch to the constant
     50 /// destination.  This is a nontrivial operation because the successors of this
     51 /// basic block must have their PHI nodes updated.
     52 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     53 /// conditions and indirectbr addresses this might make dead if
     54 /// DeleteDeadConditions is true.
     55 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
     56                                   const TargetLibraryInfo *TLI) {
     57   TerminatorInst *T = BB->getTerminator();
     58   IRBuilder<> Builder(T);
     59 
     60   // Branch - See if we are conditional jumping on constant
     61   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
     62     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
     63     BasicBlock *Dest1 = BI->getSuccessor(0);
     64     BasicBlock *Dest2 = BI->getSuccessor(1);
     65 
     66     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
     67       // Are we branching on constant?
     68       // YES.  Change to unconditional branch...
     69       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
     70       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
     71 
     72       //cerr << "Function: " << T->getParent()->getParent()
     73       //     << "\nRemoving branch from " << T->getParent()
     74       //     << "\n\nTo: " << OldDest << endl;
     75 
     76       // Let the basic block know that we are letting go of it.  Based on this,
     77       // it will adjust it's PHI nodes.
     78       OldDest->removePredecessor(BB);
     79 
     80       // Replace the conditional branch with an unconditional one.
     81       Builder.CreateBr(Destination);
     82       BI->eraseFromParent();
     83       return true;
     84     }
     85 
     86     if (Dest2 == Dest1) {       // Conditional branch to same location?
     87       // This branch matches something like this:
     88       //     br bool %cond, label %Dest, label %Dest
     89       // and changes it into:  br label %Dest
     90 
     91       // Let the basic block know that we are letting go of one copy of it.
     92       assert(BI->getParent() && "Terminator not inserted in block!");
     93       Dest1->removePredecessor(BI->getParent());
     94 
     95       // Replace the conditional branch with an unconditional one.
     96       Builder.CreateBr(Dest1);
     97       Value *Cond = BI->getCondition();
     98       BI->eraseFromParent();
     99       if (DeleteDeadConditions)
    100         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    101       return true;
    102     }
    103     return false;
    104   }
    105 
    106   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    107     // If we are switching on a constant, we can convert the switch into a
    108     // single branch instruction!
    109     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    110     BasicBlock *TheOnlyDest = SI->getDefaultDest();
    111     BasicBlock *DefaultDest = TheOnlyDest;
    112 
    113     // Figure out which case it goes to.
    114     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    115          i != e; ++i) {
    116       // Found case matching a constant operand?
    117       if (i.getCaseValue() == CI) {
    118         TheOnlyDest = i.getCaseSuccessor();
    119         break;
    120       }
    121 
    122       // Check to see if this branch is going to the same place as the default
    123       // dest.  If so, eliminate it as an explicit compare.
    124       if (i.getCaseSuccessor() == DefaultDest) {
    125         // Remove this entry.
    126         DefaultDest->removePredecessor(SI->getParent());
    127         SI->removeCase(i);
    128         --i; --e;
    129         continue;
    130       }
    131 
    132       // Otherwise, check to see if the switch only branches to one destination.
    133       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
    134       // destinations.
    135       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
    136     }
    137 
    138     if (CI && !TheOnlyDest) {
    139       // Branching on a constant, but not any of the cases, go to the default
    140       // successor.
    141       TheOnlyDest = SI->getDefaultDest();
    142     }
    143 
    144     // If we found a single destination that we can fold the switch into, do so
    145     // now.
    146     if (TheOnlyDest) {
    147       // Insert the new branch.
    148       Builder.CreateBr(TheOnlyDest);
    149       BasicBlock *BB = SI->getParent();
    150 
    151       // Remove entries from PHI nodes which we no longer branch to...
    152       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
    153         // Found case matching a constant operand?
    154         BasicBlock *Succ = SI->getSuccessor(i);
    155         if (Succ == TheOnlyDest)
    156           TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
    157         else
    158           Succ->removePredecessor(BB);
    159       }
    160 
    161       // Delete the old switch.
    162       Value *Cond = SI->getCondition();
    163       SI->eraseFromParent();
    164       if (DeleteDeadConditions)
    165         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    166       return true;
    167     }
    168 
    169     if (SI->getNumCases() == 1) {
    170       // Otherwise, we can fold this switch into a conditional branch
    171       // instruction if it has only one non-default destination.
    172       SwitchInst::CaseIt FirstCase = SI->case_begin();
    173       IntegersSubset& Case = FirstCase.getCaseValueEx();
    174       if (Case.isSingleNumber()) {
    175         // FIXME: Currently work with ConstantInt based numbers.
    176         Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
    177              Case.getSingleNumber(0).toConstantInt(),
    178             "cond");
    179 
    180         // Insert the new branch.
    181         Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(),
    182                              SI->getDefaultDest());
    183 
    184         // Delete the old switch.
    185         SI->eraseFromParent();
    186         return true;
    187       }
    188     }
    189     return false;
    190   }
    191 
    192   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
    193     // indirectbr blockaddress(@F, @BB) -> br label @BB
    194     if (BlockAddress *BA =
    195           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
    196       BasicBlock *TheOnlyDest = BA->getBasicBlock();
    197       // Insert the new branch.
    198       Builder.CreateBr(TheOnlyDest);
    199 
    200       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
    201         if (IBI->getDestination(i) == TheOnlyDest)
    202           TheOnlyDest = 0;
    203         else
    204           IBI->getDestination(i)->removePredecessor(IBI->getParent());
    205       }
    206       Value *Address = IBI->getAddress();
    207       IBI->eraseFromParent();
    208       if (DeleteDeadConditions)
    209         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
    210 
    211       // If we didn't find our destination in the IBI successor list, then we
    212       // have undefined behavior.  Replace the unconditional branch with an
    213       // 'unreachable' instruction.
    214       if (TheOnlyDest) {
    215         BB->getTerminator()->eraseFromParent();
    216         new UnreachableInst(BB->getContext(), BB);
    217       }
    218 
    219       return true;
    220     }
    221   }
    222 
    223   return false;
    224 }
    225 
    226 
    227 //===----------------------------------------------------------------------===//
    228 //  Local dead code elimination.
    229 //
    230 
    231 /// isInstructionTriviallyDead - Return true if the result produced by the
    232 /// instruction is not used, and the instruction has no side effects.
    233 ///
    234 bool llvm::isInstructionTriviallyDead(Instruction *I,
    235                                       const TargetLibraryInfo *TLI) {
    236   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
    237 
    238   // We don't want the landingpad instruction removed by anything this general.
    239   if (isa<LandingPadInst>(I))
    240     return false;
    241 
    242   // We don't want debug info removed by anything this general, unless
    243   // debug info is empty.
    244   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
    245     if (DDI->getAddress())
    246       return false;
    247     return true;
    248   }
    249   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
    250     if (DVI->getValue())
    251       return false;
    252     return true;
    253   }
    254 
    255   if (!I->mayHaveSideEffects()) return true;
    256 
    257   // Special case intrinsics that "may have side effects" but can be deleted
    258   // when dead.
    259   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    260     // Safe to delete llvm.stacksave if dead.
    261     if (II->getIntrinsicID() == Intrinsic::stacksave)
    262       return true;
    263 
    264     // Lifetime intrinsics are dead when their right-hand is undef.
    265     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    266         II->getIntrinsicID() == Intrinsic::lifetime_end)
    267       return isa<UndefValue>(II->getArgOperand(1));
    268   }
    269 
    270   if (isAllocLikeFn(I, TLI)) return true;
    271 
    272   if (CallInst *CI = isFreeCall(I, TLI))
    273     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
    274       return C->isNullValue() || isa<UndefValue>(C);
    275 
    276   return false;
    277 }
    278 
    279 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
    280 /// trivially dead instruction, delete it.  If that makes any of its operands
    281 /// trivially dead, delete them too, recursively.  Return true if any
    282 /// instructions were deleted.
    283 bool
    284 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
    285                                                  const TargetLibraryInfo *TLI) {
    286   Instruction *I = dyn_cast<Instruction>(V);
    287   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
    288     return false;
    289 
    290   SmallVector<Instruction*, 16> DeadInsts;
    291   DeadInsts.push_back(I);
    292 
    293   do {
    294     I = DeadInsts.pop_back_val();
    295 
    296     // Null out all of the instruction's operands to see if any operand becomes
    297     // dead as we go.
    298     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    299       Value *OpV = I->getOperand(i);
    300       I->setOperand(i, 0);
    301 
    302       if (!OpV->use_empty()) continue;
    303 
    304       // If the operand is an instruction that became dead as we nulled out the
    305       // operand, and if it is 'trivially' dead, delete it in a future loop
    306       // iteration.
    307       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
    308         if (isInstructionTriviallyDead(OpI, TLI))
    309           DeadInsts.push_back(OpI);
    310     }
    311 
    312     I->eraseFromParent();
    313   } while (!DeadInsts.empty());
    314 
    315   return true;
    316 }
    317 
    318 /// areAllUsesEqual - Check whether the uses of a value are all the same.
    319 /// This is similar to Instruction::hasOneUse() except this will also return
    320 /// true when there are no uses or multiple uses that all refer to the same
    321 /// value.
    322 static bool areAllUsesEqual(Instruction *I) {
    323   Value::use_iterator UI = I->use_begin();
    324   Value::use_iterator UE = I->use_end();
    325   if (UI == UE)
    326     return true;
    327 
    328   User *TheUse = *UI;
    329   for (++UI; UI != UE; ++UI) {
    330     if (*UI != TheUse)
    331       return false;
    332   }
    333   return true;
    334 }
    335 
    336 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
    337 /// dead PHI node, due to being a def-use chain of single-use nodes that
    338 /// either forms a cycle or is terminated by a trivially dead instruction,
    339 /// delete it.  If that makes any of its operands trivially dead, delete them
    340 /// too, recursively.  Return true if a change was made.
    341 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
    342                                         const TargetLibraryInfo *TLI) {
    343   SmallPtrSet<Instruction*, 4> Visited;
    344   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
    345        I = cast<Instruction>(*I->use_begin())) {
    346     if (I->use_empty())
    347       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    348 
    349     // If we find an instruction more than once, we're on a cycle that
    350     // won't prove fruitful.
    351     if (!Visited.insert(I)) {
    352       // Break the cycle and delete the instruction and its operands.
    353       I->replaceAllUsesWith(UndefValue::get(I->getType()));
    354       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    355       return true;
    356     }
    357   }
    358   return false;
    359 }
    360 
    361 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
    362 /// simplify any instructions in it and recursively delete dead instructions.
    363 ///
    364 /// This returns true if it changed the code, note that it can delete
    365 /// instructions in other blocks as well in this block.
    366 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD,
    367                                        const TargetLibraryInfo *TLI) {
    368   bool MadeChange = false;
    369 
    370 #ifndef NDEBUG
    371   // In debug builds, ensure that the terminator of the block is never replaced
    372   // or deleted by these simplifications. The idea of simplification is that it
    373   // cannot introduce new instructions, and there is no way to replace the
    374   // terminator of a block without introducing a new instruction.
    375   AssertingVH<Instruction> TerminatorVH(--BB->end());
    376 #endif
    377 
    378   for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
    379     assert(!BI->isTerminator());
    380     Instruction *Inst = BI++;
    381 
    382     WeakVH BIHandle(BI);
    383     if (recursivelySimplifyInstruction(Inst, TD)) {
    384       MadeChange = true;
    385       if (BIHandle != BI)
    386         BI = BB->begin();
    387       continue;
    388     }
    389 
    390     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
    391     if (BIHandle != BI)
    392       BI = BB->begin();
    393   }
    394   return MadeChange;
    395 }
    396 
    397 //===----------------------------------------------------------------------===//
    398 //  Control Flow Graph Restructuring.
    399 //
    400 
    401 
    402 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
    403 /// method is called when we're about to delete Pred as a predecessor of BB.  If
    404 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
    405 ///
    406 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    407 /// nodes that collapse into identity values.  For example, if we have:
    408 ///   x = phi(1, 0, 0, 0)
    409 ///   y = and x, z
    410 ///
    411 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    412 /// recursively fold the and to 0.
    413 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
    414                                         TargetData *TD) {
    415   // This only adjusts blocks with PHI nodes.
    416   if (!isa<PHINode>(BB->begin()))
    417     return;
    418 
    419   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
    420   // them down.  This will leave us with single entry phi nodes and other phis
    421   // that can be removed.
    422   BB->removePredecessor(Pred, true);
    423 
    424   WeakVH PhiIt = &BB->front();
    425   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
    426     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
    427     Value *OldPhiIt = PhiIt;
    428 
    429     if (!recursivelySimplifyInstruction(PN, TD))
    430       continue;
    431 
    432     // If recursive simplification ended up deleting the next PHI node we would
    433     // iterate to, then our iterator is invalid, restart scanning from the top
    434     // of the block.
    435     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
    436   }
    437 }
    438 
    439 
    440 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
    441 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
    442 /// between them, moving the instructions in the predecessor into DestBB and
    443 /// deleting the predecessor block.
    444 ///
    445 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
    446   // If BB has single-entry PHI nodes, fold them.
    447   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    448     Value *NewVal = PN->getIncomingValue(0);
    449     // Replace self referencing PHI with undef, it must be dead.
    450     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
    451     PN->replaceAllUsesWith(NewVal);
    452     PN->eraseFromParent();
    453   }
    454 
    455   BasicBlock *PredBB = DestBB->getSinglePredecessor();
    456   assert(PredBB && "Block doesn't have a single predecessor!");
    457 
    458   // Zap anything that took the address of DestBB.  Not doing this will give the
    459   // address an invalid value.
    460   if (DestBB->hasAddressTaken()) {
    461     BlockAddress *BA = BlockAddress::get(DestBB);
    462     Constant *Replacement =
    463       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
    464     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
    465                                                      BA->getType()));
    466     BA->destroyConstant();
    467   }
    468 
    469   // Anything that branched to PredBB now branches to DestBB.
    470   PredBB->replaceAllUsesWith(DestBB);
    471 
    472   // Splice all the instructions from PredBB to DestBB.
    473   PredBB->getTerminator()->eraseFromParent();
    474   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
    475 
    476   if (P) {
    477     DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
    478     if (DT) {
    479       BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
    480       DT->changeImmediateDominator(DestBB, PredBBIDom);
    481       DT->eraseNode(PredBB);
    482     }
    483     ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
    484     if (PI) {
    485       PI->replaceAllUses(PredBB, DestBB);
    486       PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
    487     }
    488   }
    489   // Nuke BB.
    490   PredBB->eraseFromParent();
    491 }
    492 
    493 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
    494 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
    495 ///
    496 /// Assumption: Succ is the single successor for BB.
    497 ///
    498 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
    499   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
    500 
    501   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
    502         << Succ->getName() << "\n");
    503   // Shortcut, if there is only a single predecessor it must be BB and merging
    504   // is always safe
    505   if (Succ->getSinglePredecessor()) return true;
    506 
    507   // Make a list of the predecessors of BB
    508   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    509 
    510   // Look at all the phi nodes in Succ, to see if they present a conflict when
    511   // merging these blocks
    512   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    513     PHINode *PN = cast<PHINode>(I);
    514 
    515     // If the incoming value from BB is again a PHINode in
    516     // BB which has the same incoming value for *PI as PN does, we can
    517     // merge the phi nodes and then the blocks can still be merged
    518     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    519     if (BBPN && BBPN->getParent() == BB) {
    520       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    521         BasicBlock *IBB = PN->getIncomingBlock(PI);
    522         if (BBPreds.count(IBB) &&
    523             BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
    524           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    525                 << Succ->getName() << " is conflicting with "
    526                 << BBPN->getName() << " with regard to common predecessor "
    527                 << IBB->getName() << "\n");
    528           return false;
    529         }
    530       }
    531     } else {
    532       Value* Val = PN->getIncomingValueForBlock(BB);
    533       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    534         // See if the incoming value for the common predecessor is equal to the
    535         // one for BB, in which case this phi node will not prevent the merging
    536         // of the block.
    537         BasicBlock *IBB = PN->getIncomingBlock(PI);
    538         if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
    539           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    540                 << Succ->getName() << " is conflicting with regard to common "
    541                 << "predecessor " << IBB->getName() << "\n");
    542           return false;
    543         }
    544       }
    545     }
    546   }
    547 
    548   return true;
    549 }
    550 
    551 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    552 /// unconditional branch, and contains no instructions other than PHI nodes,
    553 /// potential side-effect free intrinsics and the branch.  If possible,
    554 /// eliminate BB by rewriting all the predecessors to branch to the successor
    555 /// block and return true.  If we can't transform, return false.
    556 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
    557   assert(BB != &BB->getParent()->getEntryBlock() &&
    558          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
    559 
    560   // We can't eliminate infinite loops.
    561   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
    562   if (BB == Succ) return false;
    563 
    564   // Check to see if merging these blocks would cause conflicts for any of the
    565   // phi nodes in BB or Succ. If not, we can safely merge.
    566   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
    567 
    568   // Check for cases where Succ has multiple predecessors and a PHI node in BB
    569   // has uses which will not disappear when the PHI nodes are merged.  It is
    570   // possible to handle such cases, but difficult: it requires checking whether
    571   // BB dominates Succ, which is non-trivial to calculate in the case where
    572   // Succ has multiple predecessors.  Also, it requires checking whether
    573   // constructing the necessary self-referential PHI node doesn't intoduce any
    574   // conflicts; this isn't too difficult, but the previous code for doing this
    575   // was incorrect.
    576   //
    577   // Note that if this check finds a live use, BB dominates Succ, so BB is
    578   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
    579   // folding the branch isn't profitable in that case anyway.
    580   if (!Succ->getSinglePredecessor()) {
    581     BasicBlock::iterator BBI = BB->begin();
    582     while (isa<PHINode>(*BBI)) {
    583       for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
    584            UI != E; ++UI) {
    585         if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
    586           if (PN->getIncomingBlock(UI) != BB)
    587             return false;
    588         } else {
    589           return false;
    590         }
    591       }
    592       ++BBI;
    593     }
    594   }
    595 
    596   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
    597 
    598   if (isa<PHINode>(Succ->begin())) {
    599     // If there is more than one pred of succ, and there are PHI nodes in
    600     // the successor, then we need to add incoming edges for the PHI nodes
    601     //
    602     const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    603 
    604     // Loop over all of the PHI nodes in the successor of BB.
    605     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    606       PHINode *PN = cast<PHINode>(I);
    607       Value *OldVal = PN->removeIncomingValue(BB, false);
    608       assert(OldVal && "No entry in PHI for Pred BB!");
    609 
    610       // If this incoming value is one of the PHI nodes in BB, the new entries
    611       // in the PHI node are the entries from the old PHI.
    612       if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
    613         PHINode *OldValPN = cast<PHINode>(OldVal);
    614         for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
    615           // Note that, since we are merging phi nodes and BB and Succ might
    616           // have common predecessors, we could end up with a phi node with
    617           // identical incoming branches. This will be cleaned up later (and
    618           // will trigger asserts if we try to clean it up now, without also
    619           // simplifying the corresponding conditional branch).
    620           PN->addIncoming(OldValPN->getIncomingValue(i),
    621                           OldValPN->getIncomingBlock(i));
    622       } else {
    623         // Add an incoming value for each of the new incoming values.
    624         for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
    625           PN->addIncoming(OldVal, BBPreds[i]);
    626       }
    627     }
    628   }
    629 
    630   if (Succ->getSinglePredecessor()) {
    631     // BB is the only predecessor of Succ, so Succ will end up with exactly
    632     // the same predecessors BB had.
    633 
    634     // Copy over any phi, debug or lifetime instruction.
    635     BB->getTerminator()->eraseFromParent();
    636     Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
    637   } else {
    638     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
    639       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
    640       assert(PN->use_empty() && "There shouldn't be any uses here!");
    641       PN->eraseFromParent();
    642     }
    643   }
    644 
    645   // Everything that jumped to BB now goes to Succ.
    646   BB->replaceAllUsesWith(Succ);
    647   if (!Succ->hasName()) Succ->takeName(BB);
    648   BB->eraseFromParent();              // Delete the old basic block.
    649   return true;
    650 }
    651 
    652 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    653 /// nodes in this block. This doesn't try to be clever about PHI nodes
    654 /// which differ only in the order of the incoming values, but instcombine
    655 /// orders them so it usually won't matter.
    656 ///
    657 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
    658   bool Changed = false;
    659 
    660   // This implementation doesn't currently consider undef operands
    661   // specially. Theoretically, two phis which are identical except for
    662   // one having an undef where the other doesn't could be collapsed.
    663 
    664   // Map from PHI hash values to PHI nodes. If multiple PHIs have
    665   // the same hash value, the element is the first PHI in the
    666   // linked list in CollisionMap.
    667   DenseMap<uintptr_t, PHINode *> HashMap;
    668 
    669   // Maintain linked lists of PHI nodes with common hash values.
    670   DenseMap<PHINode *, PHINode *> CollisionMap;
    671 
    672   // Examine each PHI.
    673   for (BasicBlock::iterator I = BB->begin();
    674        PHINode *PN = dyn_cast<PHINode>(I++); ) {
    675     // Compute a hash value on the operands. Instcombine will likely have sorted
    676     // them, which helps expose duplicates, but we have to check all the
    677     // operands to be safe in case instcombine hasn't run.
    678     uintptr_t Hash = 0;
    679     // This hash algorithm is quite weak as hash functions go, but it seems
    680     // to do a good enough job for this particular purpose, and is very quick.
    681     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
    682       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
    683       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    684     }
    685     for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
    686          I != E; ++I) {
    687       Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
    688       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    689     }
    690     // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
    691     Hash >>= 1;
    692     // If we've never seen this hash value before, it's a unique PHI.
    693     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
    694       HashMap.insert(std::make_pair(Hash, PN));
    695     if (Pair.second) continue;
    696     // Otherwise it's either a duplicate or a hash collision.
    697     for (PHINode *OtherPN = Pair.first->second; ; ) {
    698       if (OtherPN->isIdenticalTo(PN)) {
    699         // A duplicate. Replace this PHI with its duplicate.
    700         PN->replaceAllUsesWith(OtherPN);
    701         PN->eraseFromParent();
    702         Changed = true;
    703         break;
    704       }
    705       // A non-duplicate hash collision.
    706       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
    707       if (I == CollisionMap.end()) {
    708         // Set this PHI to be the head of the linked list of colliding PHIs.
    709         PHINode *Old = Pair.first->second;
    710         Pair.first->second = PN;
    711         CollisionMap[PN] = Old;
    712         break;
    713       }
    714       // Proceed to the next PHI in the list.
    715       OtherPN = I->second;
    716     }
    717   }
    718 
    719   return Changed;
    720 }
    721 
    722 /// enforceKnownAlignment - If the specified pointer points to an object that
    723 /// we control, modify the object's alignment to PrefAlign. This isn't
    724 /// often possible though. If alignment is important, a more reliable approach
    725 /// is to simply align all global variables and allocation instructions to
    726 /// their preferred alignment from the beginning.
    727 ///
    728 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
    729                                       unsigned PrefAlign, const TargetData *TD) {
    730   V = V->stripPointerCasts();
    731 
    732   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    733     // If the preferred alignment is greater than the natural stack alignment
    734     // then don't round up. This avoids dynamic stack realignment.
    735     if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
    736       return Align;
    737     // If there is a requested alignment and if this is an alloca, round up.
    738     if (AI->getAlignment() >= PrefAlign)
    739       return AI->getAlignment();
    740     AI->setAlignment(PrefAlign);
    741     return PrefAlign;
    742   }
    743 
    744   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    745     // If there is a large requested alignment and we can, bump up the alignment
    746     // of the global.
    747     if (GV->isDeclaration()) return Align;
    748     // If the memory we set aside for the global may not be the memory used by
    749     // the final program then it is impossible for us to reliably enforce the
    750     // preferred alignment.
    751     if (GV->isWeakForLinker()) return Align;
    752 
    753     if (GV->getAlignment() >= PrefAlign)
    754       return GV->getAlignment();
    755     // We can only increase the alignment of the global if it has no alignment
    756     // specified or if it is not assigned a section.  If it is assigned a
    757     // section, the global could be densely packed with other objects in the
    758     // section, increasing the alignment could cause padding issues.
    759     if (!GV->hasSection() || GV->getAlignment() == 0)
    760       GV->setAlignment(PrefAlign);
    761     return GV->getAlignment();
    762   }
    763 
    764   return Align;
    765 }
    766 
    767 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
    768 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
    769 /// and it is more than the alignment of the ultimate object, see if we can
    770 /// increase the alignment of the ultimate object, making this check succeed.
    771 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    772                                           const TargetData *TD) {
    773   assert(V->getType()->isPointerTy() &&
    774          "getOrEnforceKnownAlignment expects a pointer!");
    775   unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
    776   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    777   ComputeMaskedBits(V, KnownZero, KnownOne, TD);
    778   unsigned TrailZ = KnownZero.countTrailingOnes();
    779 
    780   // Avoid trouble with rediculously large TrailZ values, such as
    781   // those computed from a null pointer.
    782   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
    783 
    784   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
    785 
    786   // LLVM doesn't support alignments larger than this currently.
    787   Align = std::min(Align, +Value::MaximumAlignment);
    788 
    789   if (PrefAlign > Align)
    790     Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
    791 
    792   // We don't need to make any adjustment.
    793   return Align;
    794 }
    795 
    796 ///===---------------------------------------------------------------------===//
    797 ///  Dbg Intrinsic utilities
    798 ///
    799 
    800 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
    801 /// that has an associated llvm.dbg.decl intrinsic.
    802 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    803                                            StoreInst *SI, DIBuilder &Builder) {
    804   DIVariable DIVar(DDI->getVariable());
    805   if (!DIVar.Verify())
    806     return false;
    807 
    808   Instruction *DbgVal = NULL;
    809   // If an argument is zero extended then use argument directly. The ZExt
    810   // may be zapped by an optimization pass in future.
    811   Argument *ExtendedArg = NULL;
    812   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
    813     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
    814   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
    815     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
    816   if (ExtendedArg)
    817     DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
    818   else
    819     DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
    820 
    821   // Propagate any debug metadata from the store onto the dbg.value.
    822   DebugLoc SIDL = SI->getDebugLoc();
    823   if (!SIDL.isUnknown())
    824     DbgVal->setDebugLoc(SIDL);
    825   // Otherwise propagate debug metadata from dbg.declare.
    826   else
    827     DbgVal->setDebugLoc(DDI->getDebugLoc());
    828   return true;
    829 }
    830 
    831 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
    832 /// that has an associated llvm.dbg.decl intrinsic.
    833 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    834                                            LoadInst *LI, DIBuilder &Builder) {
    835   DIVariable DIVar(DDI->getVariable());
    836   if (!DIVar.Verify())
    837     return false;
    838 
    839   Instruction *DbgVal =
    840     Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
    841                                     DIVar, LI);
    842 
    843   // Propagate any debug metadata from the store onto the dbg.value.
    844   DebugLoc LIDL = LI->getDebugLoc();
    845   if (!LIDL.isUnknown())
    846     DbgVal->setDebugLoc(LIDL);
    847   // Otherwise propagate debug metadata from dbg.declare.
    848   else
    849     DbgVal->setDebugLoc(DDI->getDebugLoc());
    850   return true;
    851 }
    852 
    853 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
    854 /// of llvm.dbg.value intrinsics.
    855 bool llvm::LowerDbgDeclare(Function &F) {
    856   DIBuilder DIB(*F.getParent());
    857   SmallVector<DbgDeclareInst *, 4> Dbgs;
    858   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
    859     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
    860       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
    861         Dbgs.push_back(DDI);
    862     }
    863   if (Dbgs.empty())
    864     return false;
    865 
    866   for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
    867          E = Dbgs.end(); I != E; ++I) {
    868     DbgDeclareInst *DDI = *I;
    869     if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
    870       bool RemoveDDI = true;
    871       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    872            UI != E; ++UI)
    873         if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
    874           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    875         else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
    876           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
    877         else
    878           RemoveDDI = false;
    879       if (RemoveDDI)
    880         DDI->eraseFromParent();
    881     }
    882   }
    883   return true;
    884 }
    885 
    886 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
    887 /// alloca 'V', if any.
    888 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
    889   if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
    890     for (Value::use_iterator UI = DebugNode->use_begin(),
    891          E = DebugNode->use_end(); UI != E; ++UI)
    892       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
    893         return DDI;
    894 
    895   return 0;
    896 }
    897