Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a class to represent arbitrary precision integral
     11 // constant values and operations on them.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_APINT_H
     16 #define LLVM_APINT_H
     17 
     18 #include "llvm/ADT/ArrayRef.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include <cassert>
     22 #include <climits>
     23 #include <cstring>
     24 #include <string>
     25 
     26 namespace llvm {
     27   class Deserializer;
     28   class FoldingSetNodeID;
     29   class Serializer;
     30   class StringRef;
     31   class hash_code;
     32   class raw_ostream;
     33 
     34   template<typename T>
     35   class SmallVectorImpl;
     36 
     37   // An unsigned host type used as a single part of a multi-part
     38   // bignum.
     39   typedef uint64_t integerPart;
     40 
     41   const unsigned int host_char_bit = 8;
     42   const unsigned int integerPartWidth = host_char_bit *
     43     static_cast<unsigned int>(sizeof(integerPart));
     44 
     45 //===----------------------------------------------------------------------===//
     46 //                              APInt Class
     47 //===----------------------------------------------------------------------===//
     48 
     49 /// APInt - This class represents arbitrary precision constant integral values.
     50 /// It is a functional replacement for common case unsigned integer type like
     51 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
     52 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
     53 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
     54 /// and methods to manipulate integer values of any bit-width. It supports both
     55 /// the typical integer arithmetic and comparison operations as well as bitwise
     56 /// manipulation.
     57 ///
     58 /// The class has several invariants worth noting:
     59 ///   * All bit, byte, and word positions are zero-based.
     60 ///   * Once the bit width is set, it doesn't change except by the Truncate,
     61 ///     SignExtend, or ZeroExtend operations.
     62 ///   * All binary operators must be on APInt instances of the same bit width.
     63 ///     Attempting to use these operators on instances with different bit
     64 ///     widths will yield an assertion.
     65 ///   * The value is stored canonically as an unsigned value. For operations
     66 ///     where it makes a difference, there are both signed and unsigned variants
     67 ///     of the operation. For example, sdiv and udiv. However, because the bit
     68 ///     widths must be the same, operations such as Mul and Add produce the same
     69 ///     results regardless of whether the values are interpreted as signed or
     70 ///     not.
     71 ///   * In general, the class tries to follow the style of computation that LLVM
     72 ///     uses in its IR. This simplifies its use for LLVM.
     73 ///
     74 /// @brief Class for arbitrary precision integers.
     75 class APInt {
     76   unsigned BitWidth;      ///< The number of bits in this APInt.
     77 
     78   /// This union is used to store the integer value. When the
     79   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
     80   union {
     81     uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
     82     uint64_t *pVal;  ///< Used to store the >64 bits integer value.
     83   };
     84 
     85   /// This enum is used to hold the constants we needed for APInt.
     86   enum {
     87     /// Bits in a word
     88     APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
     89                           CHAR_BIT,
     90     /// Byte size of a word
     91     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
     92   };
     93 
     94   /// This constructor is used only internally for speed of construction of
     95   /// temporaries. It is unsafe for general use so it is not public.
     96   /// @brief Fast internal constructor
     97   APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
     98 
     99   /// @returns true if the number of bits <= 64, false otherwise.
    100   /// @brief Determine if this APInt just has one word to store value.
    101   bool isSingleWord() const {
    102     return BitWidth <= APINT_BITS_PER_WORD;
    103   }
    104 
    105   /// @returns the word position for the specified bit position.
    106   /// @brief Determine which word a bit is in.
    107   static unsigned whichWord(unsigned bitPosition) {
    108     return bitPosition / APINT_BITS_PER_WORD;
    109   }
    110 
    111   /// @returns the bit position in a word for the specified bit position
    112   /// in the APInt.
    113   /// @brief Determine which bit in a word a bit is in.
    114   static unsigned whichBit(unsigned bitPosition) {
    115     return bitPosition % APINT_BITS_PER_WORD;
    116   }
    117 
    118   /// This method generates and returns a uint64_t (word) mask for a single
    119   /// bit at a specific bit position. This is used to mask the bit in the
    120   /// corresponding word.
    121   /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
    122   /// @brief Get a single bit mask.
    123   static uint64_t maskBit(unsigned bitPosition) {
    124     return 1ULL << whichBit(bitPosition);
    125   }
    126 
    127   /// This method is used internally to clear the to "N" bits in the high order
    128   /// word that are not used by the APInt. This is needed after the most
    129   /// significant word is assigned a value to ensure that those bits are
    130   /// zero'd out.
    131   /// @brief Clear unused high order bits
    132   APInt& clearUnusedBits() {
    133     // Compute how many bits are used in the final word
    134     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
    135     if (wordBits == 0)
    136       // If all bits are used, we want to leave the value alone. This also
    137       // avoids the undefined behavior of >> when the shift is the same size as
    138       // the word size (64).
    139       return *this;
    140 
    141     // Mask out the high bits.
    142     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    143     if (isSingleWord())
    144       VAL &= mask;
    145     else
    146       pVal[getNumWords() - 1] &= mask;
    147     return *this;
    148   }
    149 
    150   /// @returns the corresponding word for the specified bit position.
    151   /// @brief Get the word corresponding to a bit position
    152   uint64_t getWord(unsigned bitPosition) const {
    153     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
    154   }
    155 
    156   /// Converts a string into a number.  The string must be non-empty
    157   /// and well-formed as a number of the given base. The bit-width
    158   /// must be sufficient to hold the result.
    159   ///
    160   /// This is used by the constructors that take string arguments.
    161   ///
    162   /// StringRef::getAsInteger is superficially similar but (1) does
    163   /// not assume that the string is well-formed and (2) grows the
    164   /// result to hold the input.
    165   ///
    166   /// @param radix 2, 8, 10, 16, or 36
    167   /// @brief Convert a char array into an APInt
    168   void fromString(unsigned numBits, StringRef str, uint8_t radix);
    169 
    170   /// This is used by the toString method to divide by the radix. It simply
    171   /// provides a more convenient form of divide for internal use since KnuthDiv
    172   /// has specific constraints on its inputs. If those constraints are not met
    173   /// then it provides a simpler form of divide.
    174   /// @brief An internal division function for dividing APInts.
    175   static void divide(const APInt LHS, unsigned lhsWords,
    176                      const APInt &RHS, unsigned rhsWords,
    177                      APInt *Quotient, APInt *Remainder);
    178 
    179   /// out-of-line slow case for inline constructor
    180   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
    181 
    182   /// shared code between two array constructors
    183   void initFromArray(ArrayRef<uint64_t> array);
    184 
    185   /// out-of-line slow case for inline copy constructor
    186   void initSlowCase(const APInt& that);
    187 
    188   /// out-of-line slow case for shl
    189   APInt shlSlowCase(unsigned shiftAmt) const;
    190 
    191   /// out-of-line slow case for operator&
    192   APInt AndSlowCase(const APInt& RHS) const;
    193 
    194   /// out-of-line slow case for operator|
    195   APInt OrSlowCase(const APInt& RHS) const;
    196 
    197   /// out-of-line slow case for operator^
    198   APInt XorSlowCase(const APInt& RHS) const;
    199 
    200   /// out-of-line slow case for operator=
    201   APInt& AssignSlowCase(const APInt& RHS);
    202 
    203   /// out-of-line slow case for operator==
    204   bool EqualSlowCase(const APInt& RHS) const;
    205 
    206   /// out-of-line slow case for operator==
    207   bool EqualSlowCase(uint64_t Val) const;
    208 
    209   /// out-of-line slow case for countLeadingZeros
    210   unsigned countLeadingZerosSlowCase() const;
    211 
    212   /// out-of-line slow case for countTrailingOnes
    213   unsigned countTrailingOnesSlowCase() const;
    214 
    215   /// out-of-line slow case for countPopulation
    216   unsigned countPopulationSlowCase() const;
    217 
    218 public:
    219   /// @name Constructors
    220   /// @{
    221   /// If isSigned is true then val is treated as if it were a signed value
    222   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
    223   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
    224   /// the range of val are zero filled).
    225   /// @param numBits the bit width of the constructed APInt
    226   /// @param val the initial value of the APInt
    227   /// @param isSigned how to treat signedness of val
    228   /// @brief Create a new APInt of numBits width, initialized as val.
    229   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    230     : BitWidth(numBits), VAL(0) {
    231     assert(BitWidth && "bitwidth too small");
    232     if (isSingleWord())
    233       VAL = val;
    234     else
    235       initSlowCase(numBits, val, isSigned);
    236     clearUnusedBits();
    237   }
    238 
    239   /// Note that bigVal.size() can be smaller or larger than the corresponding
    240   /// bit width but any extraneous bits will be dropped.
    241   /// @param numBits the bit width of the constructed APInt
    242   /// @param bigVal a sequence of words to form the initial value of the APInt
    243   /// @brief Construct an APInt of numBits width, initialized as bigVal[].
    244   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
    245   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
    246   /// deprecated because this constructor is prone to ambiguity with the
    247   /// APInt(unsigned, uint64_t, bool) constructor.
    248   ///
    249   /// If this overload is ever deleted, care should be taken to prevent calls
    250   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
    251   /// constructor.
    252   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
    253 
    254   /// This constructor interprets the string \arg str in the given radix. The
    255   /// interpretation stops when the first character that is not suitable for the
    256   /// radix is encountered, or the end of the string. Acceptable radix values
    257   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
    258   /// string to require more bits than numBits.
    259   ///
    260   /// @param numBits the bit width of the constructed APInt
    261   /// @param str the string to be interpreted
    262   /// @param radix the radix to use for the conversion
    263   /// @brief Construct an APInt from a string representation.
    264   APInt(unsigned numBits, StringRef str, uint8_t radix);
    265 
    266   /// Simply makes *this a copy of that.
    267   /// @brief Copy Constructor.
    268   APInt(const APInt& that)
    269     : BitWidth(that.BitWidth), VAL(0) {
    270     assert(BitWidth && "bitwidth too small");
    271     if (isSingleWord())
    272       VAL = that.VAL;
    273     else
    274       initSlowCase(that);
    275   }
    276 
    277 #if LLVM_USE_RVALUE_REFERENCES
    278   /// @brief Move Constructor.
    279   APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
    280     that.BitWidth = 0;
    281   }
    282 #endif
    283 
    284   /// @brief Destructor.
    285   ~APInt() {
    286     if (!isSingleWord())
    287       delete [] pVal;
    288   }
    289 
    290   /// Default constructor that creates an uninitialized APInt.  This is useful
    291   ///  for object deserialization (pair this with the static method Read).
    292   explicit APInt() : BitWidth(1) {}
    293 
    294   /// Profile - Used to insert APInt objects, or objects that contain APInt
    295   ///  objects, into FoldingSets.
    296   void Profile(FoldingSetNodeID& id) const;
    297 
    298   /// @}
    299   /// @name Value Tests
    300   /// @{
    301   /// This tests the high bit of this APInt to determine if it is set.
    302   /// @returns true if this APInt is negative, false otherwise
    303   /// @brief Determine sign of this APInt.
    304   bool isNegative() const {
    305     return (*this)[BitWidth - 1];
    306   }
    307 
    308   /// This tests the high bit of the APInt to determine if it is unset.
    309   /// @brief Determine if this APInt Value is non-negative (>= 0)
    310   bool isNonNegative() const {
    311     return !isNegative();
    312   }
    313 
    314   /// This tests if the value of this APInt is positive (> 0). Note
    315   /// that 0 is not a positive value.
    316   /// @returns true if this APInt is positive.
    317   /// @brief Determine if this APInt Value is positive.
    318   bool isStrictlyPositive() const {
    319     return isNonNegative() && !!*this;
    320   }
    321 
    322   /// This checks to see if the value has all bits of the APInt are set or not.
    323   /// @brief Determine if all bits are set
    324   bool isAllOnesValue() const {
    325     return countPopulation() == BitWidth;
    326   }
    327 
    328   /// This checks to see if the value of this APInt is the maximum unsigned
    329   /// value for the APInt's bit width.
    330   /// @brief Determine if this is the largest unsigned value.
    331   bool isMaxValue() const {
    332     return countPopulation() == BitWidth;
    333   }
    334 
    335   /// This checks to see if the value of this APInt is the maximum signed
    336   /// value for the APInt's bit width.
    337   /// @brief Determine if this is the largest signed value.
    338   bool isMaxSignedValue() const {
    339     return BitWidth == 1 ? VAL == 0 :
    340                           !isNegative() && countPopulation() == BitWidth - 1;
    341   }
    342 
    343   /// This checks to see if the value of this APInt is the minimum unsigned
    344   /// value for the APInt's bit width.
    345   /// @brief Determine if this is the smallest unsigned value.
    346   bool isMinValue() const {
    347     return !*this;
    348   }
    349 
    350   /// This checks to see if the value of this APInt is the minimum signed
    351   /// value for the APInt's bit width.
    352   /// @brief Determine if this is the smallest signed value.
    353   bool isMinSignedValue() const {
    354     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
    355   }
    356 
    357   /// @brief Check if this APInt has an N-bits unsigned integer value.
    358   bool isIntN(unsigned N) const {
    359     assert(N && "N == 0 ???");
    360     return getActiveBits() <= N;
    361   }
    362 
    363   /// @brief Check if this APInt has an N-bits signed integer value.
    364   bool isSignedIntN(unsigned N) const {
    365     assert(N && "N == 0 ???");
    366     return getMinSignedBits() <= N;
    367   }
    368 
    369   /// @returns true if the argument APInt value is a power of two > 0.
    370   bool isPowerOf2() const {
    371     if (isSingleWord())
    372       return isPowerOf2_64(VAL);
    373     return countPopulationSlowCase() == 1;
    374   }
    375 
    376   /// isSignBit - Return true if this is the value returned by getSignBit.
    377   bool isSignBit() const { return isMinSignedValue(); }
    378 
    379   /// This converts the APInt to a boolean value as a test against zero.
    380   /// @brief Boolean conversion function.
    381   bool getBoolValue() const {
    382     return !!*this;
    383   }
    384 
    385   /// getLimitedValue - If this value is smaller than the specified limit,
    386   /// return it, otherwise return the limit value.  This causes the value
    387   /// to saturate to the limit.
    388   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    389     return (getActiveBits() > 64 || getZExtValue() > Limit) ?
    390       Limit :  getZExtValue();
    391   }
    392 
    393   /// @}
    394   /// @name Value Generators
    395   /// @{
    396   /// @brief Gets maximum unsigned value of APInt for specific bit width.
    397   static APInt getMaxValue(unsigned numBits) {
    398     return getAllOnesValue(numBits);
    399   }
    400 
    401   /// @brief Gets maximum signed value of APInt for a specific bit width.
    402   static APInt getSignedMaxValue(unsigned numBits) {
    403     APInt API = getAllOnesValue(numBits);
    404     API.clearBit(numBits - 1);
    405     return API;
    406   }
    407 
    408   /// @brief Gets minimum unsigned value of APInt for a specific bit width.
    409   static APInt getMinValue(unsigned numBits) {
    410     return APInt(numBits, 0);
    411   }
    412 
    413   /// @brief Gets minimum signed value of APInt for a specific bit width.
    414   static APInt getSignedMinValue(unsigned numBits) {
    415     APInt API(numBits, 0);
    416     API.setBit(numBits - 1);
    417     return API;
    418   }
    419 
    420   /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
    421   /// it helps code readability when we want to get a SignBit.
    422   /// @brief Get the SignBit for a specific bit width.
    423   static APInt getSignBit(unsigned BitWidth) {
    424     return getSignedMinValue(BitWidth);
    425   }
    426 
    427   /// @returns the all-ones value for an APInt of the specified bit-width.
    428   /// @brief Get the all-ones value.
    429   static APInt getAllOnesValue(unsigned numBits) {
    430     return APInt(numBits, -1ULL, true);
    431   }
    432 
    433   /// @returns the '0' value for an APInt of the specified bit-width.
    434   /// @brief Get the '0' value.
    435   static APInt getNullValue(unsigned numBits) {
    436     return APInt(numBits, 0);
    437   }
    438 
    439   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    440   /// the low bits and right shift to the least significant bit.
    441   /// @returns the high "numBits" bits of this APInt.
    442   APInt getHiBits(unsigned numBits) const;
    443 
    444   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    445   /// the high bits.
    446   /// @returns the low "numBits" bits of this APInt.
    447   APInt getLoBits(unsigned numBits) const;
    448 
    449   /// getOneBitSet - Return an APInt with exactly one bit set in the result.
    450   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    451     APInt Res(numBits, 0);
    452     Res.setBit(BitNo);
    453     return Res;
    454   }
    455 
    456   /// Constructs an APInt value that has a contiguous range of bits set. The
    457   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
    458   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
    459   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
    460   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
    461   /// @param numBits the intended bit width of the result
    462   /// @param loBit the index of the lowest bit set.
    463   /// @param hiBit the index of the highest bit set.
    464   /// @returns An APInt value with the requested bits set.
    465   /// @brief Get a value with a block of bits set.
    466   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    467     assert(hiBit <= numBits && "hiBit out of range");
    468     assert(loBit < numBits && "loBit out of range");
    469     if (hiBit < loBit)
    470       return getLowBitsSet(numBits, hiBit) |
    471              getHighBitsSet(numBits, numBits-loBit);
    472     return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
    473   }
    474 
    475   /// Constructs an APInt value that has the top hiBitsSet bits set.
    476   /// @param numBits the bitwidth of the result
    477   /// @param hiBitsSet the number of high-order bits set in the result.
    478   /// @brief Get a value with high bits set
    479   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    480     assert(hiBitsSet <= numBits && "Too many bits to set!");
    481     // Handle a degenerate case, to avoid shifting by word size
    482     if (hiBitsSet == 0)
    483       return APInt(numBits, 0);
    484     unsigned shiftAmt = numBits - hiBitsSet;
    485     // For small values, return quickly
    486     if (numBits <= APINT_BITS_PER_WORD)
    487       return APInt(numBits, ~0ULL << shiftAmt);
    488     return getAllOnesValue(numBits).shl(shiftAmt);
    489   }
    490 
    491   /// Constructs an APInt value that has the bottom loBitsSet bits set.
    492   /// @param numBits the bitwidth of the result
    493   /// @param loBitsSet the number of low-order bits set in the result.
    494   /// @brief Get a value with low bits set
    495   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    496     assert(loBitsSet <= numBits && "Too many bits to set!");
    497     // Handle a degenerate case, to avoid shifting by word size
    498     if (loBitsSet == 0)
    499       return APInt(numBits, 0);
    500     if (loBitsSet == APINT_BITS_PER_WORD)
    501       return APInt(numBits, -1ULL);
    502     // For small values, return quickly.
    503     if (loBitsSet <= APINT_BITS_PER_WORD)
    504       return APInt(numBits, -1ULL >> (APINT_BITS_PER_WORD - loBitsSet));
    505     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
    506   }
    507 
    508   /// \brief Determine if two APInts have the same value, after zero-extending
    509   /// one of them (if needed!) to ensure that the bit-widths match.
    510   static bool isSameValue(const APInt &I1, const APInt &I2) {
    511     if (I1.getBitWidth() == I2.getBitWidth())
    512       return I1 == I2;
    513 
    514     if (I1.getBitWidth() > I2.getBitWidth())
    515       return I1 == I2.zext(I1.getBitWidth());
    516 
    517     return I1.zext(I2.getBitWidth()) == I2;
    518   }
    519 
    520   /// \brief Overload to compute a hash_code for an APInt value.
    521   friend hash_code hash_value(const APInt &Arg);
    522 
    523   /// This function returns a pointer to the internal storage of the APInt.
    524   /// This is useful for writing out the APInt in binary form without any
    525   /// conversions.
    526   const uint64_t* getRawData() const {
    527     if (isSingleWord())
    528       return &VAL;
    529     return &pVal[0];
    530   }
    531 
    532   /// @}
    533   /// @name Unary Operators
    534   /// @{
    535   /// @returns a new APInt value representing *this incremented by one
    536   /// @brief Postfix increment operator.
    537   const APInt operator++(int) {
    538     APInt API(*this);
    539     ++(*this);
    540     return API;
    541   }
    542 
    543   /// @returns *this incremented by one
    544   /// @brief Prefix increment operator.
    545   APInt& operator++();
    546 
    547   /// @returns a new APInt representing *this decremented by one.
    548   /// @brief Postfix decrement operator.
    549   const APInt operator--(int) {
    550     APInt API(*this);
    551     --(*this);
    552     return API;
    553   }
    554 
    555   /// @returns *this decremented by one.
    556   /// @brief Prefix decrement operator.
    557   APInt& operator--();
    558 
    559   /// Performs a bitwise complement operation on this APInt.
    560   /// @returns an APInt that is the bitwise complement of *this
    561   /// @brief Unary bitwise complement operator.
    562   APInt operator~() const {
    563     APInt Result(*this);
    564     Result.flipAllBits();
    565     return Result;
    566   }
    567 
    568   /// Negates *this using two's complement logic.
    569   /// @returns An APInt value representing the negation of *this.
    570   /// @brief Unary negation operator
    571   APInt operator-() const {
    572     return APInt(BitWidth, 0) - (*this);
    573   }
    574 
    575   /// Performs logical negation operation on this APInt.
    576   /// @returns true if *this is zero, false otherwise.
    577   /// @brief Logical negation operator.
    578   bool operator!() const {
    579     if (isSingleWord())
    580       return !VAL;
    581 
    582     for (unsigned i = 0; i != getNumWords(); ++i)
    583       if (pVal[i])
    584         return false;
    585     return true;
    586   }
    587 
    588   /// @}
    589   /// @name Assignment Operators
    590   /// @{
    591   /// @returns *this after assignment of RHS.
    592   /// @brief Copy assignment operator.
    593   APInt& operator=(const APInt& RHS) {
    594     // If the bitwidths are the same, we can avoid mucking with memory
    595     if (isSingleWord() && RHS.isSingleWord()) {
    596       VAL = RHS.VAL;
    597       BitWidth = RHS.BitWidth;
    598       return clearUnusedBits();
    599     }
    600 
    601     return AssignSlowCase(RHS);
    602   }
    603 
    604 #if LLVM_USE_RVALUE_REFERENCES
    605   /// @brief Move assignment operator.
    606   APInt& operator=(APInt&& that) {
    607     if (!isSingleWord())
    608       delete [] pVal;
    609 
    610     BitWidth = that.BitWidth;
    611     VAL = that.VAL;
    612 
    613     that.BitWidth = 0;
    614 
    615     return *this;
    616   }
    617 #endif
    618 
    619   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
    620   /// the bit width, the excess bits are truncated. If the bit width is larger
    621   /// than 64, the value is zero filled in the unspecified high order bits.
    622   /// @returns *this after assignment of RHS value.
    623   /// @brief Assignment operator.
    624   APInt& operator=(uint64_t RHS);
    625 
    626   /// Performs a bitwise AND operation on this APInt and RHS. The result is
    627   /// assigned to *this.
    628   /// @returns *this after ANDing with RHS.
    629   /// @brief Bitwise AND assignment operator.
    630   APInt& operator&=(const APInt& RHS);
    631 
    632   /// Performs a bitwise OR operation on this APInt and RHS. The result is
    633   /// assigned *this;
    634   /// @returns *this after ORing with RHS.
    635   /// @brief Bitwise OR assignment operator.
    636   APInt& operator|=(const APInt& RHS);
    637 
    638   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
    639   /// logically zero-extended or truncated to match the bit-width of
    640   /// the LHS.
    641   ///
    642   /// @brief Bitwise OR assignment operator.
    643   APInt& operator|=(uint64_t RHS) {
    644     if (isSingleWord()) {
    645       VAL |= RHS;
    646       clearUnusedBits();
    647     } else {
    648       pVal[0] |= RHS;
    649     }
    650     return *this;
    651   }
    652 
    653   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
    654   /// assigned to *this.
    655   /// @returns *this after XORing with RHS.
    656   /// @brief Bitwise XOR assignment operator.
    657   APInt& operator^=(const APInt& RHS);
    658 
    659   /// Multiplies this APInt by RHS and assigns the result to *this.
    660   /// @returns *this
    661   /// @brief Multiplication assignment operator.
    662   APInt& operator*=(const APInt& RHS);
    663 
    664   /// Adds RHS to *this and assigns the result to *this.
    665   /// @returns *this
    666   /// @brief Addition assignment operator.
    667   APInt& operator+=(const APInt& RHS);
    668 
    669   /// Subtracts RHS from *this and assigns the result to *this.
    670   /// @returns *this
    671   /// @brief Subtraction assignment operator.
    672   APInt& operator-=(const APInt& RHS);
    673 
    674   /// Shifts *this left by shiftAmt and assigns the result to *this.
    675   /// @returns *this after shifting left by shiftAmt
    676   /// @brief Left-shift assignment function.
    677   APInt& operator<<=(unsigned shiftAmt) {
    678     *this = shl(shiftAmt);
    679     return *this;
    680   }
    681 
    682   /// @}
    683   /// @name Binary Operators
    684   /// @{
    685   /// Performs a bitwise AND operation on *this and RHS.
    686   /// @returns An APInt value representing the bitwise AND of *this and RHS.
    687   /// @brief Bitwise AND operator.
    688   APInt operator&(const APInt& RHS) const {
    689     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    690     if (isSingleWord())
    691       return APInt(getBitWidth(), VAL & RHS.VAL);
    692     return AndSlowCase(RHS);
    693   }
    694   APInt And(const APInt& RHS) const {
    695     return this->operator&(RHS);
    696   }
    697 
    698   /// Performs a bitwise OR operation on *this and RHS.
    699   /// @returns An APInt value representing the bitwise OR of *this and RHS.
    700   /// @brief Bitwise OR operator.
    701   APInt operator|(const APInt& RHS) const {
    702     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    703     if (isSingleWord())
    704       return APInt(getBitWidth(), VAL | RHS.VAL);
    705     return OrSlowCase(RHS);
    706   }
    707   APInt Or(const APInt& RHS) const {
    708     return this->operator|(RHS);
    709   }
    710 
    711   /// Performs a bitwise XOR operation on *this and RHS.
    712   /// @returns An APInt value representing the bitwise XOR of *this and RHS.
    713   /// @brief Bitwise XOR operator.
    714   APInt operator^(const APInt& RHS) const {
    715     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    716     if (isSingleWord())
    717       return APInt(BitWidth, VAL ^ RHS.VAL);
    718     return XorSlowCase(RHS);
    719   }
    720   APInt Xor(const APInt& RHS) const {
    721     return this->operator^(RHS);
    722   }
    723 
    724   /// Multiplies this APInt by RHS and returns the result.
    725   /// @brief Multiplication operator.
    726   APInt operator*(const APInt& RHS) const;
    727 
    728   /// Adds RHS to this APInt and returns the result.
    729   /// @brief Addition operator.
    730   APInt operator+(const APInt& RHS) const;
    731   APInt operator+(uint64_t RHS) const {
    732     return (*this) + APInt(BitWidth, RHS);
    733   }
    734 
    735   /// Subtracts RHS from this APInt and returns the result.
    736   /// @brief Subtraction operator.
    737   APInt operator-(const APInt& RHS) const;
    738   APInt operator-(uint64_t RHS) const {
    739     return (*this) - APInt(BitWidth, RHS);
    740   }
    741 
    742   APInt operator<<(unsigned Bits) const {
    743     return shl(Bits);
    744   }
    745 
    746   APInt operator<<(const APInt &Bits) const {
    747     return shl(Bits);
    748   }
    749 
    750   /// Arithmetic right-shift this APInt by shiftAmt.
    751   /// @brief Arithmetic right-shift function.
    752   APInt ashr(unsigned shiftAmt) const;
    753 
    754   /// Logical right-shift this APInt by shiftAmt.
    755   /// @brief Logical right-shift function.
    756   APInt lshr(unsigned shiftAmt) const;
    757 
    758   /// Left-shift this APInt by shiftAmt.
    759   /// @brief Left-shift function.
    760   APInt shl(unsigned shiftAmt) const {
    761     assert(shiftAmt <= BitWidth && "Invalid shift amount");
    762     if (isSingleWord()) {
    763       if (shiftAmt == BitWidth)
    764         return APInt(BitWidth, 0); // avoid undefined shift results
    765       return APInt(BitWidth, VAL << shiftAmt);
    766     }
    767     return shlSlowCase(shiftAmt);
    768   }
    769 
    770   /// @brief Rotate left by rotateAmt.
    771   APInt rotl(unsigned rotateAmt) const;
    772 
    773   /// @brief Rotate right by rotateAmt.
    774   APInt rotr(unsigned rotateAmt) const;
    775 
    776   /// Arithmetic right-shift this APInt by shiftAmt.
    777   /// @brief Arithmetic right-shift function.
    778   APInt ashr(const APInt &shiftAmt) const;
    779 
    780   /// Logical right-shift this APInt by shiftAmt.
    781   /// @brief Logical right-shift function.
    782   APInt lshr(const APInt &shiftAmt) const;
    783 
    784   /// Left-shift this APInt by shiftAmt.
    785   /// @brief Left-shift function.
    786   APInt shl(const APInt &shiftAmt) const;
    787 
    788   /// @brief Rotate left by rotateAmt.
    789   APInt rotl(const APInt &rotateAmt) const;
    790 
    791   /// @brief Rotate right by rotateAmt.
    792   APInt rotr(const APInt &rotateAmt) const;
    793 
    794   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
    795   /// RHS are treated as unsigned quantities for purposes of this division.
    796   /// @returns a new APInt value containing the division result
    797   /// @brief Unsigned division operation.
    798   APInt udiv(const APInt &RHS) const;
    799 
    800   /// Signed divide this APInt by APInt RHS.
    801   /// @brief Signed division function for APInt.
    802   APInt sdiv(const APInt &RHS) const {
    803     if (isNegative())
    804       if (RHS.isNegative())
    805         return (-(*this)).udiv(-RHS);
    806       else
    807         return -((-(*this)).udiv(RHS));
    808     else if (RHS.isNegative())
    809       return -(this->udiv(-RHS));
    810     return this->udiv(RHS);
    811   }
    812 
    813   /// Perform an unsigned remainder operation on this APInt with RHS being the
    814   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
    815   /// of this operation. Note that this is a true remainder operation and not
    816   /// a modulo operation because the sign follows the sign of the dividend
    817   /// which is *this.
    818   /// @returns a new APInt value containing the remainder result
    819   /// @brief Unsigned remainder operation.
    820   APInt urem(const APInt &RHS) const;
    821 
    822   /// Signed remainder operation on APInt.
    823   /// @brief Function for signed remainder operation.
    824   APInt srem(const APInt &RHS) const {
    825     if (isNegative())
    826       if (RHS.isNegative())
    827         return -((-(*this)).urem(-RHS));
    828       else
    829         return -((-(*this)).urem(RHS));
    830     else if (RHS.isNegative())
    831       return this->urem(-RHS);
    832     return this->urem(RHS);
    833   }
    834 
    835   /// Sometimes it is convenient to divide two APInt values and obtain both the
    836   /// quotient and remainder. This function does both operations in the same
    837   /// computation making it a little more efficient. The pair of input arguments
    838   /// may overlap with the pair of output arguments. It is safe to call
    839   /// udivrem(X, Y, X, Y), for example.
    840   /// @brief Dual division/remainder interface.
    841   static void udivrem(const APInt &LHS, const APInt &RHS,
    842                       APInt &Quotient, APInt &Remainder);
    843 
    844   static void sdivrem(const APInt &LHS, const APInt &RHS,
    845                       APInt &Quotient, APInt &Remainder) {
    846     if (LHS.isNegative()) {
    847       if (RHS.isNegative())
    848         APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
    849       else {
    850         APInt::udivrem(-LHS, RHS, Quotient, Remainder);
    851         Quotient = -Quotient;
    852       }
    853       Remainder = -Remainder;
    854     } else if (RHS.isNegative()) {
    855       APInt::udivrem(LHS, -RHS, Quotient, Remainder);
    856       Quotient = -Quotient;
    857     } else {
    858       APInt::udivrem(LHS, RHS, Quotient, Remainder);
    859     }
    860   }
    861 
    862 
    863   // Operations that return overflow indicators.
    864   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
    865   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
    866   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
    867   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
    868   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
    869   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
    870   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
    871   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
    872 
    873   /// @returns the bit value at bitPosition
    874   /// @brief Array-indexing support.
    875   bool operator[](unsigned bitPosition) const {
    876     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    877     return (maskBit(bitPosition) &
    878             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
    879   }
    880 
    881   /// @}
    882   /// @name Comparison Operators
    883   /// @{
    884   /// Compares this APInt with RHS for the validity of the equality
    885   /// relationship.
    886   /// @brief Equality operator.
    887   bool operator==(const APInt& RHS) const {
    888     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    889     if (isSingleWord())
    890       return VAL == RHS.VAL;
    891     return EqualSlowCase(RHS);
    892   }
    893 
    894   /// Compares this APInt with a uint64_t for the validity of the equality
    895   /// relationship.
    896   /// @returns true if *this == Val
    897   /// @brief Equality operator.
    898   bool operator==(uint64_t Val) const {
    899     if (isSingleWord())
    900       return VAL == Val;
    901     return EqualSlowCase(Val);
    902   }
    903 
    904   /// Compares this APInt with RHS for the validity of the equality
    905   /// relationship.
    906   /// @returns true if *this == Val
    907   /// @brief Equality comparison.
    908   bool eq(const APInt &RHS) const {
    909     return (*this) == RHS;
    910   }
    911 
    912   /// Compares this APInt with RHS for the validity of the inequality
    913   /// relationship.
    914   /// @returns true if *this != Val
    915   /// @brief Inequality operator.
    916   bool operator!=(const APInt& RHS) const {
    917     return !((*this) == RHS);
    918   }
    919 
    920   /// Compares this APInt with a uint64_t for the validity of the inequality
    921   /// relationship.
    922   /// @returns true if *this != Val
    923   /// @brief Inequality operator.
    924   bool operator!=(uint64_t Val) const {
    925     return !((*this) == Val);
    926   }
    927 
    928   /// Compares this APInt with RHS for the validity of the inequality
    929   /// relationship.
    930   /// @returns true if *this != Val
    931   /// @brief Inequality comparison
    932   bool ne(const APInt &RHS) const {
    933     return !((*this) == RHS);
    934   }
    935 
    936   /// Regards both *this and RHS as unsigned quantities and compares them for
    937   /// the validity of the less-than relationship.
    938   /// @returns true if *this < RHS when both are considered unsigned.
    939   /// @brief Unsigned less than comparison
    940   bool ult(const APInt &RHS) const;
    941 
    942   /// Regards both *this as an unsigned quantity and compares it with RHS for
    943   /// the validity of the less-than relationship.
    944   /// @returns true if *this < RHS when considered unsigned.
    945   /// @brief Unsigned less than comparison
    946   bool ult(uint64_t RHS) const {
    947     return ult(APInt(getBitWidth(), RHS));
    948   }
    949 
    950   /// Regards both *this and RHS as signed quantities and compares them for
    951   /// validity of the less-than relationship.
    952   /// @returns true if *this < RHS when both are considered signed.
    953   /// @brief Signed less than comparison
    954   bool slt(const APInt& RHS) const;
    955 
    956   /// Regards both *this as a signed quantity and compares it with RHS for
    957   /// the validity of the less-than relationship.
    958   /// @returns true if *this < RHS when considered signed.
    959   /// @brief Signed less than comparison
    960   bool slt(uint64_t RHS) const {
    961     return slt(APInt(getBitWidth(), RHS));
    962   }
    963 
    964   /// Regards both *this and RHS as unsigned quantities and compares them for
    965   /// validity of the less-or-equal relationship.
    966   /// @returns true if *this <= RHS when both are considered unsigned.
    967   /// @brief Unsigned less or equal comparison
    968   bool ule(const APInt& RHS) const {
    969     return ult(RHS) || eq(RHS);
    970   }
    971 
    972   /// Regards both *this as an unsigned quantity and compares it with RHS for
    973   /// the validity of the less-or-equal relationship.
    974   /// @returns true if *this <= RHS when considered unsigned.
    975   /// @brief Unsigned less or equal comparison
    976   bool ule(uint64_t RHS) const {
    977     return ule(APInt(getBitWidth(), RHS));
    978   }
    979 
    980   /// Regards both *this and RHS as signed quantities and compares them for
    981   /// validity of the less-or-equal relationship.
    982   /// @returns true if *this <= RHS when both are considered signed.
    983   /// @brief Signed less or equal comparison
    984   bool sle(const APInt& RHS) const {
    985     return slt(RHS) || eq(RHS);
    986   }
    987 
    988   /// Regards both *this as a signed quantity and compares it with RHS for
    989   /// the validity of the less-or-equal relationship.
    990   /// @returns true if *this <= RHS when considered signed.
    991   /// @brief Signed less or equal comparison
    992   bool sle(uint64_t RHS) const {
    993     return sle(APInt(getBitWidth(), RHS));
    994   }
    995 
    996   /// Regards both *this and RHS as unsigned quantities and compares them for
    997   /// the validity of the greater-than relationship.
    998   /// @returns true if *this > RHS when both are considered unsigned.
    999   /// @brief Unsigned greather than comparison
   1000   bool ugt(const APInt& RHS) const {
   1001     return !ult(RHS) && !eq(RHS);
   1002   }
   1003 
   1004   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1005   /// the validity of the greater-than relationship.
   1006   /// @returns true if *this > RHS when considered unsigned.
   1007   /// @brief Unsigned greater than comparison
   1008   bool ugt(uint64_t RHS) const {
   1009     return ugt(APInt(getBitWidth(), RHS));
   1010   }
   1011 
   1012   /// Regards both *this and RHS as signed quantities and compares them for
   1013   /// the validity of the greater-than relationship.
   1014   /// @returns true if *this > RHS when both are considered signed.
   1015   /// @brief Signed greather than comparison
   1016   bool sgt(const APInt& RHS) const {
   1017     return !slt(RHS) && !eq(RHS);
   1018   }
   1019 
   1020   /// Regards both *this as a signed quantity and compares it with RHS for
   1021   /// the validity of the greater-than relationship.
   1022   /// @returns true if *this > RHS when considered signed.
   1023   /// @brief Signed greater than comparison
   1024   bool sgt(uint64_t RHS) const {
   1025     return sgt(APInt(getBitWidth(), RHS));
   1026   }
   1027 
   1028   /// Regards both *this and RHS as unsigned quantities and compares them for
   1029   /// validity of the greater-or-equal relationship.
   1030   /// @returns true if *this >= RHS when both are considered unsigned.
   1031   /// @brief Unsigned greater or equal comparison
   1032   bool uge(const APInt& RHS) const {
   1033     return !ult(RHS);
   1034   }
   1035 
   1036   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1037   /// the validity of the greater-or-equal relationship.
   1038   /// @returns true if *this >= RHS when considered unsigned.
   1039   /// @brief Unsigned greater or equal comparison
   1040   bool uge(uint64_t RHS) const {
   1041     return uge(APInt(getBitWidth(), RHS));
   1042   }
   1043 
   1044   /// Regards both *this and RHS as signed quantities and compares them for
   1045   /// validity of the greater-or-equal relationship.
   1046   /// @returns true if *this >= RHS when both are considered signed.
   1047   /// @brief Signed greather or equal comparison
   1048   bool sge(const APInt& RHS) const {
   1049     return !slt(RHS);
   1050   }
   1051 
   1052   /// Regards both *this as a signed quantity and compares it with RHS for
   1053   /// the validity of the greater-or-equal relationship.
   1054   /// @returns true if *this >= RHS when considered signed.
   1055   /// @brief Signed greater or equal comparison
   1056   bool sge(uint64_t RHS) const {
   1057     return sge(APInt(getBitWidth(), RHS));
   1058   }
   1059 
   1060 
   1061 
   1062 
   1063   /// This operation tests if there are any pairs of corresponding bits
   1064   /// between this APInt and RHS that are both set.
   1065   bool intersects(const APInt &RHS) const {
   1066     return (*this & RHS) != 0;
   1067   }
   1068 
   1069   /// @}
   1070   /// @name Resizing Operators
   1071   /// @{
   1072   /// Truncate the APInt to a specified width. It is an error to specify a width
   1073   /// that is greater than or equal to the current width.
   1074   /// @brief Truncate to new width.
   1075   APInt trunc(unsigned width) const;
   1076 
   1077   /// This operation sign extends the APInt to a new width. If the high order
   1078   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
   1079   /// It is an error to specify a width that is less than or equal to the
   1080   /// current width.
   1081   /// @brief Sign extend to a new width.
   1082   APInt sext(unsigned width) const;
   1083 
   1084   /// This operation zero extends the APInt to a new width. The high order bits
   1085   /// are filled with 0 bits.  It is an error to specify a width that is less
   1086   /// than or equal to the current width.
   1087   /// @brief Zero extend to a new width.
   1088   APInt zext(unsigned width) const;
   1089 
   1090   /// Make this APInt have the bit width given by \p width. The value is sign
   1091   /// extended, truncated, or left alone to make it that width.
   1092   /// @brief Sign extend or truncate to width
   1093   APInt sextOrTrunc(unsigned width) const;
   1094 
   1095   /// Make this APInt have the bit width given by \p width. The value is zero
   1096   /// extended, truncated, or left alone to make it that width.
   1097   /// @brief Zero extend or truncate to width
   1098   APInt zextOrTrunc(unsigned width) const;
   1099 
   1100   /// Make this APInt have the bit width given by \p width. The value is sign
   1101   /// extended, or left alone to make it that width.
   1102   /// @brief Sign extend or truncate to width
   1103   APInt sextOrSelf(unsigned width) const;
   1104 
   1105   /// Make this APInt have the bit width given by \p width. The value is zero
   1106   /// extended, or left alone to make it that width.
   1107   /// @brief Zero extend or truncate to width
   1108   APInt zextOrSelf(unsigned width) const;
   1109 
   1110   /// @}
   1111   /// @name Bit Manipulation Operators
   1112   /// @{
   1113   /// @brief Set every bit to 1.
   1114   void setAllBits() {
   1115     if (isSingleWord())
   1116       VAL = -1ULL;
   1117     else {
   1118       // Set all the bits in all the words.
   1119       for (unsigned i = 0; i < getNumWords(); ++i)
   1120         pVal[i] = -1ULL;
   1121     }
   1122     // Clear the unused ones
   1123     clearUnusedBits();
   1124   }
   1125 
   1126   /// Set the given bit to 1 whose position is given as "bitPosition".
   1127   /// @brief Set a given bit to 1.
   1128   void setBit(unsigned bitPosition);
   1129 
   1130   /// @brief Set every bit to 0.
   1131   void clearAllBits() {
   1132     if (isSingleWord())
   1133       VAL = 0;
   1134     else
   1135       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
   1136   }
   1137 
   1138   /// Set the given bit to 0 whose position is given as "bitPosition".
   1139   /// @brief Set a given bit to 0.
   1140   void clearBit(unsigned bitPosition);
   1141 
   1142   /// @brief Toggle every bit to its opposite value.
   1143   void flipAllBits() {
   1144     if (isSingleWord())
   1145       VAL ^= -1ULL;
   1146     else {
   1147       for (unsigned i = 0; i < getNumWords(); ++i)
   1148         pVal[i] ^= -1ULL;
   1149     }
   1150     clearUnusedBits();
   1151   }
   1152 
   1153   /// Toggle a given bit to its opposite value whose position is given
   1154   /// as "bitPosition".
   1155   /// @brief Toggles a given bit to its opposite value.
   1156   void flipBit(unsigned bitPosition);
   1157 
   1158   /// @}
   1159   /// @name Value Characterization Functions
   1160   /// @{
   1161 
   1162   /// @returns the total number of bits.
   1163   unsigned getBitWidth() const {
   1164     return BitWidth;
   1165   }
   1166 
   1167   /// Here one word's bitwidth equals to that of uint64_t.
   1168   /// @returns the number of words to hold the integer value of this APInt.
   1169   /// @brief Get the number of words.
   1170   unsigned getNumWords() const {
   1171     return getNumWords(BitWidth);
   1172   }
   1173 
   1174   /// Here one word's bitwidth equals to that of uint64_t.
   1175   /// @returns the number of words to hold the integer value with a
   1176   /// given bit width.
   1177   /// @brief Get the number of words.
   1178   static unsigned getNumWords(unsigned BitWidth) {
   1179     return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
   1180   }
   1181 
   1182   /// This function returns the number of active bits which is defined as the
   1183   /// bit width minus the number of leading zeros. This is used in several
   1184   /// computations to see how "wide" the value is.
   1185   /// @brief Compute the number of active bits in the value
   1186   unsigned getActiveBits() const {
   1187     return BitWidth - countLeadingZeros();
   1188   }
   1189 
   1190   /// This function returns the number of active words in the value of this
   1191   /// APInt. This is used in conjunction with getActiveData to extract the raw
   1192   /// value of the APInt.
   1193   unsigned getActiveWords() const {
   1194     return whichWord(getActiveBits()-1) + 1;
   1195   }
   1196 
   1197   /// Computes the minimum bit width for this APInt while considering it to be
   1198   /// a signed (and probably negative) value. If the value is not negative,
   1199   /// this function returns the same value as getActiveBits()+1. Otherwise, it
   1200   /// returns the smallest bit width that will retain the negative value. For
   1201   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
   1202   /// for -1, this function will always return 1.
   1203   /// @brief Get the minimum bit size for this signed APInt
   1204   unsigned getMinSignedBits() const {
   1205     if (isNegative())
   1206       return BitWidth - countLeadingOnes() + 1;
   1207     return getActiveBits()+1;
   1208   }
   1209 
   1210   /// This method attempts to return the value of this APInt as a zero extended
   1211   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
   1212   /// uint64_t. Otherwise an assertion will result.
   1213   /// @brief Get zero extended value
   1214   uint64_t getZExtValue() const {
   1215     if (isSingleWord())
   1216       return VAL;
   1217     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
   1218     return pVal[0];
   1219   }
   1220 
   1221   /// This method attempts to return the value of this APInt as a sign extended
   1222   /// int64_t. The bit width must be <= 64 or the value must fit within an
   1223   /// int64_t. Otherwise an assertion will result.
   1224   /// @brief Get sign extended value
   1225   int64_t getSExtValue() const {
   1226     if (isSingleWord())
   1227       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
   1228                      (APINT_BITS_PER_WORD - BitWidth);
   1229     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
   1230     return int64_t(pVal[0]);
   1231   }
   1232 
   1233   /// This method determines how many bits are required to hold the APInt
   1234   /// equivalent of the string given by \arg str.
   1235   /// @brief Get bits required for string value.
   1236   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
   1237 
   1238   /// countLeadingZeros - This function is an APInt version of the
   1239   /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
   1240   /// of zeros from the most significant bit to the first one bit.
   1241   /// @returns BitWidth if the value is zero, otherwise
   1242   /// returns the number of zeros from the most significant bit to the first
   1243   /// one bits.
   1244   unsigned countLeadingZeros() const {
   1245     if (isSingleWord()) {
   1246       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
   1247       return CountLeadingZeros_64(VAL) - unusedBits;
   1248     }
   1249     return countLeadingZerosSlowCase();
   1250   }
   1251 
   1252   /// countLeadingOnes - This function is an APInt version of the
   1253   /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
   1254   /// of ones from the most significant bit to the first zero bit.
   1255   /// @returns 0 if the high order bit is not set, otherwise
   1256   /// returns the number of 1 bits from the most significant to the least
   1257   /// @brief Count the number of leading one bits.
   1258   unsigned countLeadingOnes() const;
   1259 
   1260   /// Computes the number of leading bits of this APInt that are equal to its
   1261   /// sign bit.
   1262   unsigned getNumSignBits() const {
   1263     return isNegative() ? countLeadingOnes() : countLeadingZeros();
   1264   }
   1265 
   1266   /// countTrailingZeros - This function is an APInt version of the
   1267   /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
   1268   /// the number of zeros from the least significant bit to the first set bit.
   1269   /// @returns BitWidth if the value is zero, otherwise
   1270   /// returns the number of zeros from the least significant bit to the first
   1271   /// one bit.
   1272   /// @brief Count the number of trailing zero bits.
   1273   unsigned countTrailingZeros() const;
   1274 
   1275   /// countTrailingOnes - This function is an APInt version of the
   1276   /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
   1277   /// the number of ones from the least significant bit to the first zero bit.
   1278   /// @returns BitWidth if the value is all ones, otherwise
   1279   /// returns the number of ones from the least significant bit to the first
   1280   /// zero bit.
   1281   /// @brief Count the number of trailing one bits.
   1282   unsigned countTrailingOnes() const {
   1283     if (isSingleWord())
   1284       return CountTrailingOnes_64(VAL);
   1285     return countTrailingOnesSlowCase();
   1286   }
   1287 
   1288   /// countPopulation - This function is an APInt version of the
   1289   /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
   1290   /// of 1 bits in the APInt value.
   1291   /// @returns 0 if the value is zero, otherwise returns the number of set
   1292   /// bits.
   1293   /// @brief Count the number of bits set.
   1294   unsigned countPopulation() const {
   1295     if (isSingleWord())
   1296       return CountPopulation_64(VAL);
   1297     return countPopulationSlowCase();
   1298   }
   1299 
   1300   /// @}
   1301   /// @name Conversion Functions
   1302   /// @{
   1303   void print(raw_ostream &OS, bool isSigned) const;
   1304 
   1305   /// toString - Converts an APInt to a string and append it to Str.  Str is
   1306   /// commonly a SmallString.
   1307   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
   1308                 bool formatAsCLiteral = false) const;
   1309 
   1310   /// Considers the APInt to be unsigned and converts it into a string in the
   1311   /// radix given. The radix can be 2, 8, 10 16, or 36.
   1312   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1313     toString(Str, Radix, false, false);
   1314   }
   1315 
   1316   /// Considers the APInt to be signed and converts it into a string in the
   1317   /// radix given. The radix can be 2, 8, 10, 16, or 36.
   1318   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1319     toString(Str, Radix, true, false);
   1320   }
   1321 
   1322   /// toString - This returns the APInt as a std::string.  Note that this is an
   1323   /// inefficient method.  It is better to pass in a SmallVector/SmallString
   1324   /// to the methods above to avoid thrashing the heap for the string.
   1325   std::string toString(unsigned Radix, bool Signed) const;
   1326 
   1327 
   1328   /// @returns a byte-swapped representation of this APInt Value.
   1329   APInt byteSwap() const;
   1330 
   1331   /// @brief Converts this APInt to a double value.
   1332   double roundToDouble(bool isSigned) const;
   1333 
   1334   /// @brief Converts this unsigned APInt to a double value.
   1335   double roundToDouble() const {
   1336     return roundToDouble(false);
   1337   }
   1338 
   1339   /// @brief Converts this signed APInt to a double value.
   1340   double signedRoundToDouble() const {
   1341     return roundToDouble(true);
   1342   }
   1343 
   1344   /// The conversion does not do a translation from integer to double, it just
   1345   /// re-interprets the bits as a double. Note that it is valid to do this on
   1346   /// any bit width. Exactly 64 bits will be translated.
   1347   /// @brief Converts APInt bits to a double
   1348   double bitsToDouble() const {
   1349     union {
   1350       uint64_t I;
   1351       double D;
   1352     } T;
   1353     T.I = (isSingleWord() ? VAL : pVal[0]);
   1354     return T.D;
   1355   }
   1356 
   1357   /// The conversion does not do a translation from integer to float, it just
   1358   /// re-interprets the bits as a float. Note that it is valid to do this on
   1359   /// any bit width. Exactly 32 bits will be translated.
   1360   /// @brief Converts APInt bits to a double
   1361   float bitsToFloat() const {
   1362     union {
   1363       unsigned I;
   1364       float F;
   1365     } T;
   1366     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
   1367     return T.F;
   1368   }
   1369 
   1370   /// The conversion does not do a translation from double to integer, it just
   1371   /// re-interprets the bits of the double.
   1372   /// @brief Converts a double to APInt bits.
   1373   static APInt doubleToBits(double V) {
   1374     union {
   1375       uint64_t I;
   1376       double D;
   1377     } T;
   1378     T.D = V;
   1379     return APInt(sizeof T * CHAR_BIT, T.I);
   1380   }
   1381 
   1382   /// The conversion does not do a translation from float to integer, it just
   1383   /// re-interprets the bits of the float.
   1384   /// @brief Converts a float to APInt bits.
   1385   static APInt floatToBits(float V) {
   1386     union {
   1387       unsigned I;
   1388       float F;
   1389     } T;
   1390     T.F = V;
   1391     return APInt(sizeof T * CHAR_BIT, T.I);
   1392   }
   1393 
   1394   /// @}
   1395   /// @name Mathematics Operations
   1396   /// @{
   1397 
   1398   /// @returns the floor log base 2 of this APInt.
   1399   unsigned logBase2() const {
   1400     return BitWidth - 1 - countLeadingZeros();
   1401   }
   1402 
   1403   /// @returns the ceil log base 2 of this APInt.
   1404   unsigned ceilLogBase2() const {
   1405     return BitWidth - (*this - 1).countLeadingZeros();
   1406   }
   1407 
   1408   /// @returns the log base 2 of this APInt if its an exact power of two, -1
   1409   /// otherwise
   1410   int32_t exactLogBase2() const {
   1411     if (!isPowerOf2())
   1412       return -1;
   1413     return logBase2();
   1414   }
   1415 
   1416   /// @brief Compute the square root
   1417   APInt sqrt() const;
   1418 
   1419   /// If *this is < 0 then return -(*this), otherwise *this;
   1420   /// @brief Get the absolute value;
   1421   APInt abs() const {
   1422     if (isNegative())
   1423       return -(*this);
   1424     return *this;
   1425   }
   1426 
   1427   /// @returns the multiplicative inverse for a given modulo.
   1428   APInt multiplicativeInverse(const APInt& modulo) const;
   1429 
   1430   /// @}
   1431   /// @name Support for division by constant
   1432   /// @{
   1433 
   1434   /// Calculate the magic number for signed division by a constant.
   1435   struct ms;
   1436   ms magic() const;
   1437 
   1438   /// Calculate the magic number for unsigned division by a constant.
   1439   struct mu;
   1440   mu magicu(unsigned LeadingZeros = 0) const;
   1441 
   1442   /// @}
   1443   /// @name Building-block Operations for APInt and APFloat
   1444   /// @{
   1445 
   1446   // These building block operations operate on a representation of
   1447   // arbitrary precision, two's-complement, bignum integer values.
   1448   // They should be sufficient to implement APInt and APFloat bignum
   1449   // requirements.  Inputs are generally a pointer to the base of an
   1450   // array of integer parts, representing an unsigned bignum, and a
   1451   // count of how many parts there are.
   1452 
   1453   /// Sets the least significant part of a bignum to the input value,
   1454   /// and zeroes out higher parts.  */
   1455   static void tcSet(integerPart *, integerPart, unsigned int);
   1456 
   1457   /// Assign one bignum to another.
   1458   static void tcAssign(integerPart *, const integerPart *, unsigned int);
   1459 
   1460   /// Returns true if a bignum is zero, false otherwise.
   1461   static bool tcIsZero(const integerPart *, unsigned int);
   1462 
   1463   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
   1464   static int tcExtractBit(const integerPart *, unsigned int bit);
   1465 
   1466   /// Copy the bit vector of width srcBITS from SRC, starting at bit
   1467   /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
   1468   /// becomes the least significant bit of DST.  All high bits above
   1469   /// srcBITS in DST are zero-filled.
   1470   static void tcExtract(integerPart *, unsigned int dstCount,
   1471                         const integerPart *,
   1472                         unsigned int srcBits, unsigned int srcLSB);
   1473 
   1474   /// Set the given bit of a bignum.  Zero-based.
   1475   static void tcSetBit(integerPart *, unsigned int bit);
   1476 
   1477   /// Clear the given bit of a bignum.  Zero-based.
   1478   static void tcClearBit(integerPart *, unsigned int bit);
   1479 
   1480   /// Returns the bit number of the least or most significant set bit
   1481   /// of a number.  If the input number has no bits set -1U is
   1482   /// returned.
   1483   static unsigned int tcLSB(const integerPart *, unsigned int);
   1484   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
   1485 
   1486   /// Negate a bignum in-place.
   1487   static void tcNegate(integerPart *, unsigned int);
   1488 
   1489   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
   1490   /// carry flag.
   1491   static integerPart tcAdd(integerPart *, const integerPart *,
   1492                            integerPart carry, unsigned);
   1493 
   1494   /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
   1495   /// carry flag.
   1496   static integerPart tcSubtract(integerPart *, const integerPart *,
   1497                                 integerPart carry, unsigned);
   1498 
   1499   ///  DST += SRC * MULTIPLIER + PART   if add is true
   1500   ///  DST  = SRC * MULTIPLIER + PART   if add is false
   1501   ///
   1502   ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
   1503   ///  they must start at the same point, i.e. DST == SRC.
   1504   ///
   1505   ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
   1506   ///  returned.  Otherwise DST is filled with the least significant
   1507   ///  DSTPARTS parts of the result, and if all of the omitted higher
   1508   ///  parts were zero return zero, otherwise overflow occurred and
   1509   ///  return one.
   1510   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
   1511                             integerPart multiplier, integerPart carry,
   1512                             unsigned int srcParts, unsigned int dstParts,
   1513                             bool add);
   1514 
   1515   /// DST = LHS * RHS, where DST has the same width as the operands
   1516   /// and is filled with the least significant parts of the result.
   1517   /// Returns one if overflow occurred, otherwise zero.  DST must be
   1518   /// disjoint from both operands.
   1519   static int tcMultiply(integerPart *, const integerPart *,
   1520                         const integerPart *, unsigned);
   1521 
   1522   /// DST = LHS * RHS, where DST has width the sum of the widths of
   1523   /// the operands.  No overflow occurs.  DST must be disjoint from
   1524   /// both operands. Returns the number of parts required to hold the
   1525   /// result.
   1526   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
   1527                                      const integerPart *, unsigned, unsigned);
   1528 
   1529   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
   1530   /// Otherwise set LHS to LHS / RHS with the fractional part
   1531   /// discarded, set REMAINDER to the remainder, return zero.  i.e.
   1532   ///
   1533   ///  OLD_LHS = RHS * LHS + REMAINDER
   1534   ///
   1535   ///  SCRATCH is a bignum of the same size as the operands and result
   1536   ///  for use by the routine; its contents need not be initialized
   1537   ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
   1538   ///  distinct.
   1539   static int tcDivide(integerPart *lhs, const integerPart *rhs,
   1540                       integerPart *remainder, integerPart *scratch,
   1541                       unsigned int parts);
   1542 
   1543   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
   1544   /// There are no restrictions on COUNT.
   1545   static void tcShiftLeft(integerPart *, unsigned int parts,
   1546                           unsigned int count);
   1547 
   1548   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
   1549   /// There are no restrictions on COUNT.
   1550   static void tcShiftRight(integerPart *, unsigned int parts,
   1551                            unsigned int count);
   1552 
   1553   /// The obvious AND, OR and XOR and complement operations.
   1554   static void tcAnd(integerPart *, const integerPart *, unsigned int);
   1555   static void tcOr(integerPart *, const integerPart *, unsigned int);
   1556   static void tcXor(integerPart *, const integerPart *, unsigned int);
   1557   static void tcComplement(integerPart *, unsigned int);
   1558 
   1559   /// Comparison (unsigned) of two bignums.
   1560   static int tcCompare(const integerPart *, const integerPart *,
   1561                        unsigned int);
   1562 
   1563   /// Increment a bignum in-place.  Return the carry flag.
   1564   static integerPart tcIncrement(integerPart *, unsigned int);
   1565 
   1566   /// Set the least significant BITS and clear the rest.
   1567   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
   1568                                         unsigned int bits);
   1569 
   1570   /// @brief debug method
   1571   void dump() const;
   1572 
   1573   /// @}
   1574 };
   1575 
   1576 /// Magic data for optimising signed division by a constant.
   1577 struct APInt::ms {
   1578   APInt m;  ///< magic number
   1579   unsigned s;  ///< shift amount
   1580 };
   1581 
   1582 /// Magic data for optimising unsigned division by a constant.
   1583 struct APInt::mu {
   1584   APInt m;     ///< magic number
   1585   bool a;      ///< add indicator
   1586   unsigned s;  ///< shift amount
   1587 };
   1588 
   1589 inline bool operator==(uint64_t V1, const APInt& V2) {
   1590   return V2 == V1;
   1591 }
   1592 
   1593 inline bool operator!=(uint64_t V1, const APInt& V2) {
   1594   return V2 != V1;
   1595 }
   1596 
   1597 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
   1598   I.print(OS, true);
   1599   return OS;
   1600 }
   1601 
   1602 namespace APIntOps {
   1603 
   1604 /// @brief Determine the smaller of two APInts considered to be signed.
   1605 inline APInt smin(const APInt &A, const APInt &B) {
   1606   return A.slt(B) ? A : B;
   1607 }
   1608 
   1609 /// @brief Determine the larger of two APInts considered to be signed.
   1610 inline APInt smax(const APInt &A, const APInt &B) {
   1611   return A.sgt(B) ? A : B;
   1612 }
   1613 
   1614 /// @brief Determine the smaller of two APInts considered to be signed.
   1615 inline APInt umin(const APInt &A, const APInt &B) {
   1616   return A.ult(B) ? A : B;
   1617 }
   1618 
   1619 /// @brief Determine the larger of two APInts considered to be unsigned.
   1620 inline APInt umax(const APInt &A, const APInt &B) {
   1621   return A.ugt(B) ? A : B;
   1622 }
   1623 
   1624 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
   1625 inline bool isIntN(unsigned N, const APInt& APIVal) {
   1626   return APIVal.isIntN(N);
   1627 }
   1628 
   1629 /// @brief Check if the specified APInt has a N-bits signed integer value.
   1630 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
   1631   return APIVal.isSignedIntN(N);
   1632 }
   1633 
   1634 /// @returns true if the argument APInt value is a sequence of ones
   1635 /// starting at the least significant bit with the remainder zero.
   1636 inline bool isMask(unsigned numBits, const APInt& APIVal) {
   1637   return numBits <= APIVal.getBitWidth() &&
   1638     APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
   1639 }
   1640 
   1641 /// @returns true if the argument APInt value contains a sequence of ones
   1642 /// with the remainder zero.
   1643 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
   1644   return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
   1645 }
   1646 
   1647 /// @returns a byte-swapped representation of the specified APInt Value.
   1648 inline APInt byteSwap(const APInt& APIVal) {
   1649   return APIVal.byteSwap();
   1650 }
   1651 
   1652 /// @returns the floor log base 2 of the specified APInt value.
   1653 inline unsigned logBase2(const APInt& APIVal) {
   1654   return APIVal.logBase2();
   1655 }
   1656 
   1657 /// GreatestCommonDivisor - This function returns the greatest common
   1658 /// divisor of the two APInt values using Euclid's algorithm.
   1659 /// @returns the greatest common divisor of Val1 and Val2
   1660 /// @brief Compute GCD of two APInt values.
   1661 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
   1662 
   1663 /// Treats the APInt as an unsigned value for conversion purposes.
   1664 /// @brief Converts the given APInt to a double value.
   1665 inline double RoundAPIntToDouble(const APInt& APIVal) {
   1666   return APIVal.roundToDouble();
   1667 }
   1668 
   1669 /// Treats the APInt as a signed value for conversion purposes.
   1670 /// @brief Converts the given APInt to a double value.
   1671 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
   1672   return APIVal.signedRoundToDouble();
   1673 }
   1674 
   1675 /// @brief Converts the given APInt to a float vlalue.
   1676 inline float RoundAPIntToFloat(const APInt& APIVal) {
   1677   return float(RoundAPIntToDouble(APIVal));
   1678 }
   1679 
   1680 /// Treast the APInt as a signed value for conversion purposes.
   1681 /// @brief Converts the given APInt to a float value.
   1682 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
   1683   return float(APIVal.signedRoundToDouble());
   1684 }
   1685 
   1686 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
   1687 /// @brief Converts the given double value into a APInt.
   1688 APInt RoundDoubleToAPInt(double Double, unsigned width);
   1689 
   1690 /// RoundFloatToAPInt - Converts a float value into an APInt value.
   1691 /// @brief Converts a float value into a APInt.
   1692 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
   1693   return RoundDoubleToAPInt(double(Float), width);
   1694 }
   1695 
   1696 /// Arithmetic right-shift the APInt by shiftAmt.
   1697 /// @brief Arithmetic right-shift function.
   1698 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
   1699   return LHS.ashr(shiftAmt);
   1700 }
   1701 
   1702 /// Logical right-shift the APInt by shiftAmt.
   1703 /// @brief Logical right-shift function.
   1704 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
   1705   return LHS.lshr(shiftAmt);
   1706 }
   1707 
   1708 /// Left-shift the APInt by shiftAmt.
   1709 /// @brief Left-shift function.
   1710 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
   1711   return LHS.shl(shiftAmt);
   1712 }
   1713 
   1714 /// Signed divide APInt LHS by APInt RHS.
   1715 /// @brief Signed division function for APInt.
   1716 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
   1717   return LHS.sdiv(RHS);
   1718 }
   1719 
   1720 /// Unsigned divide APInt LHS by APInt RHS.
   1721 /// @brief Unsigned division function for APInt.
   1722 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
   1723   return LHS.udiv(RHS);
   1724 }
   1725 
   1726 /// Signed remainder operation on APInt.
   1727 /// @brief Function for signed remainder operation.
   1728 inline APInt srem(const APInt& LHS, const APInt& RHS) {
   1729   return LHS.srem(RHS);
   1730 }
   1731 
   1732 /// Unsigned remainder operation on APInt.
   1733 /// @brief Function for unsigned remainder operation.
   1734 inline APInt urem(const APInt& LHS, const APInt& RHS) {
   1735   return LHS.urem(RHS);
   1736 }
   1737 
   1738 /// Performs multiplication on APInt values.
   1739 /// @brief Function for multiplication operation.
   1740 inline APInt mul(const APInt& LHS, const APInt& RHS) {
   1741   return LHS * RHS;
   1742 }
   1743 
   1744 /// Performs addition on APInt values.
   1745 /// @brief Function for addition operation.
   1746 inline APInt add(const APInt& LHS, const APInt& RHS) {
   1747   return LHS + RHS;
   1748 }
   1749 
   1750 /// Performs subtraction on APInt values.
   1751 /// @brief Function for subtraction operation.
   1752 inline APInt sub(const APInt& LHS, const APInt& RHS) {
   1753   return LHS - RHS;
   1754 }
   1755 
   1756 /// Performs bitwise AND operation on APInt LHS and
   1757 /// APInt RHS.
   1758 /// @brief Bitwise AND function for APInt.
   1759 inline APInt And(const APInt& LHS, const APInt& RHS) {
   1760   return LHS & RHS;
   1761 }
   1762 
   1763 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
   1764 /// @brief Bitwise OR function for APInt.
   1765 inline APInt Or(const APInt& LHS, const APInt& RHS) {
   1766   return LHS | RHS;
   1767 }
   1768 
   1769 /// Performs bitwise XOR operation on APInt.
   1770 /// @brief Bitwise XOR function for APInt.
   1771 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
   1772   return LHS ^ RHS;
   1773 }
   1774 
   1775 /// Performs a bitwise complement operation on APInt.
   1776 /// @brief Bitwise complement function.
   1777 inline APInt Not(const APInt& APIVal) {
   1778   return ~APIVal;
   1779 }
   1780 
   1781 } // End of APIntOps namespace
   1782 
   1783 } // End of llvm namespace
   1784 
   1785 #endif
   1786