Home | History | Annotate | Download | only in ADT
      1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines classes to implement an intrusive doubly linked list class
     11 // (i.e. each node of the list must contain a next and previous field for the
     12 // list.
     13 //
     14 // The ilist_traits trait class is used to gain access to the next and previous
     15 // fields of the node type that the list is instantiated with.  If it is not
     16 // specialized, the list defaults to using the getPrev(), getNext() method calls
     17 // to get the next and previous pointers.
     18 //
     19 // The ilist class itself, should be a plug in replacement for list, assuming
     20 // that the nodes contain next/prev pointers.  This list replacement does not
     21 // provide a constant time size() method, so be careful to use empty() when you
     22 // really want to know if it's empty.
     23 //
     24 // The ilist class is implemented by allocating a 'tail' node when the list is
     25 // created (using ilist_traits<>::createSentinel()).  This tail node is
     26 // absolutely required because the user must be able to compute end()-1. Because
     27 // of this, users of the direct next/prev links will see an extra link on the
     28 // end of the list, which should be ignored.
     29 //
     30 // Requirements for a user of this list:
     31 //
     32 //   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
     33 //      ilist_traits to provide an alternate way of getting and setting next and
     34 //      prev links.
     35 //
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_ADT_ILIST_H
     39 #define LLVM_ADT_ILIST_H
     40 
     41 #include <algorithm>
     42 #include <cassert>
     43 #include <cstddef>
     44 #include <iterator>
     45 
     46 namespace llvm {
     47 
     48 template<typename NodeTy, typename Traits> class iplist;
     49 template<typename NodeTy> class ilist_iterator;
     50 
     51 /// ilist_nextprev_traits - A fragment for template traits for intrusive list
     52 /// that provides default next/prev implementations for common operations.
     53 ///
     54 template<typename NodeTy>
     55 struct ilist_nextprev_traits {
     56   static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
     57   static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
     58   static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
     59   static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
     60 
     61   static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
     62   static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
     63 };
     64 
     65 template<typename NodeTy>
     66 struct ilist_traits;
     67 
     68 /// ilist_sentinel_traits - A fragment for template traits for intrusive list
     69 /// that provides default sentinel implementations for common operations.
     70 ///
     71 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
     72 /// strategy. The sentinel is stored in the prev field of ilist's Head.
     73 ///
     74 template<typename NodeTy>
     75 struct ilist_sentinel_traits {
     76   /// createSentinel - create the dynamic sentinel
     77   static NodeTy *createSentinel() { return new NodeTy(); }
     78 
     79   /// destroySentinel - deallocate the dynamic sentinel
     80   static void destroySentinel(NodeTy *N) { delete N; }
     81 
     82   /// provideInitialHead - when constructing an ilist, provide a starting
     83   /// value for its Head
     84   /// @return null node to indicate that it needs to be allocated later
     85   static NodeTy *provideInitialHead() { return 0; }
     86 
     87   /// ensureHead - make sure that Head is either already
     88   /// initialized or assigned a fresh sentinel
     89   /// @return the sentinel
     90   static NodeTy *ensureHead(NodeTy *&Head) {
     91     if (!Head) {
     92       Head = ilist_traits<NodeTy>::createSentinel();
     93       ilist_traits<NodeTy>::noteHead(Head, Head);
     94       ilist_traits<NodeTy>::setNext(Head, 0);
     95       return Head;
     96     }
     97     return ilist_traits<NodeTy>::getPrev(Head);
     98   }
     99 
    100   /// noteHead - stash the sentinel into its default location
    101   static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
    102     ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
    103   }
    104 };
    105 
    106 /// ilist_node_traits - A fragment for template traits for intrusive list
    107 /// that provides default node related operations.
    108 ///
    109 template<typename NodeTy>
    110 struct ilist_node_traits {
    111   static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
    112   static void deleteNode(NodeTy *V) { delete V; }
    113 
    114   void addNodeToList(NodeTy *) {}
    115   void removeNodeFromList(NodeTy *) {}
    116   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
    117                              ilist_iterator<NodeTy> /*first*/,
    118                              ilist_iterator<NodeTy> /*last*/) {}
    119 };
    120 
    121 /// ilist_default_traits - Default template traits for intrusive list.
    122 /// By inheriting from this, you can easily use default implementations
    123 /// for all common operations.
    124 ///
    125 template<typename NodeTy>
    126 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
    127                               public ilist_sentinel_traits<NodeTy>,
    128                               public ilist_node_traits<NodeTy> {
    129 };
    130 
    131 // Template traits for intrusive list.  By specializing this template class, you
    132 // can change what next/prev fields are used to store the links...
    133 template<typename NodeTy>
    134 struct ilist_traits : public ilist_default_traits<NodeTy> {};
    135 
    136 // Const traits are the same as nonconst traits...
    137 template<typename Ty>
    138 struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
    139 
    140 //===----------------------------------------------------------------------===//
    141 // ilist_iterator<Node> - Iterator for intrusive list.
    142 //
    143 template<typename NodeTy>
    144 class ilist_iterator
    145   : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
    146 
    147 public:
    148   typedef ilist_traits<NodeTy> Traits;
    149   typedef std::iterator<std::bidirectional_iterator_tag,
    150                         NodeTy, ptrdiff_t> super;
    151 
    152   typedef typename super::value_type value_type;
    153   typedef typename super::difference_type difference_type;
    154   typedef typename super::pointer pointer;
    155   typedef typename super::reference reference;
    156 private:
    157   pointer NodePtr;
    158 
    159   // ilist_iterator is not a random-access iterator, but it has an
    160   // implicit conversion to pointer-type, which is. Declare (but
    161   // don't define) these functions as private to help catch
    162   // accidental misuse.
    163   void operator[](difference_type) const;
    164   void operator+(difference_type) const;
    165   void operator-(difference_type) const;
    166   void operator+=(difference_type) const;
    167   void operator-=(difference_type) const;
    168   template<class T> void operator<(T) const;
    169   template<class T> void operator<=(T) const;
    170   template<class T> void operator>(T) const;
    171   template<class T> void operator>=(T) const;
    172   template<class T> void operator-(T) const;
    173 public:
    174 
    175   ilist_iterator(pointer NP) : NodePtr(NP) {}
    176   ilist_iterator(reference NR) : NodePtr(&NR) {}
    177   ilist_iterator() : NodePtr(0) {}
    178 
    179   // This is templated so that we can allow constructing a const iterator from
    180   // a nonconst iterator...
    181   template<class node_ty>
    182   ilist_iterator(const ilist_iterator<node_ty> &RHS)
    183     : NodePtr(RHS.getNodePtrUnchecked()) {}
    184 
    185   // This is templated so that we can allow assigning to a const iterator from
    186   // a nonconst iterator...
    187   template<class node_ty>
    188   const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
    189     NodePtr = RHS.getNodePtrUnchecked();
    190     return *this;
    191   }
    192 
    193   // Accessors...
    194   operator pointer() const {
    195     return NodePtr;
    196   }
    197 
    198   reference operator*() const {
    199     return *NodePtr;
    200   }
    201   pointer operator->() const { return &operator*(); }
    202 
    203   // Comparison operators
    204   bool operator==(const ilist_iterator &RHS) const {
    205     return NodePtr == RHS.NodePtr;
    206   }
    207   bool operator!=(const ilist_iterator &RHS) const {
    208     return NodePtr != RHS.NodePtr;
    209   }
    210 
    211   // Increment and decrement operators...
    212   ilist_iterator &operator--() {      // predecrement - Back up
    213     NodePtr = Traits::getPrev(NodePtr);
    214     assert(NodePtr && "--'d off the beginning of an ilist!");
    215     return *this;
    216   }
    217   ilist_iterator &operator++() {      // preincrement - Advance
    218     NodePtr = Traits::getNext(NodePtr);
    219     return *this;
    220   }
    221   ilist_iterator operator--(int) {    // postdecrement operators...
    222     ilist_iterator tmp = *this;
    223     --*this;
    224     return tmp;
    225   }
    226   ilist_iterator operator++(int) {    // postincrement operators...
    227     ilist_iterator tmp = *this;
    228     ++*this;
    229     return tmp;
    230   }
    231 
    232   // Internal interface, do not use...
    233   pointer getNodePtrUnchecked() const { return NodePtr; }
    234 };
    235 
    236 // do not implement. this is to catch errors when people try to use
    237 // them as random access iterators
    238 template<typename T>
    239 void operator-(int, ilist_iterator<T>);
    240 template<typename T>
    241 void operator-(ilist_iterator<T>,int);
    242 
    243 template<typename T>
    244 void operator+(int, ilist_iterator<T>);
    245 template<typename T>
    246 void operator+(ilist_iterator<T>,int);
    247 
    248 // operator!=/operator== - Allow mixed comparisons without dereferencing
    249 // the iterator, which could very likely be pointing to end().
    250 template<typename T>
    251 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
    252   return LHS != RHS.getNodePtrUnchecked();
    253 }
    254 template<typename T>
    255 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
    256   return LHS == RHS.getNodePtrUnchecked();
    257 }
    258 template<typename T>
    259 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
    260   return LHS != RHS.getNodePtrUnchecked();
    261 }
    262 template<typename T>
    263 bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
    264   return LHS == RHS.getNodePtrUnchecked();
    265 }
    266 
    267 
    268 // Allow ilist_iterators to convert into pointers to a node automatically when
    269 // used by the dyn_cast, cast, isa mechanisms...
    270 
    271 template<typename From> struct simplify_type;
    272 
    273 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
    274   typedef NodeTy* SimpleType;
    275 
    276   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
    277     return &*Node;
    278   }
    279 };
    280 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
    281   typedef NodeTy* SimpleType;
    282 
    283   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
    284     return &*Node;
    285   }
    286 };
    287 
    288 
    289 //===----------------------------------------------------------------------===//
    290 //
    291 /// iplist - The subset of list functionality that can safely be used on nodes
    292 /// of polymorphic types, i.e. a heterogeneous list with a common base class that
    293 /// holds the next/prev pointers.  The only state of the list itself is a single
    294 /// pointer to the head of the list.
    295 ///
    296 /// This list can be in one of three interesting states:
    297 /// 1. The list may be completely unconstructed.  In this case, the head
    298 ///    pointer is null.  When in this form, any query for an iterator (e.g.
    299 ///    begin() or end()) causes the list to transparently change to state #2.
    300 /// 2. The list may be empty, but contain a sentinel for the end iterator. This
    301 ///    sentinel is created by the Traits::createSentinel method and is a link
    302 ///    in the list.  When the list is empty, the pointer in the iplist points
    303 ///    to the sentinel.  Once the sentinel is constructed, it
    304 ///    is not destroyed until the list is.
    305 /// 3. The list may contain actual objects in it, which are stored as a doubly
    306 ///    linked list of nodes.  One invariant of the list is that the predecessor
    307 ///    of the first node in the list always points to the last node in the list,
    308 ///    and the successor pointer for the sentinel (which always stays at the
    309 ///    end of the list) is always null.
    310 ///
    311 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
    312 class iplist : public Traits {
    313   mutable NodeTy *Head;
    314 
    315   // Use the prev node pointer of 'head' as the tail pointer.  This is really a
    316   // circularly linked list where we snip the 'next' link from the sentinel node
    317   // back to the first node in the list (to preserve assertions about going off
    318   // the end of the list).
    319   NodeTy *getTail() { return this->ensureHead(Head); }
    320   const NodeTy *getTail() const { return this->ensureHead(Head); }
    321   void setTail(NodeTy *N) const { this->noteHead(Head, N); }
    322 
    323   /// CreateLazySentinel - This method verifies whether the sentinel for the
    324   /// list has been created and lazily makes it if not.
    325   void CreateLazySentinel() const {
    326     this->ensureHead(Head);
    327   }
    328 
    329   static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
    330   static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
    331 
    332   // No fundamental reason why iplist can't be copyable, but the default
    333   // copy/copy-assign won't do.
    334   iplist(const iplist &);         // do not implement
    335   void operator=(const iplist &); // do not implement
    336 
    337 public:
    338   typedef NodeTy *pointer;
    339   typedef const NodeTy *const_pointer;
    340   typedef NodeTy &reference;
    341   typedef const NodeTy &const_reference;
    342   typedef NodeTy value_type;
    343   typedef ilist_iterator<NodeTy> iterator;
    344   typedef ilist_iterator<const NodeTy> const_iterator;
    345   typedef size_t size_type;
    346   typedef ptrdiff_t difference_type;
    347   typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
    348   typedef std::reverse_iterator<iterator>  reverse_iterator;
    349 
    350   iplist() : Head(this->provideInitialHead()) {}
    351   ~iplist() {
    352     if (!Head) return;
    353     clear();
    354     Traits::destroySentinel(getTail());
    355   }
    356 
    357   // Iterator creation methods.
    358   iterator begin() {
    359     CreateLazySentinel();
    360     return iterator(Head);
    361   }
    362   const_iterator begin() const {
    363     CreateLazySentinel();
    364     return const_iterator(Head);
    365   }
    366   iterator end() {
    367     CreateLazySentinel();
    368     return iterator(getTail());
    369   }
    370   const_iterator end() const {
    371     CreateLazySentinel();
    372     return const_iterator(getTail());
    373   }
    374 
    375   // reverse iterator creation methods.
    376   reverse_iterator rbegin()            { return reverse_iterator(end()); }
    377   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
    378   reverse_iterator rend()              { return reverse_iterator(begin()); }
    379   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
    380 
    381 
    382   // Miscellaneous inspection routines.
    383   size_type max_size() const { return size_type(-1); }
    384   bool empty() const { return Head == 0 || Head == getTail(); }
    385 
    386   // Front and back accessor functions...
    387   reference front() {
    388     assert(!empty() && "Called front() on empty list!");
    389     return *Head;
    390   }
    391   const_reference front() const {
    392     assert(!empty() && "Called front() on empty list!");
    393     return *Head;
    394   }
    395   reference back() {
    396     assert(!empty() && "Called back() on empty list!");
    397     return *this->getPrev(getTail());
    398   }
    399   const_reference back() const {
    400     assert(!empty() && "Called back() on empty list!");
    401     return *this->getPrev(getTail());
    402   }
    403 
    404   void swap(iplist &RHS) {
    405     assert(0 && "Swap does not use list traits callback correctly yet!");
    406     std::swap(Head, RHS.Head);
    407   }
    408 
    409   iterator insert(iterator where, NodeTy *New) {
    410     NodeTy *CurNode = where.getNodePtrUnchecked();
    411     NodeTy *PrevNode = this->getPrev(CurNode);
    412     this->setNext(New, CurNode);
    413     this->setPrev(New, PrevNode);
    414 
    415     if (CurNode != Head)  // Is PrevNode off the beginning of the list?
    416       this->setNext(PrevNode, New);
    417     else
    418       Head = New;
    419     this->setPrev(CurNode, New);
    420 
    421     this->addNodeToList(New);  // Notify traits that we added a node...
    422     return New;
    423   }
    424 
    425   iterator insertAfter(iterator where, NodeTy *New) {
    426     if (empty())
    427       return insert(begin(), New);
    428     else
    429       return insert(++where, New);
    430   }
    431 
    432   NodeTy *remove(iterator &IT) {
    433     assert(IT != end() && "Cannot remove end of list!");
    434     NodeTy *Node = &*IT;
    435     NodeTy *NextNode = this->getNext(Node);
    436     NodeTy *PrevNode = this->getPrev(Node);
    437 
    438     if (Node != Head)  // Is PrevNode off the beginning of the list?
    439       this->setNext(PrevNode, NextNode);
    440     else
    441       Head = NextNode;
    442     this->setPrev(NextNode, PrevNode);
    443     IT = NextNode;
    444     this->removeNodeFromList(Node);  // Notify traits that we removed a node...
    445 
    446     // Set the next/prev pointers of the current node to null.  This isn't
    447     // strictly required, but this catches errors where a node is removed from
    448     // an ilist (and potentially deleted) with iterators still pointing at it.
    449     // When those iterators are incremented or decremented, they will assert on
    450     // the null next/prev pointer instead of "usually working".
    451     this->setNext(Node, 0);
    452     this->setPrev(Node, 0);
    453     return Node;
    454   }
    455 
    456   NodeTy *remove(const iterator &IT) {
    457     iterator MutIt = IT;
    458     return remove(MutIt);
    459   }
    460 
    461   // erase - remove a node from the controlled sequence... and delete it.
    462   iterator erase(iterator where) {
    463     this->deleteNode(remove(where));
    464     return where;
    465   }
    466 
    467 
    468 private:
    469   // transfer - The heart of the splice function.  Move linked list nodes from
    470   // [first, last) into position.
    471   //
    472   void transfer(iterator position, iplist &L2, iterator first, iterator last) {
    473     assert(first != last && "Should be checked by callers");
    474 
    475     if (position != last) {
    476       // Note: we have to be careful about the case when we move the first node
    477       // in the list.  This node is the list sentinel node and we can't move it.
    478       NodeTy *ThisSentinel = getTail();
    479       setTail(0);
    480       NodeTy *L2Sentinel = L2.getTail();
    481       L2.setTail(0);
    482 
    483       // Remove [first, last) from its old position.
    484       NodeTy *First = &*first, *Prev = this->getPrev(First);
    485       NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
    486       if (Prev)
    487         this->setNext(Prev, Next);
    488       else
    489         L2.Head = Next;
    490       this->setPrev(Next, Prev);
    491 
    492       // Splice [first, last) into its new position.
    493       NodeTy *PosNext = position.getNodePtrUnchecked();
    494       NodeTy *PosPrev = this->getPrev(PosNext);
    495 
    496       // Fix head of list...
    497       if (PosPrev)
    498         this->setNext(PosPrev, First);
    499       else
    500         Head = First;
    501       this->setPrev(First, PosPrev);
    502 
    503       // Fix end of list...
    504       this->setNext(Last, PosNext);
    505       this->setPrev(PosNext, Last);
    506 
    507       this->transferNodesFromList(L2, First, PosNext);
    508 
    509       // Now that everything is set, restore the pointers to the list sentinels.
    510       L2.setTail(L2Sentinel);
    511       setTail(ThisSentinel);
    512     }
    513   }
    514 
    515 public:
    516 
    517   //===----------------------------------------------------------------------===
    518   // Functionality derived from other functions defined above...
    519   //
    520 
    521   size_type size() const {
    522     if (Head == 0) return 0; // Don't require construction of sentinel if empty.
    523     return std::distance(begin(), end());
    524   }
    525 
    526   iterator erase(iterator first, iterator last) {
    527     while (first != last)
    528       first = erase(first);
    529     return last;
    530   }
    531 
    532   void clear() { if (Head) erase(begin(), end()); }
    533 
    534   // Front and back inserters...
    535   void push_front(NodeTy *val) { insert(begin(), val); }
    536   void push_back(NodeTy *val) { insert(end(), val); }
    537   void pop_front() {
    538     assert(!empty() && "pop_front() on empty list!");
    539     erase(begin());
    540   }
    541   void pop_back() {
    542     assert(!empty() && "pop_back() on empty list!");
    543     iterator t = end(); erase(--t);
    544   }
    545 
    546   // Special forms of insert...
    547   template<class InIt> void insert(iterator where, InIt first, InIt last) {
    548     for (; first != last; ++first) insert(where, *first);
    549   }
    550 
    551   // Splice members - defined in terms of transfer...
    552   void splice(iterator where, iplist &L2) {
    553     if (!L2.empty())
    554       transfer(where, L2, L2.begin(), L2.end());
    555   }
    556   void splice(iterator where, iplist &L2, iterator first) {
    557     iterator last = first; ++last;
    558     if (where == first || where == last) return; // No change
    559     transfer(where, L2, first, last);
    560   }
    561   void splice(iterator where, iplist &L2, iterator first, iterator last) {
    562     if (first != last) transfer(where, L2, first, last);
    563   }
    564 
    565 
    566 
    567   //===----------------------------------------------------------------------===
    568   // High-Level Functionality that shouldn't really be here, but is part of list
    569   //
    570 
    571   // These two functions are actually called remove/remove_if in list<>, but
    572   // they actually do the job of erase, rename them accordingly.
    573   //
    574   void erase(const NodeTy &val) {
    575     for (iterator I = begin(), E = end(); I != E; ) {
    576       iterator next = I; ++next;
    577       if (*I == val) erase(I);
    578       I = next;
    579     }
    580   }
    581   template<class Pr1> void erase_if(Pr1 pred) {
    582     for (iterator I = begin(), E = end(); I != E; ) {
    583       iterator next = I; ++next;
    584       if (pred(*I)) erase(I);
    585       I = next;
    586     }
    587   }
    588 
    589   template<class Pr2> void unique(Pr2 pred) {
    590     if (empty()) return;
    591     for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
    592       if (pred(*I))
    593         erase(Next);
    594       else
    595         I = Next;
    596       Next = I;
    597     }
    598   }
    599   void unique() { unique(op_equal); }
    600 
    601   template<class Pr3> void merge(iplist &right, Pr3 pred) {
    602     iterator first1 = begin(), last1 = end();
    603     iterator first2 = right.begin(), last2 = right.end();
    604     while (first1 != last1 && first2 != last2)
    605       if (pred(*first2, *first1)) {
    606         iterator next = first2;
    607         transfer(first1, right, first2, ++next);
    608         first2 = next;
    609       } else {
    610         ++first1;
    611       }
    612     if (first2 != last2) transfer(last1, right, first2, last2);
    613   }
    614   void merge(iplist &right) { return merge(right, op_less); }
    615 
    616   template<class Pr3> void sort(Pr3 pred);
    617   void sort() { sort(op_less); }
    618 };
    619 
    620 
    621 template<typename NodeTy>
    622 struct ilist : public iplist<NodeTy> {
    623   typedef typename iplist<NodeTy>::size_type size_type;
    624   typedef typename iplist<NodeTy>::iterator iterator;
    625 
    626   ilist() {}
    627   ilist(const ilist &right) {
    628     insert(this->begin(), right.begin(), right.end());
    629   }
    630   explicit ilist(size_type count) {
    631     insert(this->begin(), count, NodeTy());
    632   }
    633   ilist(size_type count, const NodeTy &val) {
    634     insert(this->begin(), count, val);
    635   }
    636   template<class InIt> ilist(InIt first, InIt last) {
    637     insert(this->begin(), first, last);
    638   }
    639 
    640   // bring hidden functions into scope
    641   using iplist<NodeTy>::insert;
    642   using iplist<NodeTy>::push_front;
    643   using iplist<NodeTy>::push_back;
    644 
    645   // Main implementation here - Insert for a node passed by value...
    646   iterator insert(iterator where, const NodeTy &val) {
    647     return insert(where, this->createNode(val));
    648   }
    649 
    650 
    651   // Front and back inserters...
    652   void push_front(const NodeTy &val) { insert(this->begin(), val); }
    653   void push_back(const NodeTy &val) { insert(this->end(), val); }
    654 
    655   void insert(iterator where, size_type count, const NodeTy &val) {
    656     for (; count != 0; --count) insert(where, val);
    657   }
    658 
    659   // Assign special forms...
    660   void assign(size_type count, const NodeTy &val) {
    661     iterator I = this->begin();
    662     for (; I != this->end() && count != 0; ++I, --count)
    663       *I = val;
    664     if (count != 0)
    665       insert(this->end(), val, val);
    666     else
    667       erase(I, this->end());
    668   }
    669   template<class InIt> void assign(InIt first1, InIt last1) {
    670     iterator first2 = this->begin(), last2 = this->end();
    671     for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
    672       *first1 = *first2;
    673     if (first2 == last2)
    674       erase(first1, last1);
    675     else
    676       insert(last1, first2, last2);
    677   }
    678 
    679 
    680   // Resize members...
    681   void resize(size_type newsize, NodeTy val) {
    682     iterator i = this->begin();
    683     size_type len = 0;
    684     for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
    685 
    686     if (len == newsize)
    687       erase(i, this->end());
    688     else                                          // i == end()
    689       insert(this->end(), newsize - len, val);
    690   }
    691   void resize(size_type newsize) { resize(newsize, NodeTy()); }
    692 };
    693 
    694 } // End llvm namespace
    695 
    696 namespace std {
    697   // Ensure that swap uses the fast list swap...
    698   template<class Ty>
    699   void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
    700     Left.swap(Right);
    701   }
    702 }  // End 'std' extensions...
    703 
    704 #endif // LLVM_ADT_ILIST_H
    705