Home | History | Annotate | Download | only in os
      1 /*
      2  * Copyright (C) 2006 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package android.os;
     18 
     19 import android.text.TextUtils;
     20 import android.util.Log;
     21 import android.util.SparseArray;
     22 import android.util.SparseBooleanArray;
     23 
     24 import java.io.ByteArrayInputStream;
     25 import java.io.ByteArrayOutputStream;
     26 import java.io.FileDescriptor;
     27 import java.io.FileNotFoundException;
     28 import java.io.IOException;
     29 import java.io.ObjectInputStream;
     30 import java.io.ObjectOutputStream;
     31 import java.io.Serializable;
     32 import java.lang.reflect.Field;
     33 import java.util.ArrayList;
     34 import java.util.Arrays;
     35 import java.util.HashMap;
     36 import java.util.List;
     37 import java.util.Map;
     38 import java.util.Set;
     39 
     40 /**
     41  * Container for a message (data and object references) that can
     42  * be sent through an IBinder.  A Parcel can contain both flattened data
     43  * that will be unflattened on the other side of the IPC (using the various
     44  * methods here for writing specific types, or the general
     45  * {@link Parcelable} interface), and references to live {@link IBinder}
     46  * objects that will result in the other side receiving a proxy IBinder
     47  * connected with the original IBinder in the Parcel.
     48  *
     49  * <p class="note">Parcel is <strong>not</strong> a general-purpose
     50  * serialization mechanism.  This class (and the corresponding
     51  * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
     52  * designed as a high-performance IPC transport.  As such, it is not
     53  * appropriate to place any Parcel data in to persistent storage: changes
     54  * in the underlying implementation of any of the data in the Parcel can
     55  * render older data unreadable.</p>
     56  *
     57  * <p>The bulk of the Parcel API revolves around reading and writing data
     58  * of various types.  There are six major classes of such functions available.</p>
     59  *
     60  * <h3>Primitives</h3>
     61  *
     62  * <p>The most basic data functions are for writing and reading primitive
     63  * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
     64  * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
     65  * {@link #readInt}, {@link #writeLong}, {@link #readLong},
     66  * {@link #writeString}, {@link #readString}.  Most other
     67  * data operations are built on top of these.  The given data is written and
     68  * read using the endianess of the host CPU.</p>
     69  *
     70  * <h3>Primitive Arrays</h3>
     71  *
     72  * <p>There are a variety of methods for reading and writing raw arrays
     73  * of primitive objects, which generally result in writing a 4-byte length
     74  * followed by the primitive data items.  The methods for reading can either
     75  * read the data into an existing array, or create and return a new array.
     76  * These available types are:</p>
     77  *
     78  * <ul>
     79  * <li> {@link #writeBooleanArray(boolean[])},
     80  * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
     81  * <li> {@link #writeByteArray(byte[])},
     82  * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
     83  * {@link #createByteArray()}
     84  * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
     85  * {@link #createCharArray()}
     86  * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
     87  * {@link #createDoubleArray()}
     88  * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
     89  * {@link #createFloatArray()}
     90  * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
     91  * {@link #createIntArray()}
     92  * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
     93  * {@link #createLongArray()}
     94  * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
     95  * {@link #createStringArray()}.
     96  * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
     97  * {@link #readSparseBooleanArray()}.
     98  * </ul>
     99  *
    100  * <h3>Parcelables</h3>
    101  *
    102  * <p>The {@link Parcelable} protocol provides an extremely efficient (but
    103  * low-level) protocol for objects to write and read themselves from Parcels.
    104  * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
    105  * and {@link #readParcelable(ClassLoader)} or
    106  * {@link #writeParcelableArray} and
    107  * {@link #readParcelableArray(ClassLoader)} to write or read.  These
    108  * methods write both the class type and its data to the Parcel, allowing
    109  * that class to be reconstructed from the appropriate class loader when
    110  * later reading.</p>
    111  *
    112  * <p>There are also some methods that provide a more efficient way to work
    113  * with Parcelables: {@link #writeTypedArray},
    114  * {@link #writeTypedList(List)},
    115  * {@link #readTypedArray} and {@link #readTypedList}.  These methods
    116  * do not write the class information of the original object: instead, the
    117  * caller of the read function must know what type to expect and pass in the
    118  * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
    119  * properly construct the new object and read its data.  (To more efficient
    120  * write and read a single Parceable object, you can directly call
    121  * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
    122  * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
    123  * yourself.)</p>
    124  *
    125  * <h3>Bundles</h3>
    126  *
    127  * <p>A special type-safe container, called {@link Bundle}, is available
    128  * for key/value maps of heterogeneous values.  This has many optimizations
    129  * for improved performance when reading and writing data, and its type-safe
    130  * API avoids difficult to debug type errors when finally marshalling the
    131  * data contents into a Parcel.  The methods to use are
    132  * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
    133  * {@link #readBundle(ClassLoader)}.
    134  *
    135  * <h3>Active Objects</h3>
    136  *
    137  * <p>An unusual feature of Parcel is the ability to read and write active
    138  * objects.  For these objects the actual contents of the object is not
    139  * written, rather a special token referencing the object is written.  When
    140  * reading the object back from the Parcel, you do not get a new instance of
    141  * the object, but rather a handle that operates on the exact same object that
    142  * was originally written.  There are two forms of active objects available.</p>
    143  *
    144  * <p>{@link Binder} objects are a core facility of Android's general cross-process
    145  * communication system.  The {@link IBinder} interface describes an abstract
    146  * protocol with a Binder object.  Any such interface can be written in to
    147  * a Parcel, and upon reading you will receive either the original object
    148  * implementing that interface or a special proxy implementation
    149  * that communicates calls back to the original object.  The methods to use are
    150  * {@link #writeStrongBinder(IBinder)},
    151  * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
    152  * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
    153  * {@link #createBinderArray()},
    154  * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
    155  * {@link #createBinderArrayList()}.</p>
    156  *
    157  * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
    158  * can be written and {@link ParcelFileDescriptor} objects returned to operate
    159  * on the original file descriptor.  The returned file descriptor is a dup
    160  * of the original file descriptor: the object and fd is different, but
    161  * operating on the same underlying file stream, with the same position, etc.
    162  * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
    163  * {@link #readFileDescriptor()}.
    164  *
    165  * <h3>Untyped Containers</h3>
    166  *
    167  * <p>A final class of methods are for writing and reading standard Java
    168  * containers of arbitrary types.  These all revolve around the
    169  * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
    170  * which define the types of objects allowed.  The container methods are
    171  * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
    172  * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
    173  * {@link #readArrayList(ClassLoader)},
    174  * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
    175  * {@link #writeSparseArray(SparseArray)},
    176  * {@link #readSparseArray(ClassLoader)}.
    177  */
    178 public final class Parcel {
    179     private static final boolean DEBUG_RECYCLE = false;
    180     private static final String TAG = "Parcel";
    181 
    182     @SuppressWarnings({"UnusedDeclaration"})
    183     private int mNativePtr; // used by native code
    184 
    185     /**
    186      * Flag indicating if {@link #mNativePtr} was allocated by this object,
    187      * indicating that we're responsible for its lifecycle.
    188      */
    189     private boolean mOwnsNativeParcelObject;
    190 
    191     private RuntimeException mStack;
    192 
    193     private static final int POOL_SIZE = 6;
    194     private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
    195     private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
    196 
    197     private static final int VAL_NULL = -1;
    198     private static final int VAL_STRING = 0;
    199     private static final int VAL_INTEGER = 1;
    200     private static final int VAL_MAP = 2;
    201     private static final int VAL_BUNDLE = 3;
    202     private static final int VAL_PARCELABLE = 4;
    203     private static final int VAL_SHORT = 5;
    204     private static final int VAL_LONG = 6;
    205     private static final int VAL_FLOAT = 7;
    206     private static final int VAL_DOUBLE = 8;
    207     private static final int VAL_BOOLEAN = 9;
    208     private static final int VAL_CHARSEQUENCE = 10;
    209     private static final int VAL_LIST  = 11;
    210     private static final int VAL_SPARSEARRAY = 12;
    211     private static final int VAL_BYTEARRAY = 13;
    212     private static final int VAL_STRINGARRAY = 14;
    213     private static final int VAL_IBINDER = 15;
    214     private static final int VAL_PARCELABLEARRAY = 16;
    215     private static final int VAL_OBJECTARRAY = 17;
    216     private static final int VAL_INTARRAY = 18;
    217     private static final int VAL_LONGARRAY = 19;
    218     private static final int VAL_BYTE = 20;
    219     private static final int VAL_SERIALIZABLE = 21;
    220     private static final int VAL_SPARSEBOOLEANARRAY = 22;
    221     private static final int VAL_BOOLEANARRAY = 23;
    222     private static final int VAL_CHARSEQUENCEARRAY = 24;
    223 
    224     // The initial int32 in a Binder call's reply Parcel header:
    225     private static final int EX_SECURITY = -1;
    226     private static final int EX_BAD_PARCELABLE = -2;
    227     private static final int EX_ILLEGAL_ARGUMENT = -3;
    228     private static final int EX_NULL_POINTER = -4;
    229     private static final int EX_ILLEGAL_STATE = -5;
    230     private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
    231 
    232     private static native int nativeDataSize(int nativePtr);
    233     private static native int nativeDataAvail(int nativePtr);
    234     private static native int nativeDataPosition(int nativePtr);
    235     private static native int nativeDataCapacity(int nativePtr);
    236     private static native void nativeSetDataSize(int nativePtr, int size);
    237     private static native void nativeSetDataPosition(int nativePtr, int pos);
    238     private static native void nativeSetDataCapacity(int nativePtr, int size);
    239 
    240     private static native boolean nativePushAllowFds(int nativePtr, boolean allowFds);
    241     private static native void nativeRestoreAllowFds(int nativePtr, boolean lastValue);
    242 
    243     private static native void nativeWriteByteArray(int nativePtr, byte[] b, int offset, int len);
    244     private static native void nativeWriteInt(int nativePtr, int val);
    245     private static native void nativeWriteLong(int nativePtr, long val);
    246     private static native void nativeWriteFloat(int nativePtr, float val);
    247     private static native void nativeWriteDouble(int nativePtr, double val);
    248     private static native void nativeWriteString(int nativePtr, String val);
    249     private static native void nativeWriteStrongBinder(int nativePtr, IBinder val);
    250     private static native void nativeWriteFileDescriptor(int nativePtr, FileDescriptor val);
    251 
    252     private static native byte[] nativeCreateByteArray(int nativePtr);
    253     private static native int nativeReadInt(int nativePtr);
    254     private static native long nativeReadLong(int nativePtr);
    255     private static native float nativeReadFloat(int nativePtr);
    256     private static native double nativeReadDouble(int nativePtr);
    257     private static native String nativeReadString(int nativePtr);
    258     private static native IBinder nativeReadStrongBinder(int nativePtr);
    259     private static native FileDescriptor nativeReadFileDescriptor(int nativePtr);
    260 
    261     private static native int nativeCreate();
    262     private static native void nativeFreeBuffer(int nativePtr);
    263     private static native void nativeDestroy(int nativePtr);
    264 
    265     private static native byte[] nativeMarshall(int nativePtr);
    266     private static native void nativeUnmarshall(
    267             int nativePtr, byte[] data, int offest, int length);
    268     private static native void nativeAppendFrom(
    269             int thisNativePtr, int otherNativePtr, int offset, int length);
    270     private static native boolean nativeHasFileDescriptors(int nativePtr);
    271     private static native void nativeWriteInterfaceToken(int nativePtr, String interfaceName);
    272     private static native void nativeEnforceInterface(int nativePtr, String interfaceName);
    273 
    274     public final static Parcelable.Creator<String> STRING_CREATOR
    275              = new Parcelable.Creator<String>() {
    276         public String createFromParcel(Parcel source) {
    277             return source.readString();
    278         }
    279         public String[] newArray(int size) {
    280             return new String[size];
    281         }
    282     };
    283 
    284     /**
    285      * Retrieve a new Parcel object from the pool.
    286      */
    287     public static Parcel obtain() {
    288         final Parcel[] pool = sOwnedPool;
    289         synchronized (pool) {
    290             Parcel p;
    291             for (int i=0; i<POOL_SIZE; i++) {
    292                 p = pool[i];
    293                 if (p != null) {
    294                     pool[i] = null;
    295                     if (DEBUG_RECYCLE) {
    296                         p.mStack = new RuntimeException();
    297                     }
    298                     return p;
    299                 }
    300             }
    301         }
    302         return new Parcel(0);
    303     }
    304 
    305     /**
    306      * Put a Parcel object back into the pool.  You must not touch
    307      * the object after this call.
    308      */
    309     public final void recycle() {
    310         if (DEBUG_RECYCLE) mStack = null;
    311         freeBuffer();
    312 
    313         final Parcel[] pool;
    314         if (mOwnsNativeParcelObject) {
    315             pool = sOwnedPool;
    316         } else {
    317             mNativePtr = 0;
    318             pool = sHolderPool;
    319         }
    320 
    321         synchronized (pool) {
    322             for (int i=0; i<POOL_SIZE; i++) {
    323                 if (pool[i] == null) {
    324                     pool[i] = this;
    325                     return;
    326                 }
    327             }
    328         }
    329     }
    330 
    331     /**
    332      * Returns the total amount of data contained in the parcel.
    333      */
    334     public final int dataSize() {
    335         return nativeDataSize(mNativePtr);
    336     }
    337 
    338     /**
    339      * Returns the amount of data remaining to be read from the
    340      * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
    341      */
    342     public final int dataAvail() {
    343         return nativeDataAvail(mNativePtr);
    344     }
    345 
    346     /**
    347      * Returns the current position in the parcel data.  Never
    348      * more than {@link #dataSize}.
    349      */
    350     public final int dataPosition() {
    351         return nativeDataPosition(mNativePtr);
    352     }
    353 
    354     /**
    355      * Returns the total amount of space in the parcel.  This is always
    356      * >= {@link #dataSize}.  The difference between it and dataSize() is the
    357      * amount of room left until the parcel needs to re-allocate its
    358      * data buffer.
    359      */
    360     public final int dataCapacity() {
    361         return nativeDataCapacity(mNativePtr);
    362     }
    363 
    364     /**
    365      * Change the amount of data in the parcel.  Can be either smaller or
    366      * larger than the current size.  If larger than the current capacity,
    367      * more memory will be allocated.
    368      *
    369      * @param size The new number of bytes in the Parcel.
    370      */
    371     public final void setDataSize(int size) {
    372         nativeSetDataSize(mNativePtr, size);
    373     }
    374 
    375     /**
    376      * Move the current read/write position in the parcel.
    377      * @param pos New offset in the parcel; must be between 0 and
    378      * {@link #dataSize}.
    379      */
    380     public final void setDataPosition(int pos) {
    381         nativeSetDataPosition(mNativePtr, pos);
    382     }
    383 
    384     /**
    385      * Change the capacity (current available space) of the parcel.
    386      *
    387      * @param size The new capacity of the parcel, in bytes.  Can not be
    388      * less than {@link #dataSize} -- that is, you can not drop existing data
    389      * with this method.
    390      */
    391     public final void setDataCapacity(int size) {
    392         nativeSetDataCapacity(mNativePtr, size);
    393     }
    394 
    395     /** @hide */
    396     public final boolean pushAllowFds(boolean allowFds) {
    397         return nativePushAllowFds(mNativePtr, allowFds);
    398     }
    399 
    400     /** @hide */
    401     public final void restoreAllowFds(boolean lastValue) {
    402         nativeRestoreAllowFds(mNativePtr, lastValue);
    403     }
    404 
    405     /**
    406      * Returns the raw bytes of the parcel.
    407      *
    408      * <p class="note">The data you retrieve here <strong>must not</strong>
    409      * be placed in any kind of persistent storage (on local disk, across
    410      * a network, etc).  For that, you should use standard serialization
    411      * or another kind of general serialization mechanism.  The Parcel
    412      * marshalled representation is highly optimized for local IPC, and as
    413      * such does not attempt to maintain compatibility with data created
    414      * in different versions of the platform.
    415      */
    416     public final byte[] marshall() {
    417         return nativeMarshall(mNativePtr);
    418     }
    419 
    420     /**
    421      * Set the bytes in data to be the raw bytes of this Parcel.
    422      */
    423     public final void unmarshall(byte[] data, int offest, int length) {
    424         nativeUnmarshall(mNativePtr, data, offest, length);
    425     }
    426 
    427     public final void appendFrom(Parcel parcel, int offset, int length) {
    428         nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length);
    429     }
    430 
    431     /**
    432      * Report whether the parcel contains any marshalled file descriptors.
    433      */
    434     public final boolean hasFileDescriptors() {
    435         return nativeHasFileDescriptors(mNativePtr);
    436     }
    437 
    438     /**
    439      * Store or read an IBinder interface token in the parcel at the current
    440      * {@link #dataPosition}.  This is used to validate that the marshalled
    441      * transaction is intended for the target interface.
    442      */
    443     public final void writeInterfaceToken(String interfaceName) {
    444         nativeWriteInterfaceToken(mNativePtr, interfaceName);
    445     }
    446 
    447     public final void enforceInterface(String interfaceName) {
    448         nativeEnforceInterface(mNativePtr, interfaceName);
    449     }
    450 
    451     /**
    452      * Write a byte array into the parcel at the current {@link #dataPosition},
    453      * growing {@link #dataCapacity} if needed.
    454      * @param b Bytes to place into the parcel.
    455      */
    456     public final void writeByteArray(byte[] b) {
    457         writeByteArray(b, 0, (b != null) ? b.length : 0);
    458     }
    459 
    460     /**
    461      * Write a byte array into the parcel at the current {@link #dataPosition},
    462      * growing {@link #dataCapacity} if needed.
    463      * @param b Bytes to place into the parcel.
    464      * @param offset Index of first byte to be written.
    465      * @param len Number of bytes to write.
    466      */
    467     public final void writeByteArray(byte[] b, int offset, int len) {
    468         if (b == null) {
    469             writeInt(-1);
    470             return;
    471         }
    472         Arrays.checkOffsetAndCount(b.length, offset, len);
    473         nativeWriteByteArray(mNativePtr, b, offset, len);
    474     }
    475 
    476     /**
    477      * Write an integer value into the parcel at the current dataPosition(),
    478      * growing dataCapacity() if needed.
    479      */
    480     public final void writeInt(int val) {
    481         nativeWriteInt(mNativePtr, val);
    482     }
    483 
    484     /**
    485      * Write a long integer value into the parcel at the current dataPosition(),
    486      * growing dataCapacity() if needed.
    487      */
    488     public final void writeLong(long val) {
    489         nativeWriteLong(mNativePtr, val);
    490     }
    491 
    492     /**
    493      * Write a floating point value into the parcel at the current
    494      * dataPosition(), growing dataCapacity() if needed.
    495      */
    496     public final void writeFloat(float val) {
    497         nativeWriteFloat(mNativePtr, val);
    498     }
    499 
    500     /**
    501      * Write a double precision floating point value into the parcel at the
    502      * current dataPosition(), growing dataCapacity() if needed.
    503      */
    504     public final void writeDouble(double val) {
    505         nativeWriteDouble(mNativePtr, val);
    506     }
    507 
    508     /**
    509      * Write a string value into the parcel at the current dataPosition(),
    510      * growing dataCapacity() if needed.
    511      */
    512     public final void writeString(String val) {
    513         nativeWriteString(mNativePtr, val);
    514     }
    515 
    516     /**
    517      * Write a CharSequence value into the parcel at the current dataPosition(),
    518      * growing dataCapacity() if needed.
    519      * @hide
    520      */
    521     public final void writeCharSequence(CharSequence val) {
    522         TextUtils.writeToParcel(val, this, 0);
    523     }
    524 
    525     /**
    526      * Write an object into the parcel at the current dataPosition(),
    527      * growing dataCapacity() if needed.
    528      */
    529     public final void writeStrongBinder(IBinder val) {
    530         nativeWriteStrongBinder(mNativePtr, val);
    531     }
    532 
    533     /**
    534      * Write an object into the parcel at the current dataPosition(),
    535      * growing dataCapacity() if needed.
    536      */
    537     public final void writeStrongInterface(IInterface val) {
    538         writeStrongBinder(val == null ? null : val.asBinder());
    539     }
    540 
    541     /**
    542      * Write a FileDescriptor into the parcel at the current dataPosition(),
    543      * growing dataCapacity() if needed.
    544      *
    545      * <p class="caution">The file descriptor will not be closed, which may
    546      * result in file descriptor leaks when objects are returned from Binder
    547      * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
    548      * accepts contextual flags and will close the original file descriptor
    549      * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
    550      */
    551     public final void writeFileDescriptor(FileDescriptor val) {
    552         nativeWriteFileDescriptor(mNativePtr, val);
    553     }
    554 
    555     /**
    556      * Write a byte value into the parcel at the current dataPosition(),
    557      * growing dataCapacity() if needed.
    558      */
    559     public final void writeByte(byte val) {
    560         writeInt(val);
    561     }
    562 
    563     /**
    564      * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
    565      * at the current dataPosition(),
    566      * growing dataCapacity() if needed.  The Map keys must be String objects.
    567      * The Map values are written using {@link #writeValue} and must follow
    568      * the specification there.
    569      *
    570      * <p>It is strongly recommended to use {@link #writeBundle} instead of
    571      * this method, since the Bundle class provides a type-safe API that
    572      * allows you to avoid mysterious type errors at the point of marshalling.
    573      */
    574     public final void writeMap(Map val) {
    575         writeMapInternal((Map<String,Object>) val);
    576     }
    577 
    578     /**
    579      * Flatten a Map into the parcel at the current dataPosition(),
    580      * growing dataCapacity() if needed.  The Map keys must be String objects.
    581      */
    582     /* package */ void writeMapInternal(Map<String,Object> val) {
    583         if (val == null) {
    584             writeInt(-1);
    585             return;
    586         }
    587         Set<Map.Entry<String,Object>> entries = val.entrySet();
    588         writeInt(entries.size());
    589         for (Map.Entry<String,Object> e : entries) {
    590             writeValue(e.getKey());
    591             writeValue(e.getValue());
    592         }
    593     }
    594 
    595     /**
    596      * Flatten a Bundle into the parcel at the current dataPosition(),
    597      * growing dataCapacity() if needed.
    598      */
    599     public final void writeBundle(Bundle val) {
    600         if (val == null) {
    601             writeInt(-1);
    602             return;
    603         }
    604 
    605         val.writeToParcel(this, 0);
    606     }
    607 
    608     /**
    609      * Flatten a List into the parcel at the current dataPosition(), growing
    610      * dataCapacity() if needed.  The List values are written using
    611      * {@link #writeValue} and must follow the specification there.
    612      */
    613     public final void writeList(List val) {
    614         if (val == null) {
    615             writeInt(-1);
    616             return;
    617         }
    618         int N = val.size();
    619         int i=0;
    620         writeInt(N);
    621         while (i < N) {
    622             writeValue(val.get(i));
    623             i++;
    624         }
    625     }
    626 
    627     /**
    628      * Flatten an Object array into the parcel at the current dataPosition(),
    629      * growing dataCapacity() if needed.  The array values are written using
    630      * {@link #writeValue} and must follow the specification there.
    631      */
    632     public final void writeArray(Object[] val) {
    633         if (val == null) {
    634             writeInt(-1);
    635             return;
    636         }
    637         int N = val.length;
    638         int i=0;
    639         writeInt(N);
    640         while (i < N) {
    641             writeValue(val[i]);
    642             i++;
    643         }
    644     }
    645 
    646     /**
    647      * Flatten a generic SparseArray into the parcel at the current
    648      * dataPosition(), growing dataCapacity() if needed.  The SparseArray
    649      * values are written using {@link #writeValue} and must follow the
    650      * specification there.
    651      */
    652     public final void writeSparseArray(SparseArray<Object> val) {
    653         if (val == null) {
    654             writeInt(-1);
    655             return;
    656         }
    657         int N = val.size();
    658         writeInt(N);
    659         int i=0;
    660         while (i < N) {
    661             writeInt(val.keyAt(i));
    662             writeValue(val.valueAt(i));
    663             i++;
    664         }
    665     }
    666 
    667     public final void writeSparseBooleanArray(SparseBooleanArray val) {
    668         if (val == null) {
    669             writeInt(-1);
    670             return;
    671         }
    672         int N = val.size();
    673         writeInt(N);
    674         int i=0;
    675         while (i < N) {
    676             writeInt(val.keyAt(i));
    677             writeByte((byte)(val.valueAt(i) ? 1 : 0));
    678             i++;
    679         }
    680     }
    681 
    682     public final void writeBooleanArray(boolean[] val) {
    683         if (val != null) {
    684             int N = val.length;
    685             writeInt(N);
    686             for (int i=0; i<N; i++) {
    687                 writeInt(val[i] ? 1 : 0);
    688             }
    689         } else {
    690             writeInt(-1);
    691         }
    692     }
    693 
    694     public final boolean[] createBooleanArray() {
    695         int N = readInt();
    696         // >>2 as a fast divide-by-4 works in the create*Array() functions
    697         // because dataAvail() will never return a negative number.  4 is
    698         // the size of a stored boolean in the stream.
    699         if (N >= 0 && N <= (dataAvail() >> 2)) {
    700             boolean[] val = new boolean[N];
    701             for (int i=0; i<N; i++) {
    702                 val[i] = readInt() != 0;
    703             }
    704             return val;
    705         } else {
    706             return null;
    707         }
    708     }
    709 
    710     public final void readBooleanArray(boolean[] val) {
    711         int N = readInt();
    712         if (N == val.length) {
    713             for (int i=0; i<N; i++) {
    714                 val[i] = readInt() != 0;
    715             }
    716         } else {
    717             throw new RuntimeException("bad array lengths");
    718         }
    719     }
    720 
    721     public final void writeCharArray(char[] val) {
    722         if (val != null) {
    723             int N = val.length;
    724             writeInt(N);
    725             for (int i=0; i<N; i++) {
    726                 writeInt((int)val[i]);
    727             }
    728         } else {
    729             writeInt(-1);
    730         }
    731     }
    732 
    733     public final char[] createCharArray() {
    734         int N = readInt();
    735         if (N >= 0 && N <= (dataAvail() >> 2)) {
    736             char[] val = new char[N];
    737             for (int i=0; i<N; i++) {
    738                 val[i] = (char)readInt();
    739             }
    740             return val;
    741         } else {
    742             return null;
    743         }
    744     }
    745 
    746     public final void readCharArray(char[] val) {
    747         int N = readInt();
    748         if (N == val.length) {
    749             for (int i=0; i<N; i++) {
    750                 val[i] = (char)readInt();
    751             }
    752         } else {
    753             throw new RuntimeException("bad array lengths");
    754         }
    755     }
    756 
    757     public final void writeIntArray(int[] val) {
    758         if (val != null) {
    759             int N = val.length;
    760             writeInt(N);
    761             for (int i=0; i<N; i++) {
    762                 writeInt(val[i]);
    763             }
    764         } else {
    765             writeInt(-1);
    766         }
    767     }
    768 
    769     public final int[] createIntArray() {
    770         int N = readInt();
    771         if (N >= 0 && N <= (dataAvail() >> 2)) {
    772             int[] val = new int[N];
    773             for (int i=0; i<N; i++) {
    774                 val[i] = readInt();
    775             }
    776             return val;
    777         } else {
    778             return null;
    779         }
    780     }
    781 
    782     public final void readIntArray(int[] val) {
    783         int N = readInt();
    784         if (N == val.length) {
    785             for (int i=0; i<N; i++) {
    786                 val[i] = readInt();
    787             }
    788         } else {
    789             throw new RuntimeException("bad array lengths");
    790         }
    791     }
    792 
    793     public final void writeLongArray(long[] val) {
    794         if (val != null) {
    795             int N = val.length;
    796             writeInt(N);
    797             for (int i=0; i<N; i++) {
    798                 writeLong(val[i]);
    799             }
    800         } else {
    801             writeInt(-1);
    802         }
    803     }
    804 
    805     public final long[] createLongArray() {
    806         int N = readInt();
    807         // >>3 because stored longs are 64 bits
    808         if (N >= 0 && N <= (dataAvail() >> 3)) {
    809             long[] val = new long[N];
    810             for (int i=0; i<N; i++) {
    811                 val[i] = readLong();
    812             }
    813             return val;
    814         } else {
    815             return null;
    816         }
    817     }
    818 
    819     public final void readLongArray(long[] val) {
    820         int N = readInt();
    821         if (N == val.length) {
    822             for (int i=0; i<N; i++) {
    823                 val[i] = readLong();
    824             }
    825         } else {
    826             throw new RuntimeException("bad array lengths");
    827         }
    828     }
    829 
    830     public final void writeFloatArray(float[] val) {
    831         if (val != null) {
    832             int N = val.length;
    833             writeInt(N);
    834             for (int i=0; i<N; i++) {
    835                 writeFloat(val[i]);
    836             }
    837         } else {
    838             writeInt(-1);
    839         }
    840     }
    841 
    842     public final float[] createFloatArray() {
    843         int N = readInt();
    844         // >>2 because stored floats are 4 bytes
    845         if (N >= 0 && N <= (dataAvail() >> 2)) {
    846             float[] val = new float[N];
    847             for (int i=0; i<N; i++) {
    848                 val[i] = readFloat();
    849             }
    850             return val;
    851         } else {
    852             return null;
    853         }
    854     }
    855 
    856     public final void readFloatArray(float[] val) {
    857         int N = readInt();
    858         if (N == val.length) {
    859             for (int i=0; i<N; i++) {
    860                 val[i] = readFloat();
    861             }
    862         } else {
    863             throw new RuntimeException("bad array lengths");
    864         }
    865     }
    866 
    867     public final void writeDoubleArray(double[] val) {
    868         if (val != null) {
    869             int N = val.length;
    870             writeInt(N);
    871             for (int i=0; i<N; i++) {
    872                 writeDouble(val[i]);
    873             }
    874         } else {
    875             writeInt(-1);
    876         }
    877     }
    878 
    879     public final double[] createDoubleArray() {
    880         int N = readInt();
    881         // >>3 because stored doubles are 8 bytes
    882         if (N >= 0 && N <= (dataAvail() >> 3)) {
    883             double[] val = new double[N];
    884             for (int i=0; i<N; i++) {
    885                 val[i] = readDouble();
    886             }
    887             return val;
    888         } else {
    889             return null;
    890         }
    891     }
    892 
    893     public final void readDoubleArray(double[] val) {
    894         int N = readInt();
    895         if (N == val.length) {
    896             for (int i=0; i<N; i++) {
    897                 val[i] = readDouble();
    898             }
    899         } else {
    900             throw new RuntimeException("bad array lengths");
    901         }
    902     }
    903 
    904     public final void writeStringArray(String[] val) {
    905         if (val != null) {
    906             int N = val.length;
    907             writeInt(N);
    908             for (int i=0; i<N; i++) {
    909                 writeString(val[i]);
    910             }
    911         } else {
    912             writeInt(-1);
    913         }
    914     }
    915 
    916     public final String[] createStringArray() {
    917         int N = readInt();
    918         if (N >= 0) {
    919             String[] val = new String[N];
    920             for (int i=0; i<N; i++) {
    921                 val[i] = readString();
    922             }
    923             return val;
    924         } else {
    925             return null;
    926         }
    927     }
    928 
    929     public final void readStringArray(String[] val) {
    930         int N = readInt();
    931         if (N == val.length) {
    932             for (int i=0; i<N; i++) {
    933                 val[i] = readString();
    934             }
    935         } else {
    936             throw new RuntimeException("bad array lengths");
    937         }
    938     }
    939 
    940     public final void writeBinderArray(IBinder[] val) {
    941         if (val != null) {
    942             int N = val.length;
    943             writeInt(N);
    944             for (int i=0; i<N; i++) {
    945                 writeStrongBinder(val[i]);
    946             }
    947         } else {
    948             writeInt(-1);
    949         }
    950     }
    951 
    952     /**
    953      * @hide
    954      */
    955     public final void writeCharSequenceArray(CharSequence[] val) {
    956         if (val != null) {
    957             int N = val.length;
    958             writeInt(N);
    959             for (int i=0; i<N; i++) {
    960                 writeCharSequence(val[i]);
    961             }
    962         } else {
    963             writeInt(-1);
    964         }
    965     }
    966 
    967     public final IBinder[] createBinderArray() {
    968         int N = readInt();
    969         if (N >= 0) {
    970             IBinder[] val = new IBinder[N];
    971             for (int i=0; i<N; i++) {
    972                 val[i] = readStrongBinder();
    973             }
    974             return val;
    975         } else {
    976             return null;
    977         }
    978     }
    979 
    980     public final void readBinderArray(IBinder[] val) {
    981         int N = readInt();
    982         if (N == val.length) {
    983             for (int i=0; i<N; i++) {
    984                 val[i] = readStrongBinder();
    985             }
    986         } else {
    987             throw new RuntimeException("bad array lengths");
    988         }
    989     }
    990 
    991     /**
    992      * Flatten a List containing a particular object type into the parcel, at
    993      * the current dataPosition() and growing dataCapacity() if needed.  The
    994      * type of the objects in the list must be one that implements Parcelable.
    995      * Unlike the generic writeList() method, however, only the raw data of the
    996      * objects is written and not their type, so you must use the corresponding
    997      * readTypedList() to unmarshall them.
    998      *
    999      * @param val The list of objects to be written.
   1000      *
   1001      * @see #createTypedArrayList
   1002      * @see #readTypedList
   1003      * @see Parcelable
   1004      */
   1005     public final <T extends Parcelable> void writeTypedList(List<T> val) {
   1006         if (val == null) {
   1007             writeInt(-1);
   1008             return;
   1009         }
   1010         int N = val.size();
   1011         int i=0;
   1012         writeInt(N);
   1013         while (i < N) {
   1014             T item = val.get(i);
   1015             if (item != null) {
   1016                 writeInt(1);
   1017                 item.writeToParcel(this, 0);
   1018             } else {
   1019                 writeInt(0);
   1020             }
   1021             i++;
   1022         }
   1023     }
   1024 
   1025     /**
   1026      * Flatten a List containing String objects into the parcel, at
   1027      * the current dataPosition() and growing dataCapacity() if needed.  They
   1028      * can later be retrieved with {@link #createStringArrayList} or
   1029      * {@link #readStringList}.
   1030      *
   1031      * @param val The list of strings to be written.
   1032      *
   1033      * @see #createStringArrayList
   1034      * @see #readStringList
   1035      */
   1036     public final void writeStringList(List<String> val) {
   1037         if (val == null) {
   1038             writeInt(-1);
   1039             return;
   1040         }
   1041         int N = val.size();
   1042         int i=0;
   1043         writeInt(N);
   1044         while (i < N) {
   1045             writeString(val.get(i));
   1046             i++;
   1047         }
   1048     }
   1049 
   1050     /**
   1051      * Flatten a List containing IBinder objects into the parcel, at
   1052      * the current dataPosition() and growing dataCapacity() if needed.  They
   1053      * can later be retrieved with {@link #createBinderArrayList} or
   1054      * {@link #readBinderList}.
   1055      *
   1056      * @param val The list of strings to be written.
   1057      *
   1058      * @see #createBinderArrayList
   1059      * @see #readBinderList
   1060      */
   1061     public final void writeBinderList(List<IBinder> val) {
   1062         if (val == null) {
   1063             writeInt(-1);
   1064             return;
   1065         }
   1066         int N = val.size();
   1067         int i=0;
   1068         writeInt(N);
   1069         while (i < N) {
   1070             writeStrongBinder(val.get(i));
   1071             i++;
   1072         }
   1073     }
   1074 
   1075     /**
   1076      * Flatten a heterogeneous array containing a particular object type into
   1077      * the parcel, at
   1078      * the current dataPosition() and growing dataCapacity() if needed.  The
   1079      * type of the objects in the array must be one that implements Parcelable.
   1080      * Unlike the {@link #writeParcelableArray} method, however, only the
   1081      * raw data of the objects is written and not their type, so you must use
   1082      * {@link #readTypedArray} with the correct corresponding
   1083      * {@link Parcelable.Creator} implementation to unmarshall them.
   1084      *
   1085      * @param val The array of objects to be written.
   1086      * @param parcelableFlags Contextual flags as per
   1087      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
   1088      *
   1089      * @see #readTypedArray
   1090      * @see #writeParcelableArray
   1091      * @see Parcelable.Creator
   1092      */
   1093     public final <T extends Parcelable> void writeTypedArray(T[] val,
   1094             int parcelableFlags) {
   1095         if (val != null) {
   1096             int N = val.length;
   1097             writeInt(N);
   1098             for (int i=0; i<N; i++) {
   1099                 T item = val[i];
   1100                 if (item != null) {
   1101                     writeInt(1);
   1102                     item.writeToParcel(this, parcelableFlags);
   1103                 } else {
   1104                     writeInt(0);
   1105                 }
   1106             }
   1107         } else {
   1108             writeInt(-1);
   1109         }
   1110     }
   1111 
   1112     /**
   1113      * Flatten a generic object in to a parcel.  The given Object value may
   1114      * currently be one of the following types:
   1115      *
   1116      * <ul>
   1117      * <li> null
   1118      * <li> String
   1119      * <li> Byte
   1120      * <li> Short
   1121      * <li> Integer
   1122      * <li> Long
   1123      * <li> Float
   1124      * <li> Double
   1125      * <li> Boolean
   1126      * <li> String[]
   1127      * <li> boolean[]
   1128      * <li> byte[]
   1129      * <li> int[]
   1130      * <li> long[]
   1131      * <li> Object[] (supporting objects of the same type defined here).
   1132      * <li> {@link Bundle}
   1133      * <li> Map (as supported by {@link #writeMap}).
   1134      * <li> Any object that implements the {@link Parcelable} protocol.
   1135      * <li> Parcelable[]
   1136      * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
   1137      * <li> List (as supported by {@link #writeList}).
   1138      * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
   1139      * <li> {@link IBinder}
   1140      * <li> Any object that implements Serializable (but see
   1141      *      {@link #writeSerializable} for caveats).  Note that all of the
   1142      *      previous types have relatively efficient implementations for
   1143      *      writing to a Parcel; having to rely on the generic serialization
   1144      *      approach is much less efficient and should be avoided whenever
   1145      *      possible.
   1146      * </ul>
   1147      *
   1148      * <p class="caution">{@link Parcelable} objects are written with
   1149      * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
   1150      * serializing objects containing {@link ParcelFileDescriptor}s,
   1151      * this may result in file descriptor leaks when they are returned from
   1152      * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
   1153      * should be used).</p>
   1154      */
   1155     public final void writeValue(Object v) {
   1156         if (v == null) {
   1157             writeInt(VAL_NULL);
   1158         } else if (v instanceof String) {
   1159             writeInt(VAL_STRING);
   1160             writeString((String) v);
   1161         } else if (v instanceof Integer) {
   1162             writeInt(VAL_INTEGER);
   1163             writeInt((Integer) v);
   1164         } else if (v instanceof Map) {
   1165             writeInt(VAL_MAP);
   1166             writeMap((Map) v);
   1167         } else if (v instanceof Bundle) {
   1168             // Must be before Parcelable
   1169             writeInt(VAL_BUNDLE);
   1170             writeBundle((Bundle) v);
   1171         } else if (v instanceof Parcelable) {
   1172             writeInt(VAL_PARCELABLE);
   1173             writeParcelable((Parcelable) v, 0);
   1174         } else if (v instanceof Short) {
   1175             writeInt(VAL_SHORT);
   1176             writeInt(((Short) v).intValue());
   1177         } else if (v instanceof Long) {
   1178             writeInt(VAL_LONG);
   1179             writeLong((Long) v);
   1180         } else if (v instanceof Float) {
   1181             writeInt(VAL_FLOAT);
   1182             writeFloat((Float) v);
   1183         } else if (v instanceof Double) {
   1184             writeInt(VAL_DOUBLE);
   1185             writeDouble((Double) v);
   1186         } else if (v instanceof Boolean) {
   1187             writeInt(VAL_BOOLEAN);
   1188             writeInt((Boolean) v ? 1 : 0);
   1189         } else if (v instanceof CharSequence) {
   1190             // Must be after String
   1191             writeInt(VAL_CHARSEQUENCE);
   1192             writeCharSequence((CharSequence) v);
   1193         } else if (v instanceof List) {
   1194             writeInt(VAL_LIST);
   1195             writeList((List) v);
   1196         } else if (v instanceof SparseArray) {
   1197             writeInt(VAL_SPARSEARRAY);
   1198             writeSparseArray((SparseArray) v);
   1199         } else if (v instanceof boolean[]) {
   1200             writeInt(VAL_BOOLEANARRAY);
   1201             writeBooleanArray((boolean[]) v);
   1202         } else if (v instanceof byte[]) {
   1203             writeInt(VAL_BYTEARRAY);
   1204             writeByteArray((byte[]) v);
   1205         } else if (v instanceof String[]) {
   1206             writeInt(VAL_STRINGARRAY);
   1207             writeStringArray((String[]) v);
   1208         } else if (v instanceof CharSequence[]) {
   1209             // Must be after String[] and before Object[]
   1210             writeInt(VAL_CHARSEQUENCEARRAY);
   1211             writeCharSequenceArray((CharSequence[]) v);
   1212         } else if (v instanceof IBinder) {
   1213             writeInt(VAL_IBINDER);
   1214             writeStrongBinder((IBinder) v);
   1215         } else if (v instanceof Parcelable[]) {
   1216             writeInt(VAL_PARCELABLEARRAY);
   1217             writeParcelableArray((Parcelable[]) v, 0);
   1218         } else if (v instanceof Object[]) {
   1219             writeInt(VAL_OBJECTARRAY);
   1220             writeArray((Object[]) v);
   1221         } else if (v instanceof int[]) {
   1222             writeInt(VAL_INTARRAY);
   1223             writeIntArray((int[]) v);
   1224         } else if (v instanceof long[]) {
   1225             writeInt(VAL_LONGARRAY);
   1226             writeLongArray((long[]) v);
   1227         } else if (v instanceof Byte) {
   1228             writeInt(VAL_BYTE);
   1229             writeInt((Byte) v);
   1230         } else if (v instanceof Serializable) {
   1231             // Must be last
   1232             writeInt(VAL_SERIALIZABLE);
   1233             writeSerializable((Serializable) v);
   1234         } else {
   1235             throw new RuntimeException("Parcel: unable to marshal value " + v);
   1236         }
   1237     }
   1238 
   1239     /**
   1240      * Flatten the name of the class of the Parcelable and its contents
   1241      * into the parcel.
   1242      *
   1243      * @param p The Parcelable object to be written.
   1244      * @param parcelableFlags Contextual flags as per
   1245      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
   1246      */
   1247     public final void writeParcelable(Parcelable p, int parcelableFlags) {
   1248         if (p == null) {
   1249             writeString(null);
   1250             return;
   1251         }
   1252         String name = p.getClass().getName();
   1253         writeString(name);
   1254         p.writeToParcel(this, parcelableFlags);
   1255     }
   1256 
   1257     /**
   1258      * Write a generic serializable object in to a Parcel.  It is strongly
   1259      * recommended that this method be avoided, since the serialization
   1260      * overhead is extremely large, and this approach will be much slower than
   1261      * using the other approaches to writing data in to a Parcel.
   1262      */
   1263     public final void writeSerializable(Serializable s) {
   1264         if (s == null) {
   1265             writeString(null);
   1266             return;
   1267         }
   1268         String name = s.getClass().getName();
   1269         writeString(name);
   1270 
   1271         ByteArrayOutputStream baos = new ByteArrayOutputStream();
   1272         try {
   1273             ObjectOutputStream oos = new ObjectOutputStream(baos);
   1274             oos.writeObject(s);
   1275             oos.close();
   1276 
   1277             writeByteArray(baos.toByteArray());
   1278         } catch (IOException ioe) {
   1279             throw new RuntimeException("Parcelable encountered " +
   1280                 "IOException writing serializable object (name = " + name +
   1281                 ")", ioe);
   1282         }
   1283     }
   1284 
   1285     /**
   1286      * Special function for writing an exception result at the header of
   1287      * a parcel, to be used when returning an exception from a transaction.
   1288      * Note that this currently only supports a few exception types; any other
   1289      * exception will be re-thrown by this function as a RuntimeException
   1290      * (to be caught by the system's last-resort exception handling when
   1291      * dispatching a transaction).
   1292      *
   1293      * <p>The supported exception types are:
   1294      * <ul>
   1295      * <li>{@link BadParcelableException}
   1296      * <li>{@link IllegalArgumentException}
   1297      * <li>{@link IllegalStateException}
   1298      * <li>{@link NullPointerException}
   1299      * <li>{@link SecurityException}
   1300      * </ul>
   1301      *
   1302      * @param e The Exception to be written.
   1303      *
   1304      * @see #writeNoException
   1305      * @see #readException
   1306      */
   1307     public final void writeException(Exception e) {
   1308         int code = 0;
   1309         if (e instanceof SecurityException) {
   1310             code = EX_SECURITY;
   1311         } else if (e instanceof BadParcelableException) {
   1312             code = EX_BAD_PARCELABLE;
   1313         } else if (e instanceof IllegalArgumentException) {
   1314             code = EX_ILLEGAL_ARGUMENT;
   1315         } else if (e instanceof NullPointerException) {
   1316             code = EX_NULL_POINTER;
   1317         } else if (e instanceof IllegalStateException) {
   1318             code = EX_ILLEGAL_STATE;
   1319         }
   1320         writeInt(code);
   1321         StrictMode.clearGatheredViolations();
   1322         if (code == 0) {
   1323             if (e instanceof RuntimeException) {
   1324                 throw (RuntimeException) e;
   1325             }
   1326             throw new RuntimeException(e);
   1327         }
   1328         writeString(e.getMessage());
   1329     }
   1330 
   1331     /**
   1332      * Special function for writing information at the front of the Parcel
   1333      * indicating that no exception occurred.
   1334      *
   1335      * @see #writeException
   1336      * @see #readException
   1337      */
   1338     public final void writeNoException() {
   1339         // Despite the name of this function ("write no exception"),
   1340         // it should instead be thought of as "write the RPC response
   1341         // header", but because this function name is written out by
   1342         // the AIDL compiler, we're not going to rename it.
   1343         //
   1344         // The response header, in the non-exception case (see also
   1345         // writeException above, also called by the AIDL compiler), is
   1346         // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
   1347         // StrictMode has gathered up violations that have occurred
   1348         // during a Binder call, in which case we write out the number
   1349         // of violations and their details, serialized, before the
   1350         // actual RPC respons data.  The receiving end of this is
   1351         // readException(), below.
   1352         if (StrictMode.hasGatheredViolations()) {
   1353             writeInt(EX_HAS_REPLY_HEADER);
   1354             final int sizePosition = dataPosition();
   1355             writeInt(0);  // total size of fat header, to be filled in later
   1356             StrictMode.writeGatheredViolationsToParcel(this);
   1357             final int payloadPosition = dataPosition();
   1358             setDataPosition(sizePosition);
   1359             writeInt(payloadPosition - sizePosition);  // header size
   1360             setDataPosition(payloadPosition);
   1361         } else {
   1362             writeInt(0);
   1363         }
   1364     }
   1365 
   1366     /**
   1367      * Special function for reading an exception result from the header of
   1368      * a parcel, to be used after receiving the result of a transaction.  This
   1369      * will throw the exception for you if it had been written to the Parcel,
   1370      * otherwise return and let you read the normal result data from the Parcel.
   1371      *
   1372      * @see #writeException
   1373      * @see #writeNoException
   1374      */
   1375     public final void readException() {
   1376         int code = readExceptionCode();
   1377         if (code != 0) {
   1378             String msg = readString();
   1379             readException(code, msg);
   1380         }
   1381     }
   1382 
   1383     /**
   1384      * Parses the header of a Binder call's response Parcel and
   1385      * returns the exception code.  Deals with lite or fat headers.
   1386      * In the common successful case, this header is generally zero.
   1387      * In less common cases, it's a small negative number and will be
   1388      * followed by an error string.
   1389      *
   1390      * This exists purely for android.database.DatabaseUtils and
   1391      * insulating it from having to handle fat headers as returned by
   1392      * e.g. StrictMode-induced RPC responses.
   1393      *
   1394      * @hide
   1395      */
   1396     public final int readExceptionCode() {
   1397         int code = readInt();
   1398         if (code == EX_HAS_REPLY_HEADER) {
   1399             int headerSize = readInt();
   1400             if (headerSize == 0) {
   1401                 Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
   1402             } else {
   1403                 // Currently the only thing in the header is StrictMode stacks,
   1404                 // but discussions around event/RPC tracing suggest we might
   1405                 // put that here too.  If so, switch on sub-header tags here.
   1406                 // But for now, just parse out the StrictMode stuff.
   1407                 StrictMode.readAndHandleBinderCallViolations(this);
   1408             }
   1409             // And fat response headers are currently only used when
   1410             // there are no exceptions, so return no error:
   1411             return 0;
   1412         }
   1413         return code;
   1414     }
   1415 
   1416     /**
   1417      * Use this function for customized exception handling.
   1418      * customized method call this method for all unknown case
   1419      * @param code exception code
   1420      * @param msg exception message
   1421      */
   1422     public final void readException(int code, String msg) {
   1423         switch (code) {
   1424             case EX_SECURITY:
   1425                 throw new SecurityException(msg);
   1426             case EX_BAD_PARCELABLE:
   1427                 throw new BadParcelableException(msg);
   1428             case EX_ILLEGAL_ARGUMENT:
   1429                 throw new IllegalArgumentException(msg);
   1430             case EX_NULL_POINTER:
   1431                 throw new NullPointerException(msg);
   1432             case EX_ILLEGAL_STATE:
   1433                 throw new IllegalStateException(msg);
   1434         }
   1435         throw new RuntimeException("Unknown exception code: " + code
   1436                 + " msg " + msg);
   1437     }
   1438 
   1439     /**
   1440      * Read an integer value from the parcel at the current dataPosition().
   1441      */
   1442     public final int readInt() {
   1443         return nativeReadInt(mNativePtr);
   1444     }
   1445 
   1446     /**
   1447      * Read a long integer value from the parcel at the current dataPosition().
   1448      */
   1449     public final long readLong() {
   1450         return nativeReadLong(mNativePtr);
   1451     }
   1452 
   1453     /**
   1454      * Read a floating point value from the parcel at the current
   1455      * dataPosition().
   1456      */
   1457     public final float readFloat() {
   1458         return nativeReadFloat(mNativePtr);
   1459     }
   1460 
   1461     /**
   1462      * Read a double precision floating point value from the parcel at the
   1463      * current dataPosition().
   1464      */
   1465     public final double readDouble() {
   1466         return nativeReadDouble(mNativePtr);
   1467     }
   1468 
   1469     /**
   1470      * Read a string value from the parcel at the current dataPosition().
   1471      */
   1472     public final String readString() {
   1473         return nativeReadString(mNativePtr);
   1474     }
   1475 
   1476     /**
   1477      * Read a CharSequence value from the parcel at the current dataPosition().
   1478      * @hide
   1479      */
   1480     public final CharSequence readCharSequence() {
   1481         return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
   1482     }
   1483 
   1484     /**
   1485      * Read an object from the parcel at the current dataPosition().
   1486      */
   1487     public final IBinder readStrongBinder() {
   1488         return nativeReadStrongBinder(mNativePtr);
   1489     }
   1490 
   1491     /**
   1492      * Read a FileDescriptor from the parcel at the current dataPosition().
   1493      */
   1494     public final ParcelFileDescriptor readFileDescriptor() {
   1495         FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
   1496         return fd != null ? new ParcelFileDescriptor(fd) : null;
   1497     }
   1498 
   1499     /*package*/ static native FileDescriptor openFileDescriptor(String file,
   1500             int mode) throws FileNotFoundException;
   1501     /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
   1502             throws IOException;
   1503     /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
   1504             throws IOException;
   1505     /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
   1506 
   1507     /**
   1508      * Read a byte value from the parcel at the current dataPosition().
   1509      */
   1510     public final byte readByte() {
   1511         return (byte)(readInt() & 0xff);
   1512     }
   1513 
   1514     /**
   1515      * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
   1516      * been written with {@link #writeBundle}.  Read into an existing Map object
   1517      * from the parcel at the current dataPosition().
   1518      */
   1519     public final void readMap(Map outVal, ClassLoader loader) {
   1520         int N = readInt();
   1521         readMapInternal(outVal, N, loader);
   1522     }
   1523 
   1524     /**
   1525      * Read into an existing List object from the parcel at the current
   1526      * dataPosition(), using the given class loader to load any enclosed
   1527      * Parcelables.  If it is null, the default class loader is used.
   1528      */
   1529     public final void readList(List outVal, ClassLoader loader) {
   1530         int N = readInt();
   1531         readListInternal(outVal, N, loader);
   1532     }
   1533 
   1534     /**
   1535      * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
   1536      * been written with {@link #writeBundle}.  Read and return a new HashMap
   1537      * object from the parcel at the current dataPosition(), using the given
   1538      * class loader to load any enclosed Parcelables.  Returns null if
   1539      * the previously written map object was null.
   1540      */
   1541     public final HashMap readHashMap(ClassLoader loader)
   1542     {
   1543         int N = readInt();
   1544         if (N < 0) {
   1545             return null;
   1546         }
   1547         HashMap m = new HashMap(N);
   1548         readMapInternal(m, N, loader);
   1549         return m;
   1550     }
   1551 
   1552     /**
   1553      * Read and return a new Bundle object from the parcel at the current
   1554      * dataPosition().  Returns null if the previously written Bundle object was
   1555      * null.
   1556      */
   1557     public final Bundle readBundle() {
   1558         return readBundle(null);
   1559     }
   1560 
   1561     /**
   1562      * Read and return a new Bundle object from the parcel at the current
   1563      * dataPosition(), using the given class loader to initialize the class
   1564      * loader of the Bundle for later retrieval of Parcelable objects.
   1565      * Returns null if the previously written Bundle object was null.
   1566      */
   1567     public final Bundle readBundle(ClassLoader loader) {
   1568         int length = readInt();
   1569         if (length < 0) {
   1570             return null;
   1571         }
   1572 
   1573         final Bundle bundle = new Bundle(this, length);
   1574         if (loader != null) {
   1575             bundle.setClassLoader(loader);
   1576         }
   1577         return bundle;
   1578     }
   1579 
   1580     /**
   1581      * Read and return a byte[] object from the parcel.
   1582      */
   1583     public final byte[] createByteArray() {
   1584         return nativeCreateByteArray(mNativePtr);
   1585     }
   1586 
   1587     /**
   1588      * Read a byte[] object from the parcel and copy it into the
   1589      * given byte array.
   1590      */
   1591     public final void readByteArray(byte[] val) {
   1592         // TODO: make this a native method to avoid the extra copy.
   1593         byte[] ba = createByteArray();
   1594         if (ba.length == val.length) {
   1595            System.arraycopy(ba, 0, val, 0, ba.length);
   1596         } else {
   1597             throw new RuntimeException("bad array lengths");
   1598         }
   1599     }
   1600 
   1601     /**
   1602      * Read and return a String[] object from the parcel.
   1603      * {@hide}
   1604      */
   1605     public final String[] readStringArray() {
   1606         String[] array = null;
   1607 
   1608         int length = readInt();
   1609         if (length >= 0)
   1610         {
   1611             array = new String[length];
   1612 
   1613             for (int i = 0 ; i < length ; i++)
   1614             {
   1615                 array[i] = readString();
   1616             }
   1617         }
   1618 
   1619         return array;
   1620     }
   1621 
   1622     /**
   1623      * Read and return a CharSequence[] object from the parcel.
   1624      * {@hide}
   1625      */
   1626     public final CharSequence[] readCharSequenceArray() {
   1627         CharSequence[] array = null;
   1628 
   1629         int length = readInt();
   1630         if (length >= 0)
   1631         {
   1632             array = new CharSequence[length];
   1633 
   1634             for (int i = 0 ; i < length ; i++)
   1635             {
   1636                 array[i] = readCharSequence();
   1637             }
   1638         }
   1639 
   1640         return array;
   1641     }
   1642 
   1643     /**
   1644      * Read and return a new ArrayList object from the parcel at the current
   1645      * dataPosition().  Returns null if the previously written list object was
   1646      * null.  The given class loader will be used to load any enclosed
   1647      * Parcelables.
   1648      */
   1649     public final ArrayList readArrayList(ClassLoader loader) {
   1650         int N = readInt();
   1651         if (N < 0) {
   1652             return null;
   1653         }
   1654         ArrayList l = new ArrayList(N);
   1655         readListInternal(l, N, loader);
   1656         return l;
   1657     }
   1658 
   1659     /**
   1660      * Read and return a new Object array from the parcel at the current
   1661      * dataPosition().  Returns null if the previously written array was
   1662      * null.  The given class loader will be used to load any enclosed
   1663      * Parcelables.
   1664      */
   1665     public final Object[] readArray(ClassLoader loader) {
   1666         int N = readInt();
   1667         if (N < 0) {
   1668             return null;
   1669         }
   1670         Object[] l = new Object[N];
   1671         readArrayInternal(l, N, loader);
   1672         return l;
   1673     }
   1674 
   1675     /**
   1676      * Read and return a new SparseArray object from the parcel at the current
   1677      * dataPosition().  Returns null if the previously written list object was
   1678      * null.  The given class loader will be used to load any enclosed
   1679      * Parcelables.
   1680      */
   1681     public final SparseArray readSparseArray(ClassLoader loader) {
   1682         int N = readInt();
   1683         if (N < 0) {
   1684             return null;
   1685         }
   1686         SparseArray sa = new SparseArray(N);
   1687         readSparseArrayInternal(sa, N, loader);
   1688         return sa;
   1689     }
   1690 
   1691     /**
   1692      * Read and return a new SparseBooleanArray object from the parcel at the current
   1693      * dataPosition().  Returns null if the previously written list object was
   1694      * null.
   1695      */
   1696     public final SparseBooleanArray readSparseBooleanArray() {
   1697         int N = readInt();
   1698         if (N < 0) {
   1699             return null;
   1700         }
   1701         SparseBooleanArray sa = new SparseBooleanArray(N);
   1702         readSparseBooleanArrayInternal(sa, N);
   1703         return sa;
   1704     }
   1705 
   1706     /**
   1707      * Read and return a new ArrayList containing a particular object type from
   1708      * the parcel that was written with {@link #writeTypedList} at the
   1709      * current dataPosition().  Returns null if the
   1710      * previously written list object was null.  The list <em>must</em> have
   1711      * previously been written via {@link #writeTypedList} with the same object
   1712      * type.
   1713      *
   1714      * @return A newly created ArrayList containing objects with the same data
   1715      *         as those that were previously written.
   1716      *
   1717      * @see #writeTypedList
   1718      */
   1719     public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
   1720         int N = readInt();
   1721         if (N < 0) {
   1722             return null;
   1723         }
   1724         ArrayList<T> l = new ArrayList<T>(N);
   1725         while (N > 0) {
   1726             if (readInt() != 0) {
   1727                 l.add(c.createFromParcel(this));
   1728             } else {
   1729                 l.add(null);
   1730             }
   1731             N--;
   1732         }
   1733         return l;
   1734     }
   1735 
   1736     /**
   1737      * Read into the given List items containing a particular object type
   1738      * that were written with {@link #writeTypedList} at the
   1739      * current dataPosition().  The list <em>must</em> have
   1740      * previously been written via {@link #writeTypedList} with the same object
   1741      * type.
   1742      *
   1743      * @return A newly created ArrayList containing objects with the same data
   1744      *         as those that were previously written.
   1745      *
   1746      * @see #writeTypedList
   1747      */
   1748     public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
   1749         int M = list.size();
   1750         int N = readInt();
   1751         int i = 0;
   1752         for (; i < M && i < N; i++) {
   1753             if (readInt() != 0) {
   1754                 list.set(i, c.createFromParcel(this));
   1755             } else {
   1756                 list.set(i, null);
   1757             }
   1758         }
   1759         for (; i<N; i++) {
   1760             if (readInt() != 0) {
   1761                 list.add(c.createFromParcel(this));
   1762             } else {
   1763                 list.add(null);
   1764             }
   1765         }
   1766         for (; i<M; i++) {
   1767             list.remove(N);
   1768         }
   1769     }
   1770 
   1771     /**
   1772      * Read and return a new ArrayList containing String objects from
   1773      * the parcel that was written with {@link #writeStringList} at the
   1774      * current dataPosition().  Returns null if the
   1775      * previously written list object was null.
   1776      *
   1777      * @return A newly created ArrayList containing strings with the same data
   1778      *         as those that were previously written.
   1779      *
   1780      * @see #writeStringList
   1781      */
   1782     public final ArrayList<String> createStringArrayList() {
   1783         int N = readInt();
   1784         if (N < 0) {
   1785             return null;
   1786         }
   1787         ArrayList<String> l = new ArrayList<String>(N);
   1788         while (N > 0) {
   1789             l.add(readString());
   1790             N--;
   1791         }
   1792         return l;
   1793     }
   1794 
   1795     /**
   1796      * Read and return a new ArrayList containing IBinder objects from
   1797      * the parcel that was written with {@link #writeBinderList} at the
   1798      * current dataPosition().  Returns null if the
   1799      * previously written list object was null.
   1800      *
   1801      * @return A newly created ArrayList containing strings with the same data
   1802      *         as those that were previously written.
   1803      *
   1804      * @see #writeBinderList
   1805      */
   1806     public final ArrayList<IBinder> createBinderArrayList() {
   1807         int N = readInt();
   1808         if (N < 0) {
   1809             return null;
   1810         }
   1811         ArrayList<IBinder> l = new ArrayList<IBinder>(N);
   1812         while (N > 0) {
   1813             l.add(readStrongBinder());
   1814             N--;
   1815         }
   1816         return l;
   1817     }
   1818 
   1819     /**
   1820      * Read into the given List items String objects that were written with
   1821      * {@link #writeStringList} at the current dataPosition().
   1822      *
   1823      * @return A newly created ArrayList containing strings with the same data
   1824      *         as those that were previously written.
   1825      *
   1826      * @see #writeStringList
   1827      */
   1828     public final void readStringList(List<String> list) {
   1829         int M = list.size();
   1830         int N = readInt();
   1831         int i = 0;
   1832         for (; i < M && i < N; i++) {
   1833             list.set(i, readString());
   1834         }
   1835         for (; i<N; i++) {
   1836             list.add(readString());
   1837         }
   1838         for (; i<M; i++) {
   1839             list.remove(N);
   1840         }
   1841     }
   1842 
   1843     /**
   1844      * Read into the given List items IBinder objects that were written with
   1845      * {@link #writeBinderList} at the current dataPosition().
   1846      *
   1847      * @return A newly created ArrayList containing strings with the same data
   1848      *         as those that were previously written.
   1849      *
   1850      * @see #writeBinderList
   1851      */
   1852     public final void readBinderList(List<IBinder> list) {
   1853         int M = list.size();
   1854         int N = readInt();
   1855         int i = 0;
   1856         for (; i < M && i < N; i++) {
   1857             list.set(i, readStrongBinder());
   1858         }
   1859         for (; i<N; i++) {
   1860             list.add(readStrongBinder());
   1861         }
   1862         for (; i<M; i++) {
   1863             list.remove(N);
   1864         }
   1865     }
   1866 
   1867     /**
   1868      * Read and return a new array containing a particular object type from
   1869      * the parcel at the current dataPosition().  Returns null if the
   1870      * previously written array was null.  The array <em>must</em> have
   1871      * previously been written via {@link #writeTypedArray} with the same
   1872      * object type.
   1873      *
   1874      * @return A newly created array containing objects with the same data
   1875      *         as those that were previously written.
   1876      *
   1877      * @see #writeTypedArray
   1878      */
   1879     public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
   1880         int N = readInt();
   1881         if (N < 0) {
   1882             return null;
   1883         }
   1884         T[] l = c.newArray(N);
   1885         for (int i=0; i<N; i++) {
   1886             if (readInt() != 0) {
   1887                 l[i] = c.createFromParcel(this);
   1888             }
   1889         }
   1890         return l;
   1891     }
   1892 
   1893     public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
   1894         int N = readInt();
   1895         if (N == val.length) {
   1896             for (int i=0; i<N; i++) {
   1897                 if (readInt() != 0) {
   1898                     val[i] = c.createFromParcel(this);
   1899                 } else {
   1900                     val[i] = null;
   1901                 }
   1902             }
   1903         } else {
   1904             throw new RuntimeException("bad array lengths");
   1905         }
   1906     }
   1907 
   1908     /**
   1909      * @deprecated
   1910      * @hide
   1911      */
   1912     @Deprecated
   1913     public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
   1914         return createTypedArray(c);
   1915     }
   1916 
   1917     /**
   1918      * Write a heterogeneous array of Parcelable objects into the Parcel.
   1919      * Each object in the array is written along with its class name, so
   1920      * that the correct class can later be instantiated.  As a result, this
   1921      * has significantly more overhead than {@link #writeTypedArray}, but will
   1922      * correctly handle an array containing more than one type of object.
   1923      *
   1924      * @param value The array of objects to be written.
   1925      * @param parcelableFlags Contextual flags as per
   1926      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
   1927      *
   1928      * @see #writeTypedArray
   1929      */
   1930     public final <T extends Parcelable> void writeParcelableArray(T[] value,
   1931             int parcelableFlags) {
   1932         if (value != null) {
   1933             int N = value.length;
   1934             writeInt(N);
   1935             for (int i=0; i<N; i++) {
   1936                 writeParcelable(value[i], parcelableFlags);
   1937             }
   1938         } else {
   1939             writeInt(-1);
   1940         }
   1941     }
   1942 
   1943     /**
   1944      * Read a typed object from a parcel.  The given class loader will be
   1945      * used to load any enclosed Parcelables.  If it is null, the default class
   1946      * loader will be used.
   1947      */
   1948     public final Object readValue(ClassLoader loader) {
   1949         int type = readInt();
   1950 
   1951         switch (type) {
   1952         case VAL_NULL:
   1953             return null;
   1954 
   1955         case VAL_STRING:
   1956             return readString();
   1957 
   1958         case VAL_INTEGER:
   1959             return readInt();
   1960 
   1961         case VAL_MAP:
   1962             return readHashMap(loader);
   1963 
   1964         case VAL_PARCELABLE:
   1965             return readParcelable(loader);
   1966 
   1967         case VAL_SHORT:
   1968             return (short) readInt();
   1969 
   1970         case VAL_LONG:
   1971             return readLong();
   1972 
   1973         case VAL_FLOAT:
   1974             return readFloat();
   1975 
   1976         case VAL_DOUBLE:
   1977             return readDouble();
   1978 
   1979         case VAL_BOOLEAN:
   1980             return readInt() == 1;
   1981 
   1982         case VAL_CHARSEQUENCE:
   1983             return readCharSequence();
   1984 
   1985         case VAL_LIST:
   1986             return readArrayList(loader);
   1987 
   1988         case VAL_BOOLEANARRAY:
   1989             return createBooleanArray();
   1990 
   1991         case VAL_BYTEARRAY:
   1992             return createByteArray();
   1993 
   1994         case VAL_STRINGARRAY:
   1995             return readStringArray();
   1996 
   1997         case VAL_CHARSEQUENCEARRAY:
   1998             return readCharSequenceArray();
   1999 
   2000         case VAL_IBINDER:
   2001             return readStrongBinder();
   2002 
   2003         case VAL_OBJECTARRAY:
   2004             return readArray(loader);
   2005 
   2006         case VAL_INTARRAY:
   2007             return createIntArray();
   2008 
   2009         case VAL_LONGARRAY:
   2010             return createLongArray();
   2011 
   2012         case VAL_BYTE:
   2013             return readByte();
   2014 
   2015         case VAL_SERIALIZABLE:
   2016             return readSerializable();
   2017 
   2018         case VAL_PARCELABLEARRAY:
   2019             return readParcelableArray(loader);
   2020 
   2021         case VAL_SPARSEARRAY:
   2022             return readSparseArray(loader);
   2023 
   2024         case VAL_SPARSEBOOLEANARRAY:
   2025             return readSparseBooleanArray();
   2026 
   2027         case VAL_BUNDLE:
   2028             return readBundle(loader); // loading will be deferred
   2029 
   2030         default:
   2031             int off = dataPosition() - 4;
   2032             throw new RuntimeException(
   2033                 "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
   2034         }
   2035     }
   2036 
   2037     /**
   2038      * Read and return a new Parcelable from the parcel.  The given class loader
   2039      * will be used to load any enclosed Parcelables.  If it is null, the default
   2040      * class loader will be used.
   2041      * @param loader A ClassLoader from which to instantiate the Parcelable
   2042      * object, or null for the default class loader.
   2043      * @return Returns the newly created Parcelable, or null if a null
   2044      * object has been written.
   2045      * @throws BadParcelableException Throws BadParcelableException if there
   2046      * was an error trying to instantiate the Parcelable.
   2047      */
   2048     public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
   2049         String name = readString();
   2050         if (name == null) {
   2051             return null;
   2052         }
   2053         Parcelable.Creator<T> creator;
   2054         synchronized (mCreators) {
   2055             HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
   2056             if (map == null) {
   2057                 map = new HashMap<String,Parcelable.Creator>();
   2058                 mCreators.put(loader, map);
   2059             }
   2060             creator = map.get(name);
   2061             if (creator == null) {
   2062                 try {
   2063                     Class c = loader == null ?
   2064                         Class.forName(name) : Class.forName(name, true, loader);
   2065                     Field f = c.getField("CREATOR");
   2066                     creator = (Parcelable.Creator)f.get(null);
   2067                 }
   2068                 catch (IllegalAccessException e) {
   2069                     Log.e(TAG, "Class not found when unmarshalling: "
   2070                                         + name + ", e: " + e);
   2071                     throw new BadParcelableException(
   2072                             "IllegalAccessException when unmarshalling: " + name);
   2073                 }
   2074                 catch (ClassNotFoundException e) {
   2075                     Log.e(TAG, "Class not found when unmarshalling: "
   2076                                         + name + ", e: " + e);
   2077                     throw new BadParcelableException(
   2078                             "ClassNotFoundException when unmarshalling: " + name);
   2079                 }
   2080                 catch (ClassCastException e) {
   2081                     throw new BadParcelableException("Parcelable protocol requires a "
   2082                                         + "Parcelable.Creator object called "
   2083                                         + " CREATOR on class " + name);
   2084                 }
   2085                 catch (NoSuchFieldException e) {
   2086                     throw new BadParcelableException("Parcelable protocol requires a "
   2087                                         + "Parcelable.Creator object called "
   2088                                         + " CREATOR on class " + name);
   2089                 }
   2090                 if (creator == null) {
   2091                     throw new BadParcelableException("Parcelable protocol requires a "
   2092                                         + "Parcelable.Creator object called "
   2093                                         + " CREATOR on class " + name);
   2094                 }
   2095 
   2096                 map.put(name, creator);
   2097             }
   2098         }
   2099 
   2100         if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
   2101             return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
   2102         }
   2103         return creator.createFromParcel(this);
   2104     }
   2105 
   2106     /**
   2107      * Read and return a new Parcelable array from the parcel.
   2108      * The given class loader will be used to load any enclosed
   2109      * Parcelables.
   2110      * @return the Parcelable array, or null if the array is null
   2111      */
   2112     public final Parcelable[] readParcelableArray(ClassLoader loader) {
   2113         int N = readInt();
   2114         if (N < 0) {
   2115             return null;
   2116         }
   2117         Parcelable[] p = new Parcelable[N];
   2118         for (int i = 0; i < N; i++) {
   2119             p[i] = (Parcelable) readParcelable(loader);
   2120         }
   2121         return p;
   2122     }
   2123 
   2124     /**
   2125      * Read and return a new Serializable object from the parcel.
   2126      * @return the Serializable object, or null if the Serializable name
   2127      * wasn't found in the parcel.
   2128      */
   2129     public final Serializable readSerializable() {
   2130         String name = readString();
   2131         if (name == null) {
   2132             // For some reason we were unable to read the name of the Serializable (either there
   2133             // is nothing left in the Parcel to read, or the next value wasn't a String), so
   2134             // return null, which indicates that the name wasn't found in the parcel.
   2135             return null;
   2136         }
   2137 
   2138         byte[] serializedData = createByteArray();
   2139         ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
   2140         try {
   2141             ObjectInputStream ois = new ObjectInputStream(bais);
   2142             return (Serializable) ois.readObject();
   2143         } catch (IOException ioe) {
   2144             throw new RuntimeException("Parcelable encountered " +
   2145                 "IOException reading a Serializable object (name = " + name +
   2146                 ")", ioe);
   2147         } catch (ClassNotFoundException cnfe) {
   2148             throw new RuntimeException("Parcelable encountered" +
   2149                 "ClassNotFoundException reading a Serializable object (name = "
   2150                 + name + ")", cnfe);
   2151         }
   2152     }
   2153 
   2154     // Cache of previously looked up CREATOR.createFromParcel() methods for
   2155     // particular classes.  Keys are the names of the classes, values are
   2156     // Method objects.
   2157     private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
   2158         mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
   2159 
   2160     static protected final Parcel obtain(int obj) {
   2161         final Parcel[] pool = sHolderPool;
   2162         synchronized (pool) {
   2163             Parcel p;
   2164             for (int i=0; i<POOL_SIZE; i++) {
   2165                 p = pool[i];
   2166                 if (p != null) {
   2167                     pool[i] = null;
   2168                     if (DEBUG_RECYCLE) {
   2169                         p.mStack = new RuntimeException();
   2170                     }
   2171                     p.init(obj);
   2172                     return p;
   2173                 }
   2174             }
   2175         }
   2176         return new Parcel(obj);
   2177     }
   2178 
   2179     private Parcel(int nativePtr) {
   2180         if (DEBUG_RECYCLE) {
   2181             mStack = new RuntimeException();
   2182         }
   2183         //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
   2184         init(nativePtr);
   2185     }
   2186 
   2187     private void init(int nativePtr) {
   2188         if (nativePtr != 0) {
   2189             mNativePtr = nativePtr;
   2190             mOwnsNativeParcelObject = false;
   2191         } else {
   2192             mNativePtr = nativeCreate();
   2193             mOwnsNativeParcelObject = true;
   2194         }
   2195     }
   2196 
   2197     private void freeBuffer() {
   2198         if (mOwnsNativeParcelObject) {
   2199             nativeFreeBuffer(mNativePtr);
   2200         }
   2201     }
   2202 
   2203     private void destroy() {
   2204         if (mNativePtr != 0) {
   2205             if (mOwnsNativeParcelObject) {
   2206                 nativeDestroy(mNativePtr);
   2207             }
   2208             mNativePtr = 0;
   2209         }
   2210     }
   2211 
   2212     @Override
   2213     protected void finalize() throws Throwable {
   2214         if (DEBUG_RECYCLE) {
   2215             if (mStack != null) {
   2216                 Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
   2217             }
   2218         }
   2219         destroy();
   2220     }
   2221 
   2222     /* package */ void readMapInternal(Map outVal, int N,
   2223         ClassLoader loader) {
   2224         while (N > 0) {
   2225             Object key = readValue(loader);
   2226             Object value = readValue(loader);
   2227             outVal.put(key, value);
   2228             N--;
   2229         }
   2230     }
   2231 
   2232     private void readListInternal(List outVal, int N,
   2233         ClassLoader loader) {
   2234         while (N > 0) {
   2235             Object value = readValue(loader);
   2236             //Log.d(TAG, "Unmarshalling value=" + value);
   2237             outVal.add(value);
   2238             N--;
   2239         }
   2240     }
   2241 
   2242     private void readArrayInternal(Object[] outVal, int N,
   2243         ClassLoader loader) {
   2244         for (int i = 0; i < N; i++) {
   2245             Object value = readValue(loader);
   2246             //Log.d(TAG, "Unmarshalling value=" + value);
   2247             outVal[i] = value;
   2248         }
   2249     }
   2250 
   2251     private void readSparseArrayInternal(SparseArray outVal, int N,
   2252         ClassLoader loader) {
   2253         while (N > 0) {
   2254             int key = readInt();
   2255             Object value = readValue(loader);
   2256             //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
   2257             outVal.append(key, value);
   2258             N--;
   2259         }
   2260     }
   2261 
   2262 
   2263     private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
   2264         while (N > 0) {
   2265             int key = readInt();
   2266             boolean value = this.readByte() == 1;
   2267             //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
   2268             outVal.append(key, value);
   2269             N--;
   2270         }
   2271     }
   2272 }
   2273