1 #!/usr/bin/env perl 2 # 3 # ==================================================================== 4 # Written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL 5 # project. The module is, however, dual licensed under OpenSSL and 6 # CRYPTOGAMS licenses depending on where you obtain it. For further 7 # details see http://www.openssl.org/~appro/cryptogams/. 8 # ==================================================================== 9 # 10 # March, June 2010 11 # 12 # The module implements "4-bit" GCM GHASH function and underlying 13 # single multiplication operation in GF(2^128). "4-bit" means that 14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH 15 # function features so called "528B" variant utilizing additional 16 # 256+16 bytes of per-key storage [+512 bytes shared table]. 17 # Performance results are for this streamed GHASH subroutine and are 18 # expressed in cycles per processed byte, less is better: 19 # 20 # gcc 3.4.x(*) assembler 21 # 22 # P4 28.6 14.0 +100% 23 # Opteron 19.3 7.7 +150% 24 # Core2 17.8 8.1(**) +120% 25 # 26 # (*) comparison is not completely fair, because C results are 27 # for vanilla "256B" implementation, while assembler results 28 # are for "528B";-) 29 # (**) it's mystery [to me] why Core2 result is not same as for 30 # Opteron; 31 32 # May 2010 33 # 34 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte. 35 # See ghash-x86.pl for background information and details about coding 36 # techniques. 37 # 38 # Special thanks to David Woodhouse <dwmw2 (at] infradead.org> for 39 # providing access to a Westmere-based system on behalf of Intel 40 # Open Source Technology Centre. 41 42 $flavour = shift; 43 $output = shift; 44 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 45 46 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 47 48 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 49 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 50 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or 51 die "can't locate x86_64-xlate.pl"; 52 53 open STDOUT,"| $^X $xlate $flavour $output"; 54 55 # common register layout 56 $nlo="%rax"; 57 $nhi="%rbx"; 58 $Zlo="%r8"; 59 $Zhi="%r9"; 60 $tmp="%r10"; 61 $rem_4bit = "%r11"; 62 63 $Xi="%rdi"; 64 $Htbl="%rsi"; 65 66 # per-function register layout 67 $cnt="%rcx"; 68 $rem="%rdx"; 69 70 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or 71 $r =~ s/%[er]([sd]i)/%\1l/ or 72 $r =~ s/%[er](bp)/%\1l/ or 73 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; } 74 75 sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm 76 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; 77 my $arg = pop; 78 $arg = "\$$arg" if ($arg*1 eq $arg); 79 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; 80 } 81 83 { my $N; 84 sub loop() { 85 my $inp = shift; 86 87 $N++; 88 $code.=<<___; 89 xor $nlo,$nlo 90 xor $nhi,$nhi 91 mov `&LB("$Zlo")`,`&LB("$nlo")` 92 mov `&LB("$Zlo")`,`&LB("$nhi")` 93 shl \$4,`&LB("$nlo")` 94 mov \$14,$cnt 95 mov 8($Htbl,$nlo),$Zlo 96 mov ($Htbl,$nlo),$Zhi 97 and \$0xf0,`&LB("$nhi")` 98 mov $Zlo,$rem 99 jmp .Loop$N 100 101 .align 16 102 .Loop$N: 103 shr \$4,$Zlo 104 and \$0xf,$rem 105 mov $Zhi,$tmp 106 mov ($inp,$cnt),`&LB("$nlo")` 107 shr \$4,$Zhi 108 xor 8($Htbl,$nhi),$Zlo 109 shl \$60,$tmp 110 xor ($Htbl,$nhi),$Zhi 111 mov `&LB("$nlo")`,`&LB("$nhi")` 112 xor ($rem_4bit,$rem,8),$Zhi 113 mov $Zlo,$rem 114 shl \$4,`&LB("$nlo")` 115 xor $tmp,$Zlo 116 dec $cnt 117 js .Lbreak$N 118 119 shr \$4,$Zlo 120 and \$0xf,$rem 121 mov $Zhi,$tmp 122 shr \$4,$Zhi 123 xor 8($Htbl,$nlo),$Zlo 124 shl \$60,$tmp 125 xor ($Htbl,$nlo),$Zhi 126 and \$0xf0,`&LB("$nhi")` 127 xor ($rem_4bit,$rem,8),$Zhi 128 mov $Zlo,$rem 129 xor $tmp,$Zlo 130 jmp .Loop$N 131 132 .align 16 133 .Lbreak$N: 134 shr \$4,$Zlo 135 and \$0xf,$rem 136 mov $Zhi,$tmp 137 shr \$4,$Zhi 138 xor 8($Htbl,$nlo),$Zlo 139 shl \$60,$tmp 140 xor ($Htbl,$nlo),$Zhi 141 and \$0xf0,`&LB("$nhi")` 142 xor ($rem_4bit,$rem,8),$Zhi 143 mov $Zlo,$rem 144 xor $tmp,$Zlo 145 146 shr \$4,$Zlo 147 and \$0xf,$rem 148 mov $Zhi,$tmp 149 shr \$4,$Zhi 150 xor 8($Htbl,$nhi),$Zlo 151 shl \$60,$tmp 152 xor ($Htbl,$nhi),$Zhi 153 xor $tmp,$Zlo 154 xor ($rem_4bit,$rem,8),$Zhi 155 156 bswap $Zlo 157 bswap $Zhi 158 ___ 159 }} 160 161 $code=<<___; 162 .text 163 164 .globl gcm_gmult_4bit 165 .type gcm_gmult_4bit,\@function,2 166 .align 16 167 gcm_gmult_4bit: 168 push %rbx 169 push %rbp # %rbp and %r12 are pushed exclusively in 170 push %r12 # order to reuse Win64 exception handler... 171 .Lgmult_prologue: 172 173 movzb 15($Xi),$Zlo 174 lea .Lrem_4bit(%rip),$rem_4bit 175 ___ 176 &loop ($Xi); 177 $code.=<<___; 178 mov $Zlo,8($Xi) 179 mov $Zhi,($Xi) 180 181 mov 16(%rsp),%rbx 182 lea 24(%rsp),%rsp 183 .Lgmult_epilogue: 184 ret 185 .size gcm_gmult_4bit,.-gcm_gmult_4bit 186 ___ 187 189 # per-function register layout 190 $inp="%rdx"; 191 $len="%rcx"; 192 $rem_8bit=$rem_4bit; 193 194 $code.=<<___; 195 .globl gcm_ghash_4bit 196 .type gcm_ghash_4bit,\@function,4 197 .align 16 198 gcm_ghash_4bit: 199 push %rbx 200 push %rbp 201 push %r12 202 push %r13 203 push %r14 204 push %r15 205 sub \$280,%rsp 206 .Lghash_prologue: 207 mov $inp,%r14 # reassign couple of args 208 mov $len,%r15 209 ___ 210 { my $inp="%r14"; 211 my $dat="%edx"; 212 my $len="%r15"; 213 my @nhi=("%ebx","%ecx"); 214 my @rem=("%r12","%r13"); 215 my $Hshr4="%rbp"; 216 217 &sub ($Htbl,-128); # size optimization 218 &lea ($Hshr4,"16+128(%rsp)"); 219 { my @lo =($nlo,$nhi); 220 my @hi =($Zlo,$Zhi); 221 222 &xor ($dat,$dat); 223 for ($i=0,$j=-2;$i<18;$i++,$j++) { 224 &mov ("$j(%rsp)",&LB($dat)) if ($i>1); 225 &or ($lo[0],$tmp) if ($i>1); 226 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17); 227 &shr ($lo[1],4) if ($i>0 && $i<17); 228 &mov ($tmp,$hi[1]) if ($i>0 && $i<17); 229 &shr ($hi[1],4) if ($i>0 && $i<17); 230 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1); 231 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16); 232 &shl (&LB($dat),4) if ($i>0 && $i<17); 233 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1); 234 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16); 235 &shl ($tmp,60) if ($i>0 && $i<17); 236 237 push (@lo,shift(@lo)); 238 push (@hi,shift(@hi)); 239 } 240 } 241 &add ($Htbl,-128); 242 &mov ($Zlo,"8($Xi)"); 243 &mov ($Zhi,"0($Xi)"); 244 &add ($len,$inp); # pointer to the end of data 245 &lea ($rem_8bit,".Lrem_8bit(%rip)"); 246 &jmp (".Louter_loop"); 247 248 $code.=".align 16\n.Louter_loop:\n"; 249 &xor ($Zhi,"($inp)"); 250 &mov ("%rdx","8($inp)"); 251 &lea ($inp,"16($inp)"); 252 &xor ("%rdx",$Zlo); 253 &mov ("($Xi)",$Zhi); 254 &mov ("8($Xi)","%rdx"); 255 &shr ("%rdx",32); 256 257 &xor ($nlo,$nlo); 258 &rol ($dat,8); 259 &mov (&LB($nlo),&LB($dat)); 260 &movz ($nhi[0],&LB($dat)); 261 &shl (&LB($nlo),4); 262 &shr ($nhi[0],4); 263 264 for ($j=11,$i=0;$i<15;$i++) { 265 &rol ($dat,8); 266 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0); 267 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0); 268 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0); 269 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0); 270 271 &mov (&LB($nlo),&LB($dat)); 272 &xor ($Zlo,$tmp) if ($i>0); 273 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0); 274 275 &movz ($nhi[1],&LB($dat)); 276 &shl (&LB($nlo),4); 277 &movzb ($rem[0],"(%rsp,$nhi[0])"); 278 279 &shr ($nhi[1],4) if ($i<14); 280 &and ($nhi[1],0xf0) if ($i==14); 281 &shl ($rem[1],48) if ($i>0); 282 &xor ($rem[0],$Zlo); 283 284 &mov ($tmp,$Zhi); 285 &xor ($Zhi,$rem[1]) if ($i>0); 286 &shr ($Zlo,8); 287 288 &movz ($rem[0],&LB($rem[0])); 289 &mov ($dat,"$j($Xi)") if (--$j%4==0); 290 &shr ($Zhi,8); 291 292 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)"); 293 &shl ($tmp,56); 294 &xor ($Zhi,"($Hshr4,$nhi[0],8)"); 295 296 unshift (@nhi,pop(@nhi)); # "rotate" registers 297 unshift (@rem,pop(@rem)); 298 } 299 &movzw ($rem[1],"($rem_8bit,$rem[1],2)"); 300 &xor ($Zlo,"8($Htbl,$nlo)"); 301 &xor ($Zhi,"($Htbl,$nlo)"); 302 303 &shl ($rem[1],48); 304 &xor ($Zlo,$tmp); 305 306 &xor ($Zhi,$rem[1]); 307 &movz ($rem[0],&LB($Zlo)); 308 &shr ($Zlo,4); 309 310 &mov ($tmp,$Zhi); 311 &shl (&LB($rem[0]),4); 312 &shr ($Zhi,4); 313 314 &xor ($Zlo,"8($Htbl,$nhi[0])"); 315 &movzw ($rem[0],"($rem_8bit,$rem[0],2)"); 316 &shl ($tmp,60); 317 318 &xor ($Zhi,"($Htbl,$nhi[0])"); 319 &xor ($Zlo,$tmp); 320 &shl ($rem[0],48); 321 322 &bswap ($Zlo); 323 &xor ($Zhi,$rem[0]); 324 325 &bswap ($Zhi); 326 &cmp ($inp,$len); 327 &jb (".Louter_loop"); 328 } 329 $code.=<<___; 330 mov $Zlo,8($Xi) 331 mov $Zhi,($Xi) 332 333 lea 280(%rsp),%rsi 334 mov 0(%rsi),%r15 335 mov 8(%rsi),%r14 336 mov 16(%rsi),%r13 337 mov 24(%rsi),%r12 338 mov 32(%rsi),%rbp 339 mov 40(%rsi),%rbx 340 lea 48(%rsi),%rsp 341 .Lghash_epilogue: 342 ret 343 .size gcm_ghash_4bit,.-gcm_ghash_4bit 344 ___ 345 347 ###################################################################### 348 # PCLMULQDQ version. 349 350 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order 351 ("%rdi","%rsi","%rdx","%rcx"); # Unix order 352 353 ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2"; 354 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5"); 355 356 sub clmul64x64_T2 { # minimal register pressure 357 my ($Xhi,$Xi,$Hkey,$modulo)=@_; 358 359 $code.=<<___ if (!defined($modulo)); 360 movdqa $Xi,$Xhi # 361 pshufd \$0b01001110,$Xi,$T1 362 pshufd \$0b01001110,$Hkey,$T2 363 pxor $Xi,$T1 # 364 pxor $Hkey,$T2 365 ___ 366 $code.=<<___; 367 pclmulqdq \$0x00,$Hkey,$Xi ####### 368 pclmulqdq \$0x11,$Hkey,$Xhi ####### 369 pclmulqdq \$0x00,$T2,$T1 ####### 370 pxor $Xi,$T1 # 371 pxor $Xhi,$T1 # 372 373 movdqa $T1,$T2 # 374 psrldq \$8,$T1 375 pslldq \$8,$T2 # 376 pxor $T1,$Xhi 377 pxor $T2,$Xi # 378 ___ 379 } 380 381 sub reduction_alg9 { # 17/13 times faster than Intel version 382 my ($Xhi,$Xi) = @_; 383 384 $code.=<<___; 385 # 1st phase 386 movdqa $Xi,$T1 # 387 psllq \$1,$Xi 388 pxor $T1,$Xi # 389 psllq \$5,$Xi # 390 pxor $T1,$Xi # 391 psllq \$57,$Xi # 392 movdqa $Xi,$T2 # 393 pslldq \$8,$Xi 394 psrldq \$8,$T2 # 395 pxor $T1,$Xi 396 pxor $T2,$Xhi # 397 398 # 2nd phase 399 movdqa $Xi,$T2 400 psrlq \$5,$Xi 401 pxor $T2,$Xi # 402 psrlq \$1,$Xi # 403 pxor $T2,$Xi # 404 pxor $Xhi,$T2 405 psrlq \$1,$Xi # 406 pxor $T2,$Xi # 407 ___ 408 } 409 411 { my ($Htbl,$Xip)=@_4args; 412 413 $code.=<<___; 414 .globl gcm_init_clmul 415 .type gcm_init_clmul,\@abi-omnipotent 416 .align 16 417 gcm_init_clmul: 418 movdqu ($Xip),$Hkey 419 pshufd \$0b01001110,$Hkey,$Hkey # dword swap 420 421 # <<1 twist 422 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword 423 movdqa $Hkey,$T1 424 psllq \$1,$Hkey 425 pxor $T3,$T3 # 426 psrlq \$63,$T1 427 pcmpgtd $T2,$T3 # broadcast carry bit 428 pslldq \$8,$T1 429 por $T1,$Hkey # H<<=1 430 431 # magic reduction 432 pand .L0x1c2_polynomial(%rip),$T3 433 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial 434 435 # calculate H^2 436 movdqa $Hkey,$Xi 437 ___ 438 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); 439 &reduction_alg9 ($Xhi,$Xi); 440 $code.=<<___; 441 movdqu $Hkey,($Htbl) # save H 442 movdqu $Xi,16($Htbl) # save H^2 443 ret 444 .size gcm_init_clmul,.-gcm_init_clmul 445 ___ 446 } 447 448 { my ($Xip,$Htbl)=@_4args; 449 450 $code.=<<___; 451 .globl gcm_gmult_clmul 452 .type gcm_gmult_clmul,\@abi-omnipotent 453 .align 16 454 gcm_gmult_clmul: 455 movdqu ($Xip),$Xi 456 movdqa .Lbswap_mask(%rip),$T3 457 movdqu ($Htbl),$Hkey 458 pshufb $T3,$Xi 459 ___ 460 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); 461 &reduction_alg9 ($Xhi,$Xi); 462 $code.=<<___; 463 pshufb $T3,$Xi 464 movdqu $Xi,($Xip) 465 ret 466 .size gcm_gmult_clmul,.-gcm_gmult_clmul 467 ___ 468 } 469 471 { my ($Xip,$Htbl,$inp,$len)=@_4args; 472 my $Xn="%xmm6"; 473 my $Xhn="%xmm7"; 474 my $Hkey2="%xmm8"; 475 my $T1n="%xmm9"; 476 my $T2n="%xmm10"; 477 478 $code.=<<___; 479 .globl gcm_ghash_clmul 480 .type gcm_ghash_clmul,\@abi-omnipotent 481 .align 16 482 gcm_ghash_clmul: 483 ___ 484 $code.=<<___ if ($win64); 485 .LSEH_begin_gcm_ghash_clmul: 486 # I can't trust assembler to use specific encoding:-( 487 .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp 488 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) 489 .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp) 490 .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp) 491 .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp) 492 .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp) 493 ___ 494 $code.=<<___; 495 movdqa .Lbswap_mask(%rip),$T3 496 497 movdqu ($Xip),$Xi 498 movdqu ($Htbl),$Hkey 499 pshufb $T3,$Xi 500 501 sub \$0x10,$len 502 jz .Lodd_tail 503 504 movdqu 16($Htbl),$Hkey2 505 ####### 506 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = 507 # [(H*Ii+1) + (H*Xi+1)] mod P = 508 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P 509 # 510 movdqu ($inp),$T1 # Ii 511 movdqu 16($inp),$Xn # Ii+1 512 pshufb $T3,$T1 513 pshufb $T3,$Xn 514 pxor $T1,$Xi # Ii+Xi 515 ___ 516 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1 517 $code.=<<___; 518 movdqa $Xi,$Xhi # 519 pshufd \$0b01001110,$Xi,$T1 520 pshufd \$0b01001110,$Hkey2,$T2 521 pxor $Xi,$T1 # 522 pxor $Hkey2,$T2 523 524 lea 32($inp),$inp # i+=2 525 sub \$0x20,$len 526 jbe .Leven_tail 527 528 .Lmod_loop: 529 ___ 530 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi) 531 $code.=<<___; 532 movdqu ($inp),$T1 # Ii 533 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi) 534 pxor $Xhn,$Xhi 535 536 movdqu 16($inp),$Xn # Ii+1 537 pshufb $T3,$T1 538 pshufb $T3,$Xn 539 540 movdqa $Xn,$Xhn # 541 pshufd \$0b01001110,$Xn,$T1n 542 pshufd \$0b01001110,$Hkey,$T2n 543 pxor $Xn,$T1n # 544 pxor $Hkey,$T2n 545 pxor $T1,$Xhi # "Ii+Xi", consume early 546 547 movdqa $Xi,$T1 # 1st phase 548 psllq \$1,$Xi 549 pxor $T1,$Xi # 550 psllq \$5,$Xi # 551 pxor $T1,$Xi # 552 pclmulqdq \$0x00,$Hkey,$Xn ####### 553 psllq \$57,$Xi # 554 movdqa $Xi,$T2 # 555 pslldq \$8,$Xi 556 psrldq \$8,$T2 # 557 pxor $T1,$Xi 558 pxor $T2,$Xhi # 559 560 pclmulqdq \$0x11,$Hkey,$Xhn ####### 561 movdqa $Xi,$T2 # 2nd phase 562 psrlq \$5,$Xi 563 pxor $T2,$Xi # 564 psrlq \$1,$Xi # 565 pxor $T2,$Xi # 566 pxor $Xhi,$T2 567 psrlq \$1,$Xi # 568 pxor $T2,$Xi # 569 570 pclmulqdq \$0x00,$T2n,$T1n ####### 571 movdqa $Xi,$Xhi # 572 pshufd \$0b01001110,$Xi,$T1 573 pshufd \$0b01001110,$Hkey2,$T2 574 pxor $Xi,$T1 # 575 pxor $Hkey2,$T2 576 577 pxor $Xn,$T1n # 578 pxor $Xhn,$T1n # 579 movdqa $T1n,$T2n # 580 psrldq \$8,$T1n 581 pslldq \$8,$T2n # 582 pxor $T1n,$Xhn 583 pxor $T2n,$Xn # 584 585 lea 32($inp),$inp 586 sub \$0x20,$len 587 ja .Lmod_loop 588 589 .Leven_tail: 590 ___ 591 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi) 592 $code.=<<___; 593 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi) 594 pxor $Xhn,$Xhi 595 ___ 596 &reduction_alg9 ($Xhi,$Xi); 597 $code.=<<___; 598 test $len,$len 599 jnz .Ldone 600 601 .Lodd_tail: 602 movdqu ($inp),$T1 # Ii 603 pshufb $T3,$T1 604 pxor $T1,$Xi # Ii+Xi 605 ___ 606 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) 607 &reduction_alg9 ($Xhi,$Xi); 608 $code.=<<___; 609 .Ldone: 610 pshufb $T3,$Xi 611 movdqu $Xi,($Xip) 612 ___ 613 $code.=<<___ if ($win64); 614 movaps (%rsp),%xmm6 615 movaps 0x10(%rsp),%xmm7 616 movaps 0x20(%rsp),%xmm8 617 movaps 0x30(%rsp),%xmm9 618 movaps 0x40(%rsp),%xmm10 619 add \$0x58,%rsp 620 ___ 621 $code.=<<___; 622 ret 623 .LSEH_end_gcm_ghash_clmul: 624 .size gcm_ghash_clmul,.-gcm_ghash_clmul 625 ___ 626 } 627 628 $code.=<<___; 629 .align 64 630 .Lbswap_mask: 631 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 632 .L0x1c2_polynomial: 633 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2 634 .align 64 635 .type .Lrem_4bit,\@object 636 .Lrem_4bit: 637 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16` 638 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16` 639 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16` 640 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16` 641 .type .Lrem_8bit,\@object 642 .Lrem_8bit: 643 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E 644 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E 645 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E 646 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E 647 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E 648 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E 649 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E 650 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E 651 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE 652 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE 653 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE 654 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE 655 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E 656 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E 657 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE 658 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE 659 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E 660 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E 661 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E 662 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E 663 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E 664 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E 665 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E 666 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E 667 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE 668 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE 669 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE 670 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE 671 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E 672 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E 673 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE 674 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE 675 676 .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 677 .align 64 678 ___ 679 681 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 682 # CONTEXT *context,DISPATCHER_CONTEXT *disp) 683 if ($win64) { 684 $rec="%rcx"; 685 $frame="%rdx"; 686 $context="%r8"; 687 $disp="%r9"; 688 689 $code.=<<___; 690 .extern __imp_RtlVirtualUnwind 691 .type se_handler,\@abi-omnipotent 692 .align 16 693 se_handler: 694 push %rsi 695 push %rdi 696 push %rbx 697 push %rbp 698 push %r12 699 push %r13 700 push %r14 701 push %r15 702 pushfq 703 sub \$64,%rsp 704 705 mov 120($context),%rax # pull context->Rax 706 mov 248($context),%rbx # pull context->Rip 707 708 mov 8($disp),%rsi # disp->ImageBase 709 mov 56($disp),%r11 # disp->HandlerData 710 711 mov 0(%r11),%r10d # HandlerData[0] 712 lea (%rsi,%r10),%r10 # prologue label 713 cmp %r10,%rbx # context->Rip<prologue label 714 jb .Lin_prologue 715 716 mov 152($context),%rax # pull context->Rsp 717 718 mov 4(%r11),%r10d # HandlerData[1] 719 lea (%rsi,%r10),%r10 # epilogue label 720 cmp %r10,%rbx # context->Rip>=epilogue label 721 jae .Lin_prologue 722 723 lea 24(%rax),%rax # adjust "rsp" 724 725 mov -8(%rax),%rbx 726 mov -16(%rax),%rbp 727 mov -24(%rax),%r12 728 mov %rbx,144($context) # restore context->Rbx 729 mov %rbp,160($context) # restore context->Rbp 730 mov %r12,216($context) # restore context->R12 731 732 .Lin_prologue: 733 mov 8(%rax),%rdi 734 mov 16(%rax),%rsi 735 mov %rax,152($context) # restore context->Rsp 736 mov %rsi,168($context) # restore context->Rsi 737 mov %rdi,176($context) # restore context->Rdi 738 739 mov 40($disp),%rdi # disp->ContextRecord 740 mov $context,%rsi # context 741 mov \$`1232/8`,%ecx # sizeof(CONTEXT) 742 .long 0xa548f3fc # cld; rep movsq 743 744 mov $disp,%rsi 745 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 746 mov 8(%rsi),%rdx # arg2, disp->ImageBase 747 mov 0(%rsi),%r8 # arg3, disp->ControlPc 748 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 749 mov 40(%rsi),%r10 # disp->ContextRecord 750 lea 56(%rsi),%r11 # &disp->HandlerData 751 lea 24(%rsi),%r12 # &disp->EstablisherFrame 752 mov %r10,32(%rsp) # arg5 753 mov %r11,40(%rsp) # arg6 754 mov %r12,48(%rsp) # arg7 755 mov %rcx,56(%rsp) # arg8, (NULL) 756 call *__imp_RtlVirtualUnwind(%rip) 757 758 mov \$1,%eax # ExceptionContinueSearch 759 add \$64,%rsp 760 popfq 761 pop %r15 762 pop %r14 763 pop %r13 764 pop %r12 765 pop %rbp 766 pop %rbx 767 pop %rdi 768 pop %rsi 769 ret 770 .size se_handler,.-se_handler 771 772 .section .pdata 773 .align 4 774 .rva .LSEH_begin_gcm_gmult_4bit 775 .rva .LSEH_end_gcm_gmult_4bit 776 .rva .LSEH_info_gcm_gmult_4bit 777 778 .rva .LSEH_begin_gcm_ghash_4bit 779 .rva .LSEH_end_gcm_ghash_4bit 780 .rva .LSEH_info_gcm_ghash_4bit 781 782 .rva .LSEH_begin_gcm_ghash_clmul 783 .rva .LSEH_end_gcm_ghash_clmul 784 .rva .LSEH_info_gcm_ghash_clmul 785 786 .section .xdata 787 .align 8 788 .LSEH_info_gcm_gmult_4bit: 789 .byte 9,0,0,0 790 .rva se_handler 791 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData 792 .LSEH_info_gcm_ghash_4bit: 793 .byte 9,0,0,0 794 .rva se_handler 795 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData 796 .LSEH_info_gcm_ghash_clmul: 797 .byte 0x01,0x1f,0x0b,0x00 798 .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10 799 .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9 800 .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8 801 .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 802 .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6 803 .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58 804 ___ 805 } 806 808 $code =~ s/\`([^\`]*)\`/eval($1)/gem; 809 810 print $code; 811 812 close STDOUT; 813