Home | History | Annotate | Download | only in v8-v5
      1 // Copyright 2009 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // This benchmark is based on a JavaScript log processing module used
     29 // by the V8 profiler to generate execution time profiles for runs of
     30 // JavaScript applications, and it effectively measures how fast the
     31 // JavaScript engine is at allocating nodes and reclaiming the memory
     32 // used for old nodes. Because of the way splay trees work, the engine
     33 // also has to deal with a lot of changes to the large tree object
     34 // graph.
     35 
     36 // Configuration.
     37 var kSplayTreeSize = 8000;
     38 var kSplayTreeModifications = 80;
     39 var kSplayTreePayloadDepth = 5;
     40 
     41 var splayTree = null;
     42 
     43 
     44 function GeneratePayloadTree(depth, key) {
     45   if (depth == 0) {
     46     return {
     47       array  : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
     48       string : 'String for key ' + key + ' in leaf node'
     49     };
     50   } else {
     51     return {
     52       left:  GeneratePayloadTree(depth - 1, key),
     53       right: GeneratePayloadTree(depth - 1, key)
     54     };
     55   }
     56 }
     57 
     58 
     59 function GenerateKey() {
     60   // The benchmark framework guarantees that Math.random is
     61   // deterministic; see base.js.
     62   return Math.random();
     63 }
     64 
     65 
     66 function InsertNewNode() {
     67   // Insert new node with a unique key.
     68   var key;
     69   do {
     70     key = GenerateKey();
     71   } while (splayTree.find(key) != null);
     72   splayTree.insert(key, GeneratePayloadTree(kSplayTreePayloadDepth, key));
     73   return key;
     74 }
     75 
     76 
     77 
     78 function SplaySetup() {
     79   splayTree = new SplayTree();
     80   for (var i = 0; i < kSplayTreeSize; i++) InsertNewNode();
     81 }
     82 
     83 
     84 function SplayTearDown() {
     85   // Allow the garbage collector to reclaim the memory
     86   // used by the splay tree no matter how we exit the
     87   // tear down function.
     88   var keys = splayTree.exportKeys();
     89   splayTree = null;
     90 
     91   // Verify that the splay tree has the right size.
     92   var length = keys.length;
     93   if (length != kSplayTreeSize) {
     94     throw new Error("Splay tree has wrong size");
     95   }
     96 
     97   // Verify that the splay tree has sorted, unique keys.
     98   for (var i = 0; i < length - 1; i++) {
     99     if (keys[i] >= keys[i + 1]) {
    100       throw new Error("Splay tree not sorted");
    101     }
    102   }
    103 }
    104 
    105 
    106 function SplayRun() {
    107   // Replace a few nodes in the splay tree.
    108   for (var i = 0; i < kSplayTreeModifications; i++) {
    109     var key = InsertNewNode();
    110     var greatest = splayTree.findGreatestLessThan(key);
    111     if (greatest == null) splayTree.remove(key);
    112     else splayTree.remove(greatest.key);
    113   }
    114 }
    115 
    116 
    117 /**
    118  * Constructs a Splay tree.  A splay tree is a self-balancing binary
    119  * search tree with the additional property that recently accessed
    120  * elements are quick to access again. It performs basic operations
    121  * such as insertion, look-up and removal in O(log(n)) amortized time.
    122  *
    123  * @constructor
    124  */
    125 function SplayTree() {
    126 };
    127 
    128 
    129 /**
    130  * Pointer to the root node of the tree.
    131  *
    132  * @type {SplayTree.Node}
    133  * @private
    134  */
    135 SplayTree.prototype.root_ = null;
    136 
    137 
    138 /**
    139  * @return {boolean} Whether the tree is empty.
    140  */
    141 SplayTree.prototype.isEmpty = function() {
    142   return !this.root_;
    143 };
    144 
    145 
    146 /**
    147  * Inserts a node into the tree with the specified key and value if
    148  * the tree does not already contain a node with the specified key. If
    149  * the value is inserted, it becomes the root of the tree.
    150  *
    151  * @param {number} key Key to insert into the tree.
    152  * @param {*} value Value to insert into the tree.
    153  */
    154 SplayTree.prototype.insert = function(key, value) {
    155   if (this.isEmpty()) {
    156     this.root_ = new SplayTree.Node(key, value);
    157     return;
    158   }
    159   // Splay on the key to move the last node on the search path for
    160   // the key to the root of the tree.
    161   this.splay_(key);
    162   if (this.root_.key == key) {
    163     return;
    164   }
    165   var node = new SplayTree.Node(key, value);
    166   if (key > this.root_.key) {
    167     node.left = this.root_;
    168     node.right = this.root_.right;
    169     this.root_.right = null;
    170   } else {
    171     node.right = this.root_;
    172     node.left = this.root_.left;
    173     this.root_.left = null;
    174   }
    175   this.root_ = node;
    176 };
    177 
    178 
    179 /**
    180  * Removes a node with the specified key from the tree if the tree
    181  * contains a node with this key. The removed node is returned. If the
    182  * key is not found, an exception is thrown.
    183  *
    184  * @param {number} key Key to find and remove from the tree.
    185  * @return {SplayTree.Node} The removed node.
    186  */
    187 SplayTree.prototype.remove = function(key) {
    188   if (this.isEmpty()) {
    189     throw Error('Key not found: ' + key);
    190   }
    191   this.splay_(key);
    192   if (this.root_.key != key) {
    193     throw Error('Key not found: ' + key);
    194   }
    195   var removed = this.root_;
    196   if (!this.root_.left) {
    197     this.root_ = this.root_.right;
    198   } else {
    199     var right = this.root_.right;
    200     this.root_ = this.root_.left;
    201     // Splay to make sure that the new root has an empty right child.
    202     this.splay_(key);
    203     // Insert the original right child as the right child of the new
    204     // root.
    205     this.root_.right = right;
    206   }
    207   return removed;
    208 };
    209 
    210 
    211 /**
    212  * Returns the node having the specified key or null if the tree doesn't contain
    213  * a node with the specified key.
    214  *
    215  * @param {number} key Key to find in the tree.
    216  * @return {SplayTree.Node} Node having the specified key.
    217  */
    218 SplayTree.prototype.find = function(key) {
    219   if (this.isEmpty()) {
    220     return null;
    221   }
    222   this.splay_(key);
    223   return this.root_.key == key ? this.root_ : null;
    224 };
    225 
    226 
    227 /**
    228  * @return {SplayTree.Node} Node having the maximum key value that
    229  *     is less or equal to the specified key value.
    230  */
    231 SplayTree.prototype.findGreatestLessThan = function(key) {
    232   if (this.isEmpty()) {
    233     return null;
    234   }
    235   // Splay on the key to move the node with the given key or the last
    236   // node on the search path to the top of the tree.
    237   this.splay_(key);
    238   // Now the result is either the root node or the greatest node in
    239   // the left subtree.
    240   if (this.root_.key <= key) {
    241     return this.root_;
    242   } else if (this.root_.left) {
    243     return this.findMax(this.root_.left);
    244   } else {
    245     return null;
    246   }
    247 };
    248 
    249 
    250 /**
    251  * @return {Array<*>} An array containing all the keys of tree's nodes.
    252  */
    253 SplayTree.prototype.exportKeys = function() {
    254   var result = [];
    255   if (!this.isEmpty()) {
    256     this.root_.traverse_(function(node) { result.push(node.key); });
    257   }
    258   return result;
    259 };
    260 
    261 
    262 /**
    263  * Perform the splay operation for the given key. Moves the node with
    264  * the given key to the top of the tree.  If no node has the given
    265  * key, the last node on the search path is moved to the top of the
    266  * tree. This is the simplified top-down splaying algorithm from:
    267  * "Self-adjusting Binary Search Trees" by Sleator and Tarjan
    268  *
    269  * @param {number} key Key to splay the tree on.
    270  * @private
    271  */
    272 SplayTree.prototype.splay_ = function(key) {
    273   if (this.isEmpty()) {
    274     return;
    275   }
    276   // Create a dummy node.  The use of the dummy node is a bit
    277   // counter-intuitive: The right child of the dummy node will hold
    278   // the L tree of the algorithm.  The left child of the dummy node
    279   // will hold the R tree of the algorithm.  Using a dummy node, left
    280   // and right will always be nodes and we avoid special cases.
    281   var dummy, left, right;
    282   dummy = left = right = new SplayTree.Node(null, null);
    283   var current = this.root_;
    284   while (true) {
    285     if (key < current.key) {
    286       if (!current.left) {
    287         break;
    288       }
    289       if (key < current.left.key) {
    290         // Rotate right.
    291         var tmp = current.left;
    292         current.left = tmp.right;
    293         tmp.right = current;
    294         current = tmp;
    295         if (!current.left) {
    296           break;
    297         }
    298       }
    299       // Link right.
    300       right.left = current;
    301       right = current;
    302       current = current.left;
    303     } else if (key > current.key) {
    304       if (!current.right) {
    305         break;
    306       }
    307       if (key > current.right.key) {
    308         // Rotate left.
    309         var tmp = current.right;
    310         current.right = tmp.left;
    311         tmp.left = current;
    312         current = tmp;
    313         if (!current.right) {
    314           break;
    315         }
    316       }
    317       // Link left.
    318       left.right = current;
    319       left = current;
    320       current = current.right;
    321     } else {
    322       break;
    323     }
    324   }
    325   // Assemble.
    326   left.right = current.left;
    327   right.left = current.right;
    328   current.left = dummy.right;
    329   current.right = dummy.left;
    330   this.root_ = current;
    331 };
    332 
    333 
    334 /**
    335  * Constructs a Splay tree node.
    336  *
    337  * @param {number} key Key.
    338  * @param {*} value Value.
    339  */
    340 SplayTree.Node = function(key, value) {
    341   this.key = key;
    342   this.value = value;
    343 };
    344 
    345 
    346 /**
    347  * @type {SplayTree.Node}
    348  */
    349 SplayTree.Node.prototype.left = null;
    350 
    351 
    352 /**
    353  * @type {SplayTree.Node}
    354  */
    355 SplayTree.Node.prototype.right = null;
    356 
    357 
    358 /**
    359  * Performs an ordered traversal of the subtree starting at
    360  * this SplayTree.Node.
    361  *
    362  * @param {function(SplayTree.Node)} f Visitor function.
    363  * @private
    364  */
    365 SplayTree.Node.prototype.traverse_ = function(f) {
    366   var current = this;
    367   while (current) {
    368     var left = current.left;
    369     if (left) left.traverse_(f);
    370     f(current);
    371     current = current.right;
    372   }
    373 };
    374 
    375 SplaySetup();
    376 SplayRun();
    377 SplayTearDown();
    378