Home | History | Annotate | Download | only in docs

Lines Matching refs:approximately

79 The factorization methods are based on computing an exact solution of~\eqref{eq:lsqr} using a Cholesky or a QR factorization and lead to an exact step Levenberg-Marquardt algorithm. But it is not clear if an exact solution of~\eqref{eq:lsqr} is necessary at each step of the LM algorithm to solve~\eqref{eq:nonlinsq}. In fact, we have already seen evidence that this may not be the case, as~\eqref{eq:lsqr} is itself a regularized version of~\eqref{eq:linearapprox}. Indeed, it is possible to construct non-linear optimization algorithms in which the linearized problem is solved approximately. These algorithms are known as inexact Newton or truncated Newton methods~\cite{nocedal2000numerical}.
81 An inexact Newton method requires two ingredients. First, a cheap method for approximately solving systems of linear equations. Typically an iterative linear solver like the Conjugate Gradients method is used for this purpose~\cite{nocedal2000numerical}. Second, a termination rule for the iterative solver. A typical termination rule is of the form