Home | History | Annotate | Download | only in mDNSCore
      1 /* -*- Mode: C; tab-width: 4 -*-
      2  *
      3  * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved.
      4  *
      5  * Licensed under the Apache License, Version 2.0 (the "License");
      6  * you may not use this file except in compliance with the License.
      7  * You may obtain a copy of the License at
      8  *
      9  *     http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 // Set mDNS_InstantiateInlines to tell mDNSEmbeddedAPI.h to instantiate inline functions, if necessary
     19 #define mDNS_InstantiateInlines 1
     20 #include "DNSCommon.h"
     21 
     22 // Disable certain benign warnings with Microsoft compilers
     23 #if (defined(_MSC_VER))
     24 	// Disable "conditional expression is constant" warning for debug macros.
     25 	// Otherwise, this generates warnings for the perfectly natural construct "while(1)"
     26 	// If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
     27 	#pragma warning(disable:4127)
     28 	// Disable "array is too small to include a terminating null character" warning
     29 	// -- domain labels have an initial length byte, not a terminating null character
     30 	#pragma warning(disable:4295)
     31 #endif
     32 
     33 // ***************************************************************************
     34 #if COMPILER_LIKES_PRAGMA_MARK
     35 #pragma mark - Program Constants
     36 #endif
     37 
     38 mDNSexport const mDNSInterfaceID mDNSInterface_Any       = 0;
     39 mDNSexport const mDNSInterfaceID mDNSInterfaceMark       = (mDNSInterfaceID)-1;
     40 mDNSexport const mDNSInterfaceID mDNSInterface_LocalOnly = (mDNSInterfaceID)-2;
     41 mDNSexport const mDNSInterfaceID mDNSInterface_Unicast   = (mDNSInterfaceID)-3;
     42 mDNSexport const mDNSInterfaceID mDNSInterface_P2P       = (mDNSInterfaceID)-4;
     43 
     44 // Note: Microsoft's proposed "Link Local Multicast Name Resolution Protocol" (LLMNR) is essentially a limited version of
     45 // Multicast DNS, using the same packet formats, naming syntax, and record types as Multicast DNS, but on a different UDP
     46 // port and multicast address, which means it won't interoperate with the existing installed base of Multicast DNS responders.
     47 // LLMNR uses IPv4 multicast address 224.0.0.252, IPv6 multicast address FF02::0001:0003, and UDP port 5355.
     48 // Uncomment the appropriate lines below to build a special Multicast DNS responder for testing interoperability
     49 // with Microsoft's LLMNR client code.
     50 
     51 #define   DiscardPortAsNumber               9
     52 #define   SSHPortAsNumber                  22
     53 #define   UnicastDNSPortAsNumber           53
     54 #define   SSDPPortAsNumber               1900
     55 #define   IPSECPortAsNumber              4500
     56 #define   NSIPCPortAsNumber              5030		// Port used for dnsextd to talk to local nameserver bound to loopback
     57 #define   NATPMPAnnouncementPortAsNumber 5350
     58 #define   NATPMPPortAsNumber             5351
     59 #define   DNSEXTPortAsNumber             5352		// Port used for end-to-end DNS operations like LLQ, Updates with Leases, etc.
     60 #define   MulticastDNSPortAsNumber       5353
     61 #define   LoopbackIPCPortAsNumber        5354
     62 //#define MulticastDNSPortAsNumber       5355		// LLMNR
     63 #define   PrivateDNSPortAsNumber         5533
     64 
     65 mDNSexport const mDNSIPPort DiscardPort            = { { DiscardPortAsNumber            >> 8, DiscardPortAsNumber            & 0xFF } };
     66 mDNSexport const mDNSIPPort SSHPort                = { { SSHPortAsNumber                >> 8, SSHPortAsNumber                & 0xFF } };
     67 mDNSexport const mDNSIPPort UnicastDNSPort         = { { UnicastDNSPortAsNumber         >> 8, UnicastDNSPortAsNumber         & 0xFF } };
     68 mDNSexport const mDNSIPPort SSDPPort               = { { SSDPPortAsNumber               >> 8, SSDPPortAsNumber               & 0xFF } };
     69 mDNSexport const mDNSIPPort IPSECPort              = { { IPSECPortAsNumber              >> 8, IPSECPortAsNumber              & 0xFF } };
     70 mDNSexport const mDNSIPPort NSIPCPort              = { { NSIPCPortAsNumber              >> 8, NSIPCPortAsNumber              & 0xFF } };
     71 mDNSexport const mDNSIPPort NATPMPAnnouncementPort = { { NATPMPAnnouncementPortAsNumber >> 8, NATPMPAnnouncementPortAsNumber & 0xFF } };
     72 mDNSexport const mDNSIPPort NATPMPPort             = { { NATPMPPortAsNumber             >> 8, NATPMPPortAsNumber             & 0xFF } };
     73 mDNSexport const mDNSIPPort DNSEXTPort             = { { DNSEXTPortAsNumber             >> 8, DNSEXTPortAsNumber             & 0xFF } };
     74 mDNSexport const mDNSIPPort MulticastDNSPort       = { { MulticastDNSPortAsNumber       >> 8, MulticastDNSPortAsNumber       & 0xFF } };
     75 mDNSexport const mDNSIPPort LoopbackIPCPort        = { { LoopbackIPCPortAsNumber        >> 8, LoopbackIPCPortAsNumber        & 0xFF } };
     76 mDNSexport const mDNSIPPort PrivateDNSPort         = { { PrivateDNSPortAsNumber         >> 8, PrivateDNSPortAsNumber         & 0xFF } };
     77 
     78 mDNSexport const OwnerOptData    zeroOwner         = { 0, 0, { { 0 } }, { { 0 } }, { { 0 } } };
     79 
     80 mDNSexport const mDNSIPPort      zeroIPPort        = { { 0 } };
     81 mDNSexport const mDNSv4Addr      zerov4Addr        = { { 0 } };
     82 mDNSexport const mDNSv6Addr      zerov6Addr        = { { 0 } };
     83 mDNSexport const mDNSEthAddr     zeroEthAddr       = { { 0 } };
     84 mDNSexport const mDNSv4Addr      onesIPv4Addr      = { { 255, 255, 255, 255 } };
     85 mDNSexport const mDNSv6Addr      onesIPv6Addr      = { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 } };
     86 mDNSexport const mDNSEthAddr     onesEthAddr       = { { 255, 255, 255, 255, 255, 255 } };
     87 mDNSexport const mDNSAddr        zeroAddr          = { mDNSAddrType_None, {{{ 0 }}} };
     88 
     89 mDNSexport const mDNSv4Addr  AllDNSAdminGroup   = { { 239, 255, 255, 251 } };
     90 mDNSexport const mDNSv4Addr  AllHosts_v4        = { { 224,   0,   0,   1 } }; // For NAT-PMP Annoucements
     91 mDNSexport const mDNSv6Addr  AllHosts_v6        = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01 } };
     92 mDNSexport const mDNSv6Addr  NDP_prefix         = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01, 0xFF,0x00,0x00,0xFB } }; // FF02:0:0:0:0:1:FF00::/104
     93 mDNSexport const mDNSEthAddr AllHosts_v6_Eth    = { { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 } };
     94 mDNSexport const mDNSAddr    AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224,   0,   0, 251 } } } };
     95 //mDNSexport const mDNSAddr  AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224,   0,   0, 252 } } } }; // LLMNR
     96 mDNSexport const mDNSAddr    AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFB } } } };
     97 //mDNSexport const mDNSAddr  AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x03 } } } }; // LLMNR
     98 
     99 mDNSexport const mDNSOpaque16 zeroID          = { { 0, 0 } };
    100 mDNSexport const mDNSOpaque16 onesID          = { { 255, 255 } };
    101 mDNSexport const mDNSOpaque16 QueryFlags      = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_StdQuery,                0 } };
    102 mDNSexport const mDNSOpaque16 uQueryFlags     = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, 0 } };
    103 mDNSexport const mDNSOpaque16 ResponseFlags   = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_StdQuery | kDNSFlag0_AA, 0 } };
    104 mDNSexport const mDNSOpaque16 UpdateReqFlags  = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_Update,                  0 } };
    105 mDNSexport const mDNSOpaque16 UpdateRespFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_Update,                  0 } };
    106 
    107 mDNSexport const mDNSOpaque64 zeroOpaque64    = { { 0 } };
    108 
    109 // ***************************************************************************
    110 #if COMPILER_LIKES_PRAGMA_MARK
    111 #pragma mark -
    112 #pragma mark - General Utility Functions
    113 #endif
    114 
    115 // return true for RFC1918 private addresses
    116 mDNSexport mDNSBool mDNSv4AddrIsRFC1918(mDNSv4Addr *addr)
    117 	{
    118 	return ((addr->b[0] == 10) ||                                 // 10/8 prefix
    119 			(addr->b[0] == 172 && (addr->b[1] & 0xF0) == 16) ||   // 172.16/12
    120 			(addr->b[0] == 192 && addr->b[1] == 168));            // 192.168/16
    121 	}
    122 
    123 mDNSexport NetworkInterfaceInfo *GetFirstActiveInterface(NetworkInterfaceInfo *intf)
    124 	{
    125 	while (intf && !intf->InterfaceActive) intf = intf->next;
    126 	return(intf);
    127 	}
    128 
    129 mDNSexport mDNSInterfaceID GetNextActiveInterfaceID(const NetworkInterfaceInfo *intf)
    130 	{
    131 	const NetworkInterfaceInfo *next = GetFirstActiveInterface(intf->next);
    132 	if (next) return(next->InterfaceID); else return(mDNSNULL);
    133 	}
    134 
    135 mDNSexport mDNSu32 NumCacheRecordsForInterfaceID(const mDNS *const m, mDNSInterfaceID id)
    136 	{
    137 	mDNSu32 slot, used = 0;
    138 	CacheGroup *cg;
    139 	const CacheRecord *rr;
    140 	FORALL_CACHERECORDS(slot, cg, rr)
    141 		if (rr->resrec.InterfaceID == id) used++;
    142 	return(used);
    143 	}
    144 
    145 mDNSexport char *DNSTypeName(mDNSu16 rrtype)
    146 	{
    147 	switch (rrtype)
    148 		{
    149 		case kDNSType_A:    return("Addr");
    150 		case kDNSType_NS:   return("NS");
    151 		case kDNSType_CNAME:return("CNAME");
    152 		case kDNSType_SOA:  return("SOA");
    153 		case kDNSType_NULL: return("NULL");
    154 		case kDNSType_PTR:  return("PTR");
    155 		case kDNSType_HINFO:return("HINFO");
    156 		case kDNSType_TXT:  return("TXT");
    157 		case kDNSType_AAAA: return("AAAA");
    158 		case kDNSType_SRV:  return("SRV");
    159 		case kDNSType_OPT:  return("OPT");
    160 		case kDNSType_NSEC: return("NSEC");
    161 		case kDNSType_TSIG: return("TSIG");
    162 		case kDNSQType_ANY: return("ANY");
    163 		default:			{
    164 							static char buffer[16];
    165 							mDNS_snprintf(buffer, sizeof(buffer), "(%d)", rrtype);
    166 							return(buffer);
    167 							}
    168 		}
    169 	}
    170 
    171 // Note slight bug: this code uses the rdlength from the ResourceRecord object, to display
    172 // the rdata from the RDataBody object. Sometimes this could be the wrong length -- but as
    173 // long as this routine is only used for debugging messages, it probably isn't a big problem.
    174 mDNSexport char *GetRRDisplayString_rdb(const ResourceRecord *const rr, const RDataBody *const rd1, char *const buffer)
    175 	{
    176 	const RDataBody2 *const rd = (RDataBody2 *)rd1;
    177 	#define RemSpc (MaxMsg-1-length)
    178 	char *ptr = buffer;
    179 	mDNSu32 length = mDNS_snprintf(buffer, MaxMsg-1, "%4d %##s %s ", rr->rdlength, rr->name->c, DNSTypeName(rr->rrtype));
    180 	if (rr->RecordType == kDNSRecordTypePacketNegative) return(buffer);
    181 	if (!rr->rdlength) { mDNS_snprintf(buffer+length, RemSpc, "<< ZERO RDATA LENGTH >>"); return(buffer); }
    182 
    183 	switch (rr->rrtype)
    184 		{
    185 		case kDNSType_A:	mDNS_snprintf(buffer+length, RemSpc, "%.4a", &rd->ipv4);          break;
    186 
    187 		case kDNSType_NS:	// Same as PTR
    188 		case kDNSType_CNAME:// Same as PTR
    189 		case kDNSType_PTR:	mDNS_snprintf(buffer+length, RemSpc, "%##s", rd->name.c);       break;
    190 
    191 		case kDNSType_SOA:  mDNS_snprintf(buffer+length, RemSpc, "%##s %##s %d %d %d %d %d",
    192 								rd->soa.mname.c, rd->soa.rname.c,
    193 								rd->soa.serial, rd->soa.refresh, rd->soa.retry, rd->soa.expire, rd->soa.min);
    194 							break;
    195 
    196 		case kDNSType_HINFO:// Display this the same as TXT (show all constituent strings)
    197 		case kDNSType_TXT:  {
    198 							const mDNSu8 *t = rd->txt.c;
    199 							while (t < rd->txt.c + rr->rdlength)
    200 								{
    201 								length += mDNS_snprintf(buffer+length, RemSpc, "%s%#s", t > rd->txt.c ? "" : "", t);
    202 								t += 1 + t[0];
    203 								}
    204 							} break;
    205 
    206 		case kDNSType_AAAA:	mDNS_snprintf(buffer+length, RemSpc, "%.16a", &rd->ipv6);       break;
    207 		case kDNSType_SRV:	mDNS_snprintf(buffer+length, RemSpc, "%u %u %u %##s",
    208 								rd->srv.priority, rd->srv.weight, mDNSVal16(rd->srv.port), rd->srv.target.c); break;
    209 
    210 		case kDNSType_OPT:  {
    211 							const rdataOPT *opt;
    212 							const rdataOPT *const end = (const rdataOPT *)&rd->data[rr->rdlength];
    213 							length += mDNS_snprintf(buffer+length, RemSpc, "Max %d", rr->rrclass);
    214 							for (opt = &rd->opt[0]; opt < end; opt++)
    215 								{
    216 								switch(opt->opt)
    217 									{
    218 									case kDNSOpt_LLQ:
    219 										length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d",     opt->u.llq.vers);
    220 										length += mDNS_snprintf(buffer+length, RemSpc, " Op %d",       opt->u.llq.llqOp);
    221 										length += mDNS_snprintf(buffer+length, RemSpc, " Err/Port %d", opt->u.llq.err);
    222 										length += mDNS_snprintf(buffer+length, RemSpc, " ID %08X%08X", opt->u.llq.id.l[0], opt->u.llq.id.l[1]);
    223 										length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d",    opt->u.llq.llqlease);
    224 										break;
    225 									case kDNSOpt_Lease:
    226 										length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d",    opt->u.updatelease);
    227 										break;
    228 									case kDNSOpt_Owner:
    229 										length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d",     opt->u.owner.vers);
    230 										length += mDNS_snprintf(buffer+length, RemSpc, " Seq %3d", (mDNSu8)opt->u.owner.seq);	// Display as unsigned
    231 										length += mDNS_snprintf(buffer+length, RemSpc, " MAC %.6a",    opt->u.owner.HMAC.b);
    232 										if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
    233 											{
    234 											length += mDNS_snprintf(buffer+length, RemSpc, " I-MAC %.6a", opt->u.owner.IMAC.b);
    235 											if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
    236 												length += mDNS_snprintf(buffer+length, RemSpc, " Password %.6a", opt->u.owner.password.b);
    237 											}
    238 										break;
    239 									default:
    240 										length += mDNS_snprintf(buffer+length, RemSpc, " Unknown %d",  opt->opt);
    241 										break;
    242 									}
    243 								}
    244 							}
    245 							break;
    246 
    247 		case kDNSType_NSEC: {
    248 							mDNSu16 i;
    249 							for (i=0; i<255; i++)
    250 								if (rd->nsec.bitmap[i>>3] & (128 >> (i&7)))
    251 									length += mDNS_snprintf(buffer+length, RemSpc, "%s ", DNSTypeName(i));
    252 							}
    253 							break;
    254 
    255 		default:			mDNS_snprintf(buffer+length, RemSpc, "RDLen %d: %s", rr->rdlength, rd->data);
    256 							// Really should scan buffer to check if text is valid UTF-8 and only replace with dots if not
    257 							for (ptr = buffer; *ptr; ptr++) if (*ptr < ' ') *ptr = '.';
    258 							break;
    259 		}
    260 	return(buffer);
    261 	}
    262 
    263 // See comments in mDNSEmbeddedAPI.h
    264 #if _PLATFORM_HAS_STRONG_PRNG_
    265 #define mDNSRandomNumber mDNSPlatformRandomNumber
    266 #else
    267 mDNSlocal mDNSu32 mDNSRandomFromSeed(mDNSu32 seed)
    268 	{
    269 	return seed * 21 + 1;
    270 	}
    271 
    272 mDNSlocal mDNSu32 mDNSMixRandomSeed(mDNSu32 seed, mDNSu8 iteration)
    273 	{
    274 	return iteration ? mDNSMixRandomSeed(mDNSRandomFromSeed(seed), --iteration) : seed;
    275 	}
    276 
    277 mDNSlocal mDNSu32 mDNSRandomNumber()
    278 	{
    279 	static mDNSBool seeded = mDNSfalse;
    280 	static mDNSu32 seed = 0;
    281 	if (!seeded)
    282 		{
    283 		seed = mDNSMixRandomSeed(mDNSPlatformRandomSeed(), 100);
    284 		seeded = mDNStrue;
    285 		}
    286 	return (seed = mDNSRandomFromSeed(seed));
    287 	}
    288 #endif // ! _PLATFORM_HAS_STRONG_PRNG_
    289 
    290 mDNSexport mDNSu32 mDNSRandom(mDNSu32 max)		// Returns pseudo-random result from zero to max inclusive
    291 	{
    292 	mDNSu32 ret = 0;
    293 	mDNSu32 mask = 1;
    294 
    295 	while (mask < max) mask = (mask << 1) | 1;
    296 
    297 	do ret = mDNSRandomNumber() & mask;
    298 	while (ret > max);
    299 
    300 	return ret;
    301 	}
    302 
    303 mDNSexport mDNSBool mDNSSameAddress(const mDNSAddr *ip1, const mDNSAddr *ip2)
    304 	{
    305 	if (ip1->type == ip2->type)
    306 		{
    307 		switch (ip1->type)
    308 			{
    309 			case mDNSAddrType_None : return(mDNStrue); // Empty addresses have no data and are therefore always equal
    310 			case mDNSAddrType_IPv4 : return(mDNSBool)(mDNSSameIPv4Address(ip1->ip.v4, ip2->ip.v4));
    311 			case mDNSAddrType_IPv6 : return(mDNSBool)(mDNSSameIPv6Address(ip1->ip.v6, ip2->ip.v6));
    312 			}
    313 		}
    314 	return(mDNSfalse);
    315 	}
    316 
    317 mDNSexport mDNSBool mDNSAddrIsDNSMulticast(const mDNSAddr *ip)
    318 	{
    319 	switch(ip->type)
    320 		{
    321 		case mDNSAddrType_IPv4: return(mDNSBool)(mDNSSameIPv4Address(ip->ip.v4, AllDNSLinkGroup_v4.ip.v4));
    322 		case mDNSAddrType_IPv6: return(mDNSBool)(mDNSSameIPv6Address(ip->ip.v6, AllDNSLinkGroup_v6.ip.v6));
    323 		default: return(mDNSfalse);
    324 		}
    325 	}
    326 
    327 // ***************************************************************************
    328 #if COMPILER_LIKES_PRAGMA_MARK
    329 #pragma mark -
    330 #pragma mark - Domain Name Utility Functions
    331 #endif
    332 
    333 mDNSexport mDNSBool SameDomainLabel(const mDNSu8 *a, const mDNSu8 *b)
    334 	{
    335 	int i;
    336 	const int len = *a++;
    337 
    338 	if (len > MAX_DOMAIN_LABEL)
    339 		{ debugf("Malformed label (too long)"); return(mDNSfalse); }
    340 
    341 	if (len != *b++) return(mDNSfalse);
    342 	for (i=0; i<len; i++)
    343 		{
    344 		mDNSu8 ac = *a++;
    345 		mDNSu8 bc = *b++;
    346 		if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
    347 		if (mDNSIsUpperCase(bc)) bc += 'a' - 'A';
    348 		if (ac != bc) return(mDNSfalse);
    349 		}
    350 	return(mDNStrue);
    351 	}
    352 
    353 mDNSexport mDNSBool SameDomainName(const domainname *const d1, const domainname *const d2)
    354 	{
    355 	const mDNSu8 *      a   = d1->c;
    356 	const mDNSu8 *      b   = d2->c;
    357 	const mDNSu8 *const max = d1->c + MAX_DOMAIN_NAME;			// Maximum that's valid
    358 
    359 	while (*a || *b)
    360 		{
    361 		if (a + 1 + *a >= max)
    362 			{ debugf("Malformed domain name (more than 256 characters)"); return(mDNSfalse); }
    363 		if (!SameDomainLabel(a, b)) return(mDNSfalse);
    364 		a += 1 + *a;
    365 		b += 1 + *b;
    366 		}
    367 
    368 	return(mDNStrue);
    369 	}
    370 
    371 mDNSexport mDNSBool SameDomainNameCS(const domainname *const d1, const domainname *const d2)
    372 	{
    373 	mDNSu16 l1 = DomainNameLength(d1);
    374 	mDNSu16 l2 = DomainNameLength(d2);
    375 	return(l1 <= MAX_DOMAIN_NAME && l1 == l2 && mDNSPlatformMemSame(d1, d2, l1));
    376 	}
    377 
    378 mDNSexport mDNSBool IsLocalDomain(const domainname *d)
    379 	{
    380 	// Domains that are defined to be resolved via link-local multicast are:
    381 	// local., 254.169.in-addr.arpa., and {8,9,A,B}.E.F.ip6.arpa.
    382 	static const domainname *nL = (const domainname*)"\x5" "local";
    383 	static const domainname *nR = (const domainname*)"\x3" "254" "\x3" "169"         "\x7" "in-addr" "\x4" "arpa";
    384 	static const domainname *n8 = (const domainname*)"\x1" "8"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
    385 	static const domainname *n9 = (const domainname*)"\x1" "9"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
    386 	static const domainname *nA = (const domainname*)"\x1" "a"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
    387 	static const domainname *nB = (const domainname*)"\x1" "b"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
    388 
    389 	const domainname *d1, *d2, *d3, *d4, *d5;	// Top-level domain, second-level domain, etc.
    390 	d1 = d2 = d3 = d4 = d5 = mDNSNULL;
    391 	while (d->c[0])
    392 		{
    393 		d5 = d4; d4 = d3; d3 = d2; d2 = d1; d1 = d;
    394 		d = (const domainname*)(d->c + 1 + d->c[0]);
    395 		}
    396 
    397 	if (d1 && SameDomainName(d1, nL)) return(mDNStrue);
    398 	if (d4 && SameDomainName(d4, nR)) return(mDNStrue);
    399 	if (d5 && SameDomainName(d5, n8)) return(mDNStrue);
    400 	if (d5 && SameDomainName(d5, n9)) return(mDNStrue);
    401 	if (d5 && SameDomainName(d5, nA)) return(mDNStrue);
    402 	if (d5 && SameDomainName(d5, nB)) return(mDNStrue);
    403 	return(mDNSfalse);
    404 	}
    405 
    406 mDNSexport const mDNSu8 *LastLabel(const domainname *d)
    407 	{
    408 	const mDNSu8 *p = d->c;
    409 	while (d->c[0])
    410 		{
    411 		p = d->c;
    412 		d = (const domainname*)(d->c + 1 + d->c[0]);
    413 		}
    414 	return(p);
    415 	}
    416 
    417 // Returns length of a domain name INCLUDING the byte for the final null label
    418 // e.g. for the root label "." it returns one
    419 // For the FQDN "com." it returns 5 (length byte, three data bytes, final zero)
    420 // Legal results are 1 (just root label) to 256 (MAX_DOMAIN_NAME)
    421 // If the given domainname is invalid, result is 257 (MAX_DOMAIN_NAME+1)
    422 mDNSexport mDNSu16 DomainNameLengthLimit(const domainname *const name, const mDNSu8 *limit)
    423 	{
    424 	const mDNSu8 *src = name->c;
    425 	while (src < limit && *src <= MAX_DOMAIN_LABEL)
    426 		{
    427 		if (*src == 0) return((mDNSu16)(src - name->c + 1));
    428 		src += 1 + *src;
    429 		}
    430 	return(MAX_DOMAIN_NAME+1);
    431 	}
    432 
    433 // CompressedDomainNameLength returns the length of a domain name INCLUDING the byte
    434 // for the final null label, e.g. for the root label "." it returns one.
    435 // E.g. for the FQDN "foo.com." it returns 9
    436 // (length, three data bytes, length, three more data bytes, final zero).
    437 // In the case where a parent domain name is provided, and the given name is a child
    438 // of that parent, CompressedDomainNameLength returns the length of the prefix portion
    439 // of the child name, plus TWO bytes for the compression pointer.
    440 // E.g. for the name "foo.com." with parent "com.", it returns 6
    441 // (length, three data bytes, two-byte compression pointer).
    442 mDNSexport mDNSu16 CompressedDomainNameLength(const domainname *const name, const domainname *parent)
    443 	{
    444 	const mDNSu8 *src = name->c;
    445 	if (parent && parent->c[0] == 0) parent = mDNSNULL;
    446 	while (*src)
    447 		{
    448 		if (*src > MAX_DOMAIN_LABEL) return(MAX_DOMAIN_NAME+1);
    449 		if (parent && SameDomainName((const domainname *)src, parent)) return((mDNSu16)(src - name->c + 2));
    450 		src += 1 + *src;
    451 		if (src - name->c >= MAX_DOMAIN_NAME) return(MAX_DOMAIN_NAME+1);
    452 		}
    453 	return((mDNSu16)(src - name->c + 1));
    454 	}
    455 
    456 // CountLabels() returns number of labels in name, excluding final root label
    457 // (e.g. for "apple.com." CountLabels returns 2.)
    458 mDNSexport int CountLabels(const domainname *d)
    459 	{
    460 	int count = 0;
    461 	const mDNSu8 *ptr;
    462 	for (ptr = d->c; *ptr; ptr = ptr + ptr[0] + 1) count++;
    463 	return count;
    464 	}
    465 
    466 // SkipLeadingLabels skips over the first 'skip' labels in the domainname,
    467 // returning a pointer to the suffix with 'skip' labels removed.
    468 mDNSexport const domainname *SkipLeadingLabels(const domainname *d, int skip)
    469 	{
    470 	while (skip > 0 && d->c[0]) { d = (const domainname *)(d->c + 1 + d->c[0]); skip--; }
    471 	return(d);
    472 	}
    473 
    474 // AppendLiteralLabelString appends a single label to an existing (possibly empty) domainname.
    475 // The C string contains the label as-is, with no escaping, etc.
    476 // Any dots in the name are literal dots, not label separators
    477 // If successful, AppendLiteralLabelString returns a pointer to the next unused byte
    478 // in the domainname bufer (i.e. the next byte after the terminating zero).
    479 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
    480 // AppendLiteralLabelString returns mDNSNULL.
    481 mDNSexport mDNSu8 *AppendLiteralLabelString(domainname *const name, const char *cstr)
    482 	{
    483 	mDNSu8       *      ptr  = name->c + DomainNameLength(name) - 1;	// Find end of current name
    484 	const mDNSu8 *const lim1 = name->c + MAX_DOMAIN_NAME - 1;			// Limit of how much we can add (not counting final zero)
    485 	const mDNSu8 *const lim2 = ptr + 1 + MAX_DOMAIN_LABEL;
    486 	const mDNSu8 *const lim  = (lim1 < lim2) ? lim1 : lim2;
    487 	mDNSu8       *lengthbyte = ptr++;									// Record where the length is going to go
    488 
    489 	while (*cstr && ptr < lim) *ptr++ = (mDNSu8)*cstr++;	// Copy the data
    490 	*lengthbyte = (mDNSu8)(ptr - lengthbyte - 1);			// Fill in the length byte
    491 	*ptr++ = 0;												// Put the null root label on the end
    492 	if (*cstr) return(mDNSNULL);							// Failure: We didn't successfully consume all input
    493 	else return(ptr);										// Success: return new value of ptr
    494 	}
    495 
    496 // AppendDNSNameString appends zero or more labels to an existing (possibly empty) domainname.
    497 // The C string is in conventional DNS syntax:
    498 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
    499 // If successful, AppendDNSNameString returns a pointer to the next unused byte
    500 // in the domainname bufer (i.e. the next byte after the terminating zero).
    501 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
    502 // AppendDNSNameString returns mDNSNULL.
    503 mDNSexport mDNSu8 *AppendDNSNameString(domainname *const name, const char *cstring)
    504 	{
    505 	const char   *cstr      = cstring;
    506 	mDNSu8       *      ptr = name->c + DomainNameLength(name) - 1;	// Find end of current name
    507 	const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1;		// Limit of how much we can add (not counting final zero)
    508 	while (*cstr && ptr < lim)										// While more characters, and space to put them...
    509 		{
    510 		mDNSu8 *lengthbyte = ptr++;									// Record where the length is going to go
    511 		if (*cstr == '.') { LogMsg("AppendDNSNameString: Illegal empty label in name \"%s\"", cstring); return(mDNSNULL); }
    512 		while (*cstr && *cstr != '.' && ptr < lim)					// While we have characters in the label...
    513 			{
    514 			mDNSu8 c = (mDNSu8)*cstr++;								// Read the character
    515 			if (c == '\\')											// If escape character, check next character
    516 				{
    517 				c = (mDNSu8)*cstr++;								// Assume we'll just take the next character
    518 				if (mDNSIsDigit(cstr[-1]) && mDNSIsDigit(cstr[0]) && mDNSIsDigit(cstr[1]))
    519 					{												// If three decimal digits,
    520 					int v0 = cstr[-1] - '0';						// then interpret as three-digit decimal
    521 					int v1 = cstr[ 0] - '0';
    522 					int v2 = cstr[ 1] - '0';
    523 					int val = v0 * 100 + v1 * 10 + v2;
    524 					if (val <= 255) { c = (mDNSu8)val; cstr += 2; }	// If valid three-digit decimal value, use it
    525 					}
    526 				}
    527 			*ptr++ = c;												// Write the character
    528 			}
    529 		if (*cstr) cstr++;											// Skip over the trailing dot (if present)
    530 		if (ptr - lengthbyte - 1 > MAX_DOMAIN_LABEL)				// If illegal label, abort
    531 			return(mDNSNULL);
    532 		*lengthbyte = (mDNSu8)(ptr - lengthbyte - 1);				// Fill in the length byte
    533 		}
    534 
    535 	*ptr++ = 0;														// Put the null root label on the end
    536 	if (*cstr) return(mDNSNULL);									// Failure: We didn't successfully consume all input
    537 	else return(ptr);												// Success: return new value of ptr
    538 	}
    539 
    540 // AppendDomainLabel appends a single label to a name.
    541 // If successful, AppendDomainLabel returns a pointer to the next unused byte
    542 // in the domainname bufer (i.e. the next byte after the terminating zero).
    543 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
    544 // AppendDomainLabel returns mDNSNULL.
    545 mDNSexport mDNSu8 *AppendDomainLabel(domainname *const name, const domainlabel *const label)
    546 	{
    547 	int i;
    548 	mDNSu8 *ptr = name->c + DomainNameLength(name) - 1;
    549 
    550 	// Check label is legal
    551 	if (label->c[0] > MAX_DOMAIN_LABEL) return(mDNSNULL);
    552 
    553 	// Check that ptr + length byte + data bytes + final zero does not exceed our limit
    554 	if (ptr + 1 + label->c[0] + 1 > name->c + MAX_DOMAIN_NAME) return(mDNSNULL);
    555 
    556 	for (i=0; i<=label->c[0]; i++) *ptr++ = label->c[i];	// Copy the label data
    557 	*ptr++ = 0;								// Put the null root label on the end
    558 	return(ptr);
    559 	}
    560 
    561 mDNSexport mDNSu8 *AppendDomainName(domainname *const name, const domainname *const append)
    562 	{
    563 	mDNSu8       *      ptr = name->c + DomainNameLength(name) - 1;	// Find end of current name
    564 	const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1;		// Limit of how much we can add (not counting final zero)
    565 	const mDNSu8 *      src = append->c;
    566 	while (src[0])
    567 		{
    568 		int i;
    569 		if (ptr + 1 + src[0] > lim) return(mDNSNULL);
    570 		for (i=0; i<=src[0]; i++) *ptr++ = src[i];
    571 		*ptr = 0;	// Put the null root label on the end
    572 		src += i;
    573 		}
    574 	return(ptr);
    575 	}
    576 
    577 // MakeDomainLabelFromLiteralString makes a single domain label from a single literal C string (with no escaping).
    578 // If successful, MakeDomainLabelFromLiteralString returns mDNStrue.
    579 // If unable to convert the whole string to a legal domain label (i.e. because length is more than 63 bytes) then
    580 // MakeDomainLabelFromLiteralString makes a legal domain label from the first 63 bytes of the string and returns mDNSfalse.
    581 // In some cases silently truncated oversized names to 63 bytes is acceptable, so the return result may be ignored.
    582 // In other cases silent truncation may not be acceptable, so in those cases the calling function needs to check the return result.
    583 mDNSexport mDNSBool MakeDomainLabelFromLiteralString(domainlabel *const label, const char *cstr)
    584 	{
    585 	mDNSu8       *      ptr   = label->c + 1;						// Where we're putting it
    586 	const mDNSu8 *const limit = label->c + 1 + MAX_DOMAIN_LABEL;	// The maximum we can put
    587 	while (*cstr && ptr < limit) *ptr++ = (mDNSu8)*cstr++;			// Copy the label
    588 	label->c[0] = (mDNSu8)(ptr - label->c - 1);						// Set the length byte
    589 	return(*cstr == 0);												// Return mDNStrue if we successfully consumed all input
    590 	}
    591 
    592 // MakeDomainNameFromDNSNameString makes a native DNS-format domainname from a C string.
    593 // The C string is in conventional DNS syntax:
    594 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
    595 // If successful, MakeDomainNameFromDNSNameString returns a pointer to the next unused byte
    596 // in the domainname bufer (i.e. the next byte after the terminating zero).
    597 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
    598 // MakeDomainNameFromDNSNameString returns mDNSNULL.
    599 mDNSexport mDNSu8 *MakeDomainNameFromDNSNameString(domainname *const name, const char *cstr)
    600 	{
    601 	name->c[0] = 0;									// Make an empty domain name
    602 	return(AppendDNSNameString(name, cstr));		// And then add this string to it
    603 	}
    604 
    605 mDNSexport char *ConvertDomainLabelToCString_withescape(const domainlabel *const label, char *ptr, char esc)
    606 	{
    607 	const mDNSu8 *      src = label->c;							// Domain label we're reading
    608 	const mDNSu8        len = *src++;							// Read length of this (non-null) label
    609 	const mDNSu8 *const end = src + len;						// Work out where the label ends
    610 	if (len > MAX_DOMAIN_LABEL) return(mDNSNULL);				// If illegal label, abort
    611 	while (src < end)											// While we have characters in the label
    612 		{
    613 		mDNSu8 c = *src++;
    614 		if (esc)
    615 			{
    616 			if (c == '.' || c == esc)							// If character is a dot or the escape character
    617 				*ptr++ = esc;									// Output escape character
    618 			else if (c <= ' ')									// If non-printing ascii,
    619 				{												// Output decimal escape sequence
    620 				*ptr++ = esc;
    621 				*ptr++ = (char)  ('0' + (c / 100)     );
    622 				*ptr++ = (char)  ('0' + (c /  10) % 10);
    623 				c      = (mDNSu8)('0' + (c      ) % 10);
    624 				}
    625 			}
    626 		*ptr++ = (char)c;										// Copy the character
    627 		}
    628 	*ptr = 0;													// Null-terminate the string
    629 	return(ptr);												// and return
    630 	}
    631 
    632 // Note: To guarantee that there will be no possible overrun, cstr must be at least MAX_ESCAPED_DOMAIN_NAME (1009 bytes)
    633 mDNSexport char *ConvertDomainNameToCString_withescape(const domainname *const name, char *ptr, char esc)
    634 	{
    635 	const mDNSu8 *src         = name->c;							// Domain name we're reading
    636 	const mDNSu8 *const max   = name->c + MAX_DOMAIN_NAME;			// Maximum that's valid
    637 
    638 	if (*src == 0) *ptr++ = '.';									// Special case: For root, just write a dot
    639 
    640 	while (*src)													// While more characters in the domain name
    641 		{
    642 		if (src + 1 + *src >= max) return(mDNSNULL);
    643 		ptr = ConvertDomainLabelToCString_withescape((const domainlabel *)src, ptr, esc);
    644 		if (!ptr) return(mDNSNULL);
    645 		src += 1 + *src;
    646 		*ptr++ = '.';												// Write the dot after the label
    647 		}
    648 
    649 	*ptr++ = 0;														// Null-terminate the string
    650 	return(ptr);													// and return
    651 	}
    652 
    653 // RFC 1034 rules:
    654 // Host names must start with a letter, end with a letter or digit,
    655 // and have as interior characters only letters, digits, and hyphen.
    656 // This was subsequently modified in RFC 1123 to allow the first character to be either a letter or a digit
    657 
    658 mDNSexport void ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[], domainlabel *const hostlabel)
    659 	{
    660 	const mDNSu8 *      src  = &UTF8Name[1];
    661 	const mDNSu8 *const end  = &UTF8Name[1] + UTF8Name[0];
    662 	      mDNSu8 *      ptr  = &hostlabel->c[1];
    663 	const mDNSu8 *const lim  = &hostlabel->c[1] + MAX_DOMAIN_LABEL;
    664 	while (src < end)
    665 		{
    666 		// Delete apostrophes from source name
    667 		if (src[0] == '\'') { src++; continue; }		// Standard straight single quote
    668 		if (src + 2 < end && src[0] == 0xE2 && src[1] == 0x80 && src[2] == 0x99)
    669 			{ src += 3; continue; }	// Unicode curly apostrophe
    670 		if (ptr < lim)
    671 			{
    672 			if (mDNSValidHostChar(*src, (ptr > &hostlabel->c[1]), (src < end-1))) *ptr++ = *src;
    673 			else if (ptr > &hostlabel->c[1] && ptr[-1] != '-') *ptr++ = '-';
    674 			}
    675 		src++;
    676 		}
    677 	while (ptr > &hostlabel->c[1] && ptr[-1] == '-') ptr--;	// Truncate trailing '-' marks
    678 	hostlabel->c[0] = (mDNSu8)(ptr - &hostlabel->c[1]);
    679 	}
    680 
    681 #define ValidTransportProtocol(X) ( (X)[0] == 4 && (X)[1] == '_' && \
    682 	((((X)[2] | 0x20) == 'u' && ((X)[3] | 0x20) == 'd') || (((X)[2] | 0x20) == 't' && ((X)[3] | 0x20) == 'c')) && \
    683 	((X)[4] | 0x20) == 'p')
    684 
    685 mDNSexport mDNSu8 *ConstructServiceName(domainname *const fqdn,
    686 	const domainlabel *name, const domainname *type, const domainname *const domain)
    687 	{
    688 	int i, len;
    689 	mDNSu8 *dst = fqdn->c;
    690 	const mDNSu8 *src;
    691 	const char *errormsg;
    692 #if APPLE_OSX_mDNSResponder
    693 	mDNSBool	loggedUnderscore = mDNSfalse;
    694 	static char typeBuf[MAX_ESCAPED_DOMAIN_NAME];
    695 #endif
    696 
    697 	// In the case where there is no name (and ONLY in that case),
    698 	// a single-label subtype is allowed as the first label of a three-part "type"
    699 	if (!name && type)
    700 		{
    701 		const mDNSu8 *s0 = type->c;
    702 		if (s0[0] && s0[0] < 0x40)		// If legal first label (at least one character, and no more than 63)
    703 			{
    704 			const mDNSu8 * s1 = s0 + 1 + s0[0];
    705 			if (s1[0] && s1[0] < 0x40)	// and legal second label (at least one character, and no more than 63)
    706 				{
    707 				const mDNSu8 *s2 = s1 + 1 + s1[0];
    708 				if (s2[0] && s2[0] < 0x40 && s2[1+s2[0]] == 0)	// and we have three and only three labels
    709 					{
    710 					static const mDNSu8 SubTypeLabel[5] = "\x04_sub";
    711 					src = s0;									// Copy the first label
    712 					len = *src;
    713 					for (i=0; i <= len;                      i++) *dst++ = *src++;
    714 					for (i=0; i < (int)sizeof(SubTypeLabel); i++) *dst++ = SubTypeLabel[i];
    715 					type = (const domainname *)s1;
    716 
    717 					// Special support to enable the DNSServiceBrowse call made by Bonjour Browser
    718 					// For these queries, we retract the "._sub" we just added between the subtype and the main type
    719 					// Remove after Bonjour Browser is updated to use DNSServiceQueryRecord instead of DNSServiceBrowse
    720 					if (SameDomainName((domainname*)s0, (const domainname*)"\x09_services\x07_dns-sd\x04_udp"))
    721 						dst -= sizeof(SubTypeLabel);
    722 					}
    723 				}
    724 			}
    725 		}
    726 
    727 	if (name && name->c[0])
    728 		{
    729 		src = name->c;									// Put the service name into the domain name
    730 		len = *src;
    731 		if (len >= 0x40) { errormsg = "Service instance name too long"; goto fail; }
    732 		for (i=0; i<=len; i++) *dst++ = *src++;
    733 		}
    734 	else
    735 		name = (domainlabel*)"";	// Set this up to be non-null, to avoid errors if we have to call LogMsg() below
    736 
    737 	src = type->c;										// Put the service type into the domain name
    738 	len = *src;
    739 	if (len < 2 || len > 16)
    740 		{
    741 		LogMsg("Bad service type in %#s.%##s%##s Application protocol name must be underscore plus 1-15 characters. "
    742 			"See <http://www.dns-sd.org/ServiceTypes.html>", name->c, type->c, domain->c);
    743 #if APPLE_OSX_mDNSResponder
    744 		ConvertDomainNameToCString(type, typeBuf);
    745 		mDNSASLLog(mDNSNULL, "serviceType.nameTooLong", "noop", typeBuf, "");
    746 #endif
    747 		}
    748 	if (len < 2 || len >= 0x40 || (len > 16 && !SameDomainName(domain, &localdomain))) return(mDNSNULL);
    749 	if (src[1] != '_') { errormsg = "Application protocol name must begin with underscore"; goto fail; }
    750 	for (i=2; i<=len; i++)
    751 		{
    752 		// Letters and digits are allowed anywhere
    753 		if (mDNSIsLetter(src[i]) || mDNSIsDigit(src[i])) continue;
    754 		// Hyphens are only allowed as interior characters
    755 		// Underscores are not supposed to be allowed at all, but for backwards compatibility with some old products we do allow them,
    756 		// with the same rule as hyphens
    757 		if ((src[i] == '-' || src[i] == '_') && i > 2 && i < len)
    758 			{
    759 #if APPLE_OSX_mDNSResponder
    760 			if (src[i] == '_' && loggedUnderscore == mDNSfalse)
    761 				{
    762 				ConvertDomainNameToCString(type, typeBuf);
    763 				mDNSASLLog(mDNSNULL, "serviceType.nameWithUnderscore", "noop", typeBuf, "");
    764 				loggedUnderscore = mDNStrue;
    765 				}
    766 #endif
    767 			continue;
    768 			}
    769 		errormsg = "Application protocol name must contain only letters, digits, and hyphens";
    770 #if APPLE_OSX_mDNSResponder
    771 		{
    772 		ConvertDomainNameToCString(type, typeBuf);
    773 		mDNSASLLog(mDNSNULL, "serviceType.nameWithIllegalCharacters", "noop", typeBuf, "");
    774 		}
    775 #endif
    776 		 goto fail;
    777 		}
    778 	for (i=0; i<=len; i++) *dst++ = *src++;
    779 
    780 	len = *src;
    781 	if (!ValidTransportProtocol(src)) { errormsg = "Transport protocol name must be _udp or _tcp"; goto fail; }
    782 	for (i=0; i<=len; i++) *dst++ = *src++;
    783 
    784 	if (*src) { errormsg = "Service type must have only two labels"; goto fail; }
    785 
    786 	*dst = 0;
    787 	if (!domain->c[0]) { errormsg = "Service domain must be non-empty"; goto fail; }
    788 	if (SameDomainName(domain, (const domainname*)"\x05" "local" "\x04" "arpa"))
    789 		{ errormsg = "Illegal domain \"local.arpa.\" Use \"local.\" (or empty string)"; goto fail; }
    790 	dst = AppendDomainName(fqdn, domain);
    791 	if (!dst) { errormsg = "Service domain too long"; goto fail; }
    792 	return(dst);
    793 
    794 fail:
    795 	LogMsg("ConstructServiceName: %s: %#s.%##s%##s", errormsg, name->c, type->c, domain->c);
    796 	return(mDNSNULL);
    797 	}
    798 
    799 // A service name has the form: instance.application-protocol.transport-protocol.domain
    800 // DeconstructServiceName is currently fairly forgiving: It doesn't try to enforce character
    801 // set or length limits for the protocol names, and the final domain is allowed to be empty.
    802 // However, if the given FQDN doesn't contain at least three labels,
    803 // DeconstructServiceName will reject it and return mDNSfalse.
    804 mDNSexport mDNSBool DeconstructServiceName(const domainname *const fqdn,
    805 	domainlabel *const name, domainname *const type, domainname *const domain)
    806 	{
    807 	int i, len;
    808 	const mDNSu8 *src = fqdn->c;
    809 	const mDNSu8 *max = fqdn->c + MAX_DOMAIN_NAME;
    810 	mDNSu8 *dst;
    811 
    812 	dst = name->c;										// Extract the service name
    813 	len = *src;
    814 	if (!len)         { debugf("DeconstructServiceName: FQDN empty!");                             return(mDNSfalse); }
    815 	if (len >= 0x40)  { debugf("DeconstructServiceName: Instance name too long");                  return(mDNSfalse); }
    816 	for (i=0; i<=len; i++) *dst++ = *src++;
    817 
    818 	dst = type->c;										// Extract the service type
    819 	len = *src;
    820 	if (!len)         { debugf("DeconstructServiceName: FQDN contains only one label!");           return(mDNSfalse); }
    821 	if (len >= 0x40)  { debugf("DeconstructServiceName: Application protocol name too long");      return(mDNSfalse); }
    822 	if (src[1] != '_'){ debugf("DeconstructServiceName: No _ at start of application protocol");   return(mDNSfalse); }
    823 	for (i=0; i<=len; i++) *dst++ = *src++;
    824 
    825 	len = *src;
    826 	if (!len)         { debugf("DeconstructServiceName: FQDN contains only two labels!");          return(mDNSfalse); }
    827 	if (!ValidTransportProtocol(src))
    828 	                  { debugf("DeconstructServiceName: Transport protocol must be _udp or _tcp"); return(mDNSfalse); }
    829 	for (i=0; i<=len; i++) *dst++ = *src++;
    830 	*dst++ = 0;											// Put terminator on the end of service type
    831 
    832 	dst = domain->c;									// Extract the service domain
    833 	while (*src)
    834 		{
    835 		len = *src;
    836 		if (len >= 0x40)
    837 			{ debugf("DeconstructServiceName: Label in service domain too long"); return(mDNSfalse); }
    838 		if (src + 1 + len + 1 >= max)
    839 			{ debugf("DeconstructServiceName: Total service domain too long"); return(mDNSfalse); }
    840 		for (i=0; i<=len; i++) *dst++ = *src++;
    841 		}
    842 	*dst++ = 0;		// Put the null root label on the end
    843 
    844 	return(mDNStrue);
    845 	}
    846 
    847 // Notes on UTF-8:
    848 // 0xxxxxxx represents a 7-bit ASCII value from 0x00 to 0x7F
    849 // 10xxxxxx is a continuation byte of a multi-byte character
    850 // 110xxxxx is the first byte of a 2-byte character (11 effective bits; values 0x     80 - 0x     800-1)
    851 // 1110xxxx is the first byte of a 3-byte character (16 effective bits; values 0x    800 - 0x   10000-1)
    852 // 11110xxx is the first byte of a 4-byte character (21 effective bits; values 0x  10000 - 0x  200000-1)
    853 // 111110xx is the first byte of a 5-byte character (26 effective bits; values 0x 200000 - 0x 4000000-1)
    854 // 1111110x is the first byte of a 6-byte character (31 effective bits; values 0x4000000 - 0x80000000-1)
    855 //
    856 // UTF-16 surrogate pairs are used in UTF-16 to encode values larger than 0xFFFF.
    857 // Although UTF-16 surrogate pairs are not supposed to appear in legal UTF-8, we want to be defensive
    858 // about that too. (See <http://www.unicode.org/faq/utf_bom.html#34>, "What are surrogates?")
    859 // The first of pair is a UTF-16 value in the range 0xD800-0xDBFF (11101101 1010xxxx 10xxxxxx in UTF-8),
    860 // and the second    is a UTF-16 value in the range 0xDC00-0xDFFF (11101101 1011xxxx 10xxxxxx in UTF-8).
    861 
    862 mDNSexport mDNSu32 TruncateUTF8ToLength(mDNSu8 *string, mDNSu32 length, mDNSu32 max)
    863 	{
    864 	if (length > max)
    865 		{
    866 		mDNSu8 c1 = string[max];										// First byte after cut point
    867 		mDNSu8 c2 = (max+1 < length) ? string[max+1] : (mDNSu8)0xB0;	// Second byte after cut point
    868 		length = max;	// Trim length down
    869 		while (length > 0)
    870 			{
    871 			// Check if the byte right after the chop point is a UTF-8 continuation byte,
    872 			// or if the character right after the chop point is the second of a UTF-16 surrogate pair.
    873 			// If so, then we continue to chop more bytes until we get to a legal chop point.
    874 			mDNSBool continuation    = ((c1 & 0xC0) == 0x80);
    875 			mDNSBool secondsurrogate = (c1 == 0xED && (c2 & 0xF0) == 0xB0);
    876 			if (!continuation && !secondsurrogate) break;
    877 			c2 = c1;
    878 			c1 = string[--length];
    879 			}
    880 		// Having truncated characters off the end of our string, also cut off any residual white space
    881 		while (length > 0 && string[length-1] <= ' ') length--;
    882 		}
    883 	return(length);
    884 	}
    885 
    886 // Returns true if a rich text label ends in " (nnn)", or if an RFC 1034
    887 // name ends in "-nnn", where n is some decimal number.
    888 mDNSexport mDNSBool LabelContainsSuffix(const domainlabel *const name, const mDNSBool RichText)
    889 	{
    890 	mDNSu16 l = name->c[0];
    891 
    892 	if (RichText)
    893 		{
    894 		if (l < 4) return mDNSfalse;							// Need at least " (2)"
    895 		if (name->c[l--] != ')') return mDNSfalse;				// Last char must be ')'
    896 		if (!mDNSIsDigit(name->c[l])) return mDNSfalse;			// Preceeded by a digit
    897 		l--;
    898 		while (l > 2 && mDNSIsDigit(name->c[l])) l--;			// Strip off digits
    899 		return (name->c[l] == '(' && name->c[l - 1] == ' ');
    900 		}
    901 	else
    902 		{
    903 		if (l < 2) return mDNSfalse;							// Need at least "-2"
    904 		if (!mDNSIsDigit(name->c[l])) return mDNSfalse;			// Last char must be a digit
    905 		l--;
    906 		while (l > 2 && mDNSIsDigit(name->c[l])) l--;			// Strip off digits
    907 		return (name->c[l] == '-');
    908 		}
    909 	}
    910 
    911 // removes an auto-generated suffix (appended on a name collision) from a label.  caller is
    912 // responsible for ensuring that the label does indeed contain a suffix.  returns the number
    913 // from the suffix that was removed.
    914 mDNSexport mDNSu32 RemoveLabelSuffix(domainlabel *name, mDNSBool RichText)
    915 	{
    916 	mDNSu32 val = 0, multiplier = 1;
    917 
    918 	// Chop closing parentheses from RichText suffix
    919 	if (RichText && name->c[0] >= 1 && name->c[name->c[0]] == ')') name->c[0]--;
    920 
    921 	// Get any existing numerical suffix off the name
    922 	while (mDNSIsDigit(name->c[name->c[0]]))
    923 		{ val += (name->c[name->c[0]] - '0') * multiplier; multiplier *= 10; name->c[0]--; }
    924 
    925 	// Chop opening parentheses or dash from suffix
    926 	if (RichText)
    927 		{
    928 		if (name->c[0] >= 2 && name->c[name->c[0]] == '(' && name->c[name->c[0]-1] == ' ') name->c[0] -= 2;
    929 		}
    930 	else
    931 		{
    932 		if (name->c[0] >= 1 && name->c[name->c[0]] == '-') name->c[0] -= 1;
    933 		}
    934 
    935 	return(val);
    936 	}
    937 
    938 // appends a numerical suffix to a label, with the number following a whitespace and enclosed
    939 // in parentheses (rich text) or following two consecutive hyphens (RFC 1034 domain label).
    940 mDNSexport void AppendLabelSuffix(domainlabel *const name, mDNSu32 val, const mDNSBool RichText)
    941 	{
    942 	mDNSu32 divisor = 1, chars = 2;	// Shortest possible RFC1034 name suffix is 2 characters ("-2")
    943 	if (RichText) chars = 4;		// Shortest possible RichText suffix is 4 characters (" (2)")
    944 
    945 	// Truncate trailing spaces from RichText names
    946 	if (RichText) while (name->c[name->c[0]] == ' ') name->c[0]--;
    947 
    948 	while (divisor < 0xFFFFFFFFUL/10 && val >= divisor * 10) { divisor *= 10; chars++; }
    949 
    950 	name->c[0] = (mDNSu8) TruncateUTF8ToLength(name->c+1, name->c[0], MAX_DOMAIN_LABEL - chars);
    951 
    952 	if (RichText) { name->c[++name->c[0]] = ' '; name->c[++name->c[0]] = '('; }
    953 	else          { name->c[++name->c[0]] = '-'; }
    954 
    955 	while (divisor)
    956 		{
    957 		name->c[++name->c[0]] = (mDNSu8)('0' + val / divisor);
    958 		val     %= divisor;
    959 		divisor /= 10;
    960 		}
    961 
    962 	if (RichText) name->c[++name->c[0]] = ')';
    963 	}
    964 
    965 mDNSexport void IncrementLabelSuffix(domainlabel *name, mDNSBool RichText)
    966 	{
    967 	mDNSu32 val = 0;
    968 
    969 	if (LabelContainsSuffix(name, RichText))
    970 		val = RemoveLabelSuffix(name, RichText);
    971 
    972 	// If no existing suffix, start by renaming "Foo" as "Foo (2)" or "Foo-2" as appropriate.
    973 	// If existing suffix in the range 2-9, increment it.
    974 	// If we've had ten conflicts already, there are probably too many hosts trying to use the same name,
    975 	// so add a random increment to improve the chances of finding an available name next time.
    976 	if      (val == 0) val = 2;
    977 	else if (val < 10) val++;
    978 	else               val += 1 + mDNSRandom(99);
    979 
    980 	AppendLabelSuffix(name, val, RichText);
    981 	}
    982 
    983 // ***************************************************************************
    984 #if COMPILER_LIKES_PRAGMA_MARK
    985 #pragma mark -
    986 #pragma mark - Resource Record Utility Functions
    987 #endif
    988 
    989 // Set up a AuthRecord with sensible default values.
    990 // These defaults may be overwritten with new values before mDNS_Register is called
    991 mDNSexport void mDNS_SetupResourceRecord(AuthRecord *rr, RData *RDataStorage, mDNSInterfaceID InterfaceID,
    992 	mDNSu16 rrtype, mDNSu32 ttl, mDNSu8 RecordType, AuthRecType artype, mDNSRecordCallback Callback, void *Context)
    993 	{
    994 	//
    995 	// LocalOnly auth record can be created with LocalOnly InterfaceID or a valid InterfaceID.
    996 	// Most of the applications normally create with LocalOnly InterfaceID and we store them as
    997 	// such, so that we can deliver the response to questions that specify LocalOnly InterfaceID.
    998 	// LocalOnly resource records can also be created with valid InterfaceID which happens today
    999 	// when we create LocalOnly records for /etc/hosts.
   1000 
   1001 	if (InterfaceID == mDNSInterface_LocalOnly && artype != AuthRecordLocalOnly)
   1002 		{
   1003 		LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch LocalOnly record InterfaceID %p called with artype %d", InterfaceID, artype);
   1004 		return;
   1005 		}
   1006 	else if (InterfaceID == mDNSInterface_P2P && artype != AuthRecordP2P)
   1007 		{
   1008 		LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch P2P record InterfaceID %p called with artype %d", InterfaceID, artype);
   1009 		return;
   1010 		}
   1011 	else if (!InterfaceID && (artype == AuthRecordP2P || artype == AuthRecordLocalOnly))
   1012 		{
   1013 		LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch InterfaceAny record InterfaceID %p called with artype %d", InterfaceID, artype);
   1014 		return;
   1015 		}
   1016 
   1017 	// Don't try to store a TTL bigger than we can represent in platform time units
   1018 	if (ttl > 0x7FFFFFFFUL / mDNSPlatformOneSecond)
   1019 		ttl = 0x7FFFFFFFUL / mDNSPlatformOneSecond;
   1020 	else if (ttl == 0)		// And Zero TTL is illegal
   1021 		ttl = DefaultTTLforRRType(rrtype);
   1022 
   1023 	// Field Group 1: The actual information pertaining to this resource record
   1024 	rr->resrec.RecordType        = RecordType;
   1025 	rr->resrec.InterfaceID       = InterfaceID;
   1026 	rr->resrec.name              = &rr->namestorage;
   1027 	rr->resrec.rrtype            = rrtype;
   1028 	rr->resrec.rrclass           = kDNSClass_IN;
   1029 	rr->resrec.rroriginalttl     = ttl;
   1030 	rr->resrec.rDNSServer		 = mDNSNULL;
   1031 //	rr->resrec.rdlength          = MUST set by client and/or in mDNS_Register_internal
   1032 //	rr->resrec.rdestimate        = set in mDNS_Register_internal
   1033 //	rr->resrec.rdata             = MUST be set by client
   1034 
   1035 	if (RDataStorage)
   1036 		rr->resrec.rdata = RDataStorage;
   1037 	else
   1038 		{
   1039 		rr->resrec.rdata = &rr->rdatastorage;
   1040 		rr->resrec.rdata->MaxRDLength = sizeof(RDataBody);
   1041 		}
   1042 
   1043 	// Field Group 2: Persistent metadata for Authoritative Records
   1044 	rr->Additional1       = mDNSNULL;
   1045 	rr->Additional2       = mDNSNULL;
   1046 	rr->DependentOn       = mDNSNULL;
   1047 	rr->RRSet             = mDNSNULL;
   1048 	rr->RecordCallback    = Callback;
   1049 	rr->RecordContext     = Context;
   1050 
   1051 	rr->AutoTarget        = Target_Manual;
   1052 	rr->AllowRemoteQuery  = mDNSfalse;
   1053 	rr->ForceMCast        = mDNSfalse;
   1054 
   1055 	rr->WakeUp            = zeroOwner;
   1056 	rr->AddressProxy      = zeroAddr;
   1057 	rr->TimeRcvd          = 0;
   1058 	rr->TimeExpire        = 0;
   1059 	rr->ARType            = artype;
   1060 
   1061 	// Field Group 3: Transient state for Authoritative Records (set in mDNS_Register_internal)
   1062 	// Field Group 4: Transient uDNS state for Authoritative Records (set in mDNS_Register_internal)
   1063 
   1064 	// For now, until the uDNS code is fully integrated, it's helpful to zero the uDNS state fields here too, just in case
   1065 	// (e.g. uDNS_RegisterService short-circuits the usual mDNS_Register_internal record registration calls, so a bunch
   1066 	// of fields don't get set up properly. In particular, if we don't zero rr->QueuedRData then the uDNS code crashes.)
   1067 	rr->state             = regState_Zero;
   1068 	rr->uselease          = 0;
   1069 	rr->expire            = 0;
   1070 	rr->Private           = 0;
   1071 	rr->updateid          = zeroID;
   1072 	rr->zone              = rr->resrec.name;
   1073 	rr->nta               = mDNSNULL;
   1074 	rr->tcp               = mDNSNULL;
   1075 	rr->OrigRData         = 0;
   1076 	rr->OrigRDLen         = 0;
   1077 	rr->InFlightRData     = 0;
   1078 	rr->InFlightRDLen     = 0;
   1079 	rr->QueuedRData       = 0;
   1080 	rr->QueuedRDLen       = 0;
   1081 	mDNSPlatformMemZero(&rr->NATinfo, sizeof(rr->NATinfo));
   1082 	rr->SRVChanged = mDNSfalse;
   1083 	rr->mState = mergeState_Zero;
   1084 
   1085 	rr->namestorage.c[0]  = 0;		// MUST be set by client before calling mDNS_Register()
   1086 	}
   1087 
   1088 mDNSexport void mDNS_SetupQuestion(DNSQuestion *const q, const mDNSInterfaceID InterfaceID, const domainname *const name,
   1089                const mDNSu16 qtype, mDNSQuestionCallback *const callback, void *const context)
   1090 	{
   1091 	q->InterfaceID         = InterfaceID;
   1092 	q->Target              = zeroAddr;
   1093 	AssignDomainName(&q->qname, name);
   1094 	q->qtype               = qtype;
   1095 	q->qclass              = kDNSClass_IN;
   1096 	q->LongLived           = (qtype == kDNSType_PTR);
   1097 	q->ExpectUnique        = (qtype != kDNSType_PTR);
   1098 	q->ForceMCast          = mDNSfalse;
   1099 	q->ReturnIntermed      = mDNSfalse;
   1100 	q->SuppressUnusable    = mDNSfalse;
   1101 	q->SearchListIndex     = 0;
   1102 	q->AppendSearchDomains = 0;
   1103 	q->RetryWithSearchDomains = mDNSfalse;
   1104 	q->TimeoutQuestion     = 0;
   1105 	q->WakeOnResolve       = 0;
   1106 	q->qnameOrig           = mDNSNULL;
   1107 	q->QuestionCallback    = callback;
   1108 	q->QuestionContext     = context;
   1109 	}
   1110 
   1111 mDNSexport mDNSu32 RDataHashValue(const ResourceRecord *const rr)
   1112 	{
   1113 	int len = rr->rdlength;
   1114 	const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
   1115 	switch(rr->rrtype)
   1116 		{
   1117 		case kDNSType_NS:
   1118 		case kDNSType_CNAME:
   1119 		case kDNSType_PTR:
   1120 		case kDNSType_DNAME: return DomainNameHashValue(&rdb->name);
   1121 
   1122 		case kDNSType_SOA:   return rdb->soa.serial  +
   1123 									rdb->soa.refresh +
   1124 									rdb->soa.retry   +
   1125 									rdb->soa.expire  +
   1126 									rdb->soa.min     +
   1127 									DomainNameHashValue(&rdb->soa.mname) +
   1128 									DomainNameHashValue(&rdb->soa.rname);
   1129 
   1130 		case kDNSType_MX:
   1131 		case kDNSType_AFSDB:
   1132 		case kDNSType_RT:
   1133 		case kDNSType_KX:	 return DomainNameHashValue(&rdb->mx.exchange);
   1134 
   1135 		case kDNSType_RP:	 return DomainNameHashValue(&rdb->rp.mbox)   + DomainNameHashValue(&rdb->rp.txt);
   1136 
   1137 		case kDNSType_PX:	 return DomainNameHashValue(&rdb->px.map822) + DomainNameHashValue(&rdb->px.mapx400);
   1138 
   1139 		case kDNSType_SRV:	 return DomainNameHashValue(&rdb->srv.target);
   1140 
   1141 		case kDNSType_OPT:	 return 0;	// OPT is a pseudo-RR container structure; makes no sense to compare
   1142 
   1143 		case kDNSType_NSEC:	 len = sizeof(rdataNSEC);	// Use in-memory length of 32, and fall through default checksum computation below
   1144 
   1145 		default:
   1146 			{
   1147 			mDNSu32 sum = 0;
   1148 			int i;
   1149 			for (i=0; i+1 < len; i+=2)
   1150 				{
   1151 				sum += (((mDNSu32)(rdb->data[i])) << 8) | rdb->data[i+1];
   1152 				sum = (sum<<3) | (sum>>29);
   1153 				}
   1154 			if (i < len)
   1155 				{
   1156 				sum += ((mDNSu32)(rdb->data[i])) << 8;
   1157 				}
   1158 			return(sum);
   1159 			}
   1160 		}
   1161 	}
   1162 
   1163 // r1 has to be a full ResourceRecord including rrtype and rdlength
   1164 // r2 is just a bare RDataBody, which MUST be the same rrtype and rdlength as r1
   1165 mDNSexport mDNSBool SameRDataBody(const ResourceRecord *const r1, const RDataBody *const r2, DomainNameComparisonFn *samename)
   1166 	{
   1167 	const RDataBody2 *const b1 = (RDataBody2 *)r1->rdata->u.data;
   1168 	const RDataBody2 *const b2 = (RDataBody2 *)r2;
   1169 	switch(r1->rrtype)
   1170 		{
   1171 		case kDNSType_NS:
   1172 		case kDNSType_CNAME:
   1173 		case kDNSType_PTR:
   1174 		case kDNSType_DNAME:return(SameDomainName(&b1->name, &b2->name));
   1175 
   1176 		case kDNSType_SOA:	return(mDNSBool)(  	b1->soa.serial   == b2->soa.serial             &&
   1177 												b1->soa.refresh  == b2->soa.refresh            &&
   1178 												b1->soa.retry    == b2->soa.retry              &&
   1179 												b1->soa.expire   == b2->soa.expire             &&
   1180 												b1->soa.min      == b2->soa.min                &&
   1181 												samename(&b1->soa.mname, &b2->soa.mname) &&
   1182 												samename(&b1->soa.rname, &b2->soa.rname));
   1183 
   1184 		case kDNSType_MX:
   1185 		case kDNSType_AFSDB:
   1186 		case kDNSType_RT:
   1187 		case kDNSType_KX:	return(mDNSBool)(  	b1->mx.preference == b2->mx.preference &&
   1188 												samename(&b1->mx.exchange, &b2->mx.exchange));
   1189 
   1190 		case kDNSType_RP:	return(mDNSBool)(  	samename(&b1->rp.mbox, &b2->rp.mbox) &&
   1191 												samename(&b1->rp.txt,  &b2->rp.txt));
   1192 
   1193 		case kDNSType_PX:	return(mDNSBool)(  	b1->px.preference == b2->px.preference          &&
   1194 												samename(&b1->px.map822,  &b2->px.map822) &&
   1195 												samename(&b1->px.mapx400, &b2->px.mapx400));
   1196 
   1197 		case kDNSType_SRV:	return(mDNSBool)(  	b1->srv.priority == b2->srv.priority       &&
   1198 												b1->srv.weight   == b2->srv.weight         &&
   1199 												mDNSSameIPPort(b1->srv.port, b2->srv.port) &&
   1200 												samename(&b1->srv.target, &b2->srv.target));
   1201 
   1202 		case kDNSType_OPT:	return mDNSfalse;	// OPT is a pseudo-RR container structure; makes no sense to compare
   1203 
   1204 		case kDNSType_NSEC: return(mDNSPlatformMemSame(b1->data, b2->data, sizeof(rdataNSEC)));
   1205 
   1206 		default:			return(mDNSPlatformMemSame(b1->data, b2->data, r1->rdlength));
   1207 		}
   1208 	}
   1209 
   1210 // ResourceRecordAnswersQuestion returns mDNStrue if the given resource record is a valid answer to the given question.
   1211 // SameNameRecordAnswersQuestion is the same, except it skips the expensive SameDomainName() call.
   1212 // SameDomainName() is generally cheap when the names don't match, but expensive when they do match,
   1213 // because it has to check all the way to the end of the names to be sure.
   1214 // In cases where we know in advance that the names match it's especially advantageous to skip the
   1215 // SameDomainName() call because that's precisely the time when it's most expensive and least useful.
   1216 
   1217 mDNSexport mDNSBool SameNameRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
   1218 	{
   1219 	// LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
   1220 	// are handled in LocalOnlyRecordAnswersQuestion
   1221 	if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
   1222 		{
   1223 		LogMsg("SameNameRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
   1224 		return mDNSfalse;
   1225 		}
   1226 	if (rr->InterfaceID &&
   1227 		q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
   1228 		rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
   1229 
   1230 	// Resource record received via unicast, the DNSServer entries should match ?
   1231 	if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse);
   1232 
   1233 	// If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
   1234 	if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
   1235 
   1236 	// RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
   1237 	if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
   1238 	if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
   1239 
   1240 	return(mDNStrue);
   1241 	}
   1242 
   1243 mDNSexport mDNSBool ResourceRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
   1244 	{
   1245 	// LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
   1246 	// are handled in LocalOnlyRecordAnswersQuestion
   1247 	if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
   1248 		{
   1249 		LogMsg("ResourceRecordAnswersQuestion: ERROR!! called with LocalOnly/P2P ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
   1250 		return mDNSfalse;
   1251 		}
   1252 
   1253 	if (rr->InterfaceID &&
   1254 		q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
   1255 		rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
   1256 
   1257 	// Resource record received via unicast, the DNSServer entries should match ?
   1258 	if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse);
   1259 
   1260 	// If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
   1261 	if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
   1262 
   1263 	// RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
   1264 	if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
   1265 	if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
   1266 
   1267 	return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
   1268 	}
   1269 
   1270 // We have a separate function to handle LocalOnly AuthRecords because they can be created with
   1271 // a valid InterfaceID (e.g., scoped /etc/hosts) and can be used to answer unicast questions unlike
   1272 // multicast resource records (which has a valid InterfaceID) which can't be used to answer
   1273 // unicast questions. ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion can't tell whether
   1274 // a resource record is multicast or LocalOnly by just looking at the ResourceRecord because
   1275 // LocalOnly records are truly identified by ARType in the AuthRecord.  As P2P and LocalOnly record
   1276 // are kept in the same hash table, we use the same function to make it easy for the callers when
   1277 // they walk the hash table to answer LocalOnly/P2P questions
   1278 //
   1279 mDNSexport mDNSBool LocalOnlyRecordAnswersQuestion(AuthRecord *const ar, const DNSQuestion *const q)
   1280 	{
   1281 	ResourceRecord *rr = &ar->resrec;
   1282 
   1283 	// mDNSInterface_Any questions can be answered with LocalOnly/P2P records in this function. AuthRecord_Any
   1284 	// records are handled in ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion
   1285 	if (RRAny(ar))
   1286 		{
   1287 		LogMsg("LocalOnlyRecordAnswersQuestion: ERROR!! called with regular AuthRecordAny %##s", rr->name->c);
   1288 		return mDNSfalse;
   1289 		}
   1290 
   1291 	// Questions with mDNSInterface_LocalOnly InterfaceID should be answered with all resource records that are
   1292 	// *local* to the machine. These include resource records that have InterfaceID set to mDNSInterface_LocalOnly,
   1293 	// mDNSInterface_Any and any other real InterfaceID. Hence, LocalOnly questions should not be checked against
   1294 	// the InterfaceID in the resource record.
   1295 	//
   1296 	// mDNSInterface_Unicast does not indicate any scope and hence treat them like mDNSInterface_Any.
   1297 
   1298 	if (rr->InterfaceID &&
   1299 		q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && q->InterfaceID != mDNSInterface_Unicast &&
   1300 		rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
   1301 
   1302 	// Entries in /etc/hosts are added as LocalOnly resource records. The LocalOnly resource records
   1303 	// may have a scope e.g., fe80::1%en0. The question may be scoped or not: the InterfaceID may be set
   1304 	// to mDNSInterface_Any, mDNSInterface_LocalOnly or a real InterfaceID (scoped).
   1305 	//
   1306 	// 1) Question: Any, LocalOnly Record: no scope. This question should be answered with this record.
   1307 	//
   1308 	// 2) Question: Any, LocalOnly Record: scoped.  This question should be answered with the record because
   1309 	//    traditionally applications never specify scope e.g., getaddrinfo, but need to be able
   1310 	//    to get to /etc/hosts entries.
   1311 	//
   1312 	// 3) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: no scope. This is the inverse of (2).
   1313 	//    If we register a LocalOnly record, we need to answer a LocalOnly question. If the /etc/hosts has a
   1314 	//    non scoped entry, it may not make sense to answer a scoped question. But we can't tell these two
   1315 	//    cases apart. As we currently answer LocalOnly question with LocalOnly record, we continue to do so.
   1316 	//
   1317 	// 4) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: scoped. LocalOnly questions should be
   1318 	//    answered with any resource record where as if it has a valid InterfaceID, the scope should match.
   1319 	//
   1320 	// (1) and (2) is bypassed because we check for a non-NULL InterfaceID above. For (3), the InterfaceID is NULL
   1321 	// and hence bypassed above. For (4) we bypassed LocalOnly questions and checked the scope of the record
   1322 	// against the question.
   1323 	//
   1324 	// For P2P, InterfaceIDs of the question and the record should match.
   1325 
   1326 	// If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
   1327 	// LocalOnly authoritative answers are exempt. LocalOnly authoritative answers are used for /etc/host entries.
   1328 	// We don't want a local process to be able to create a fake LocalOnly address record for "www.bigbank.com" which would then
   1329 	// cause other applications (e.g. Safari) to connect to the wrong address. The rpc to register records filters out records
   1330 	// with names that don't end in local and have mDNSInterface_LocalOnly set.
   1331 	//
   1332 	// Note: The check is bypassed for LocalOnly and for P2P it is not needed as only .local records are registered and for
   1333 	// a question to match its names, it also has to end in .local and that question can't be a unicast question (See
   1334 	// Question_uDNS macro and its usage). As P2P does not enforce .local only registrations we still make this check
   1335 	// and also makes it future proof.
   1336 
   1337 	if (ar->ARType != AuthRecordLocalOnly && rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
   1338 
   1339 	// RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
   1340 	if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
   1341 	if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
   1342 
   1343 	return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
   1344 	}
   1345 
   1346 mDNSexport mDNSBool AnyTypeRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
   1347 	{
   1348 	// LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
   1349 	// are handled in LocalOnlyRecordAnswersQuestion
   1350 	if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
   1351 		{
   1352 		LogMsg("AnyTypeRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
   1353 		return mDNSfalse;
   1354 		}
   1355 	if (rr->InterfaceID &&
   1356 		q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
   1357 		rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
   1358 
   1359 	// Resource record received via unicast, the DNSServer entries should match ?
   1360 	// Note that Auth Records are normally setup with NULL InterfaceID and
   1361 	// both the DNSServers are assumed to be NULL in that case
   1362 	if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse);
   1363 
   1364 	// If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
   1365 	if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
   1366 
   1367 	if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
   1368 
   1369 	return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
   1370 	}
   1371 
   1372 // This is called with both unicast resource record and multicast resource record. The question that
   1373 // received the unicast response could be the regular unicast response from a DNS server or a response
   1374 // to a mDNS QU query. The main reason we need this function is that we can't compare DNSServers between the
   1375 // question and the resource record because the resource record is not completely initialized in
   1376 // mDNSCoreReceiveResponse when this function is called.
   1377 mDNSexport mDNSBool ResourceRecordAnswersUnicastResponse(const ResourceRecord *const rr, const DNSQuestion *const q)
   1378 	{
   1379 	// For resource records created using multicast, the InterfaceIDs have to match
   1380 	if (rr->InterfaceID &&
   1381 		q->InterfaceID && rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
   1382 
   1383 	// If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
   1384 	if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
   1385 
   1386 	// RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
   1387 	if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
   1388 
   1389 	if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
   1390 
   1391 	return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
   1392 	}
   1393 
   1394 mDNSexport mDNSu16 GetRDLength(const ResourceRecord *const rr, mDNSBool estimate)
   1395 	{
   1396 	const RDataBody2 *const rd = (RDataBody2 *)rr->rdata->u.data;
   1397 	const domainname *const name = estimate ? rr->name : mDNSNULL;
   1398 	if (rr->rrclass == kDNSQClass_ANY) return(rr->rdlength);	// Used in update packets to mean "Delete An RRset" (RFC 2136)
   1399 	else switch (rr->rrtype)
   1400 		{
   1401 		case kDNSType_A:	return(sizeof(rd->ipv4));
   1402 
   1403 		case kDNSType_NS:
   1404 		case kDNSType_CNAME:
   1405 		case kDNSType_PTR:
   1406 		case kDNSType_DNAME:return(CompressedDomainNameLength(&rd->name, name));
   1407 
   1408 		case kDNSType_SOA:  return(mDNSu16)(CompressedDomainNameLength(&rd->soa.mname, name) +
   1409 											CompressedDomainNameLength(&rd->soa.rname, name) +
   1410 											5 * sizeof(mDNSOpaque32));
   1411 
   1412 		case kDNSType_NULL:
   1413 		case kDNSType_TSIG:
   1414 		case kDNSType_TXT:
   1415 		case kDNSType_X25:
   1416 		case kDNSType_ISDN:
   1417 		case kDNSType_LOC:
   1418 		case kDNSType_DHCID:return(rr->rdlength); // Not self-describing, so have to just trust rdlength
   1419 
   1420 		case kDNSType_HINFO:return(mDNSu16)(2 + (int)rd->data[0] + (int)rd->data[1 + (int)rd->data[0]]);
   1421 
   1422 		case kDNSType_MX:
   1423 		case kDNSType_AFSDB:
   1424 		case kDNSType_RT:
   1425 		case kDNSType_KX:	return(mDNSu16)(2 + CompressedDomainNameLength(&rd->mx.exchange, name));
   1426 
   1427 		case kDNSType_RP:	return(mDNSu16)(CompressedDomainNameLength(&rd->rp.mbox, name) +
   1428 											CompressedDomainNameLength(&rd->rp.txt, name));
   1429 
   1430 		case kDNSType_PX:	return(mDNSu16)(2 + CompressedDomainNameLength(&rd->px.map822, name) +
   1431 												CompressedDomainNameLength(&rd->px.mapx400, name));
   1432 
   1433 		case kDNSType_AAAA:	return(sizeof(rd->ipv6));
   1434 
   1435 		case kDNSType_SRV:	return(mDNSu16)(6 + CompressedDomainNameLength(&rd->srv.target, name));
   1436 
   1437 		case kDNSType_OPT:  return(rr->rdlength);
   1438 
   1439 		case kDNSType_NSEC: {
   1440 							int i;
   1441 							for (i=sizeof(rdataNSEC); i>0; i--) if (rd->nsec.bitmap[i-1]) break;
   1442 							// For our simplified use of NSEC synthetic records:
   1443 							// nextname is always the record's own name,
   1444 							// and if we have at least one record type that exists,
   1445 							//  - the block number is always 0,
   1446 							//  - the count byte is a value in the range 1-32,
   1447 							//  - followed by the 1-32 data bytes
   1448 							return(mDNSu16)((estimate ? 2 : DomainNameLength(rr->name)) + (i ? (2 + i) : 0));
   1449 							}
   1450 
   1451 		default:			debugf("Warning! Don't know how to get length of resource type %d", rr->rrtype);
   1452 							return(rr->rdlength);
   1453 		}
   1454 	}
   1455 
   1456 // When a local client registers (or updates) a record, we use this routine to do some simple validation checks
   1457 // to help reduce the risk of bogus malformed data on the network
   1458 mDNSexport mDNSBool ValidateRData(const mDNSu16 rrtype, const mDNSu16 rdlength, const RData *const rd)
   1459 	{
   1460 	mDNSu16 len;
   1461 
   1462 	switch(rrtype)
   1463 		{
   1464 		case kDNSType_A:	return(rdlength == sizeof(mDNSv4Addr));
   1465 
   1466 		case kDNSType_NS:	// Same as PTR
   1467 		case kDNSType_MD:	// Same as PTR
   1468 		case kDNSType_MF:	// Same as PTR
   1469 		case kDNSType_CNAME:// Same as PTR
   1470 		//case kDNSType_SOA not checked
   1471 		case kDNSType_MB:	// Same as PTR
   1472 		case kDNSType_MG:	// Same as PTR
   1473 		case kDNSType_MR:	// Same as PTR
   1474 		//case kDNSType_NULL not checked (no specified format, so always valid)
   1475 		//case kDNSType_WKS not checked
   1476 		case kDNSType_PTR:	len = DomainNameLengthLimit(&rd->u.name, rd->u.data + rdlength);
   1477 							return(len <= MAX_DOMAIN_NAME && rdlength == len);
   1478 
   1479 		case kDNSType_HINFO:// Same as TXT (roughly)
   1480 		case kDNSType_MINFO:// Same as TXT (roughly)
   1481 		case kDNSType_TXT:  if (!rdlength) return(mDNSfalse); // TXT record has to be at least one byte (RFC 1035)
   1482 							{
   1483 							const mDNSu8 *ptr = rd->u.txt.c;
   1484 							const mDNSu8 *end = rd->u.txt.c + rdlength;
   1485 							while (ptr < end) ptr += 1 + ptr[0];
   1486 							return (ptr == end);
   1487 							}
   1488 
   1489 		case kDNSType_AAAA:	return(rdlength == sizeof(mDNSv6Addr));
   1490 
   1491 		case kDNSType_MX:   // Must be at least two-byte preference, plus domainname
   1492 							// Call to DomainNameLengthLimit() implicitly enforces both requirements for us
   1493 							len = DomainNameLengthLimit(&rd->u.mx.exchange, rd->u.data + rdlength);
   1494 							return(len <= MAX_DOMAIN_NAME && rdlength == 2+len);
   1495 
   1496 		case kDNSType_SRV:	// Must be at least priority+weight+port, plus domainname
   1497 							// Call to DomainNameLengthLimit() implicitly enforces both requirements for us
   1498 							len = DomainNameLengthLimit(&rd->u.srv.target, rd->u.data + rdlength);
   1499 							return(len <= MAX_DOMAIN_NAME && rdlength == 6+len);
   1500 
   1501 		//case kDNSType_NSEC not checked
   1502 
   1503 		default:			return(mDNStrue);	// Allow all other types without checking
   1504 		}
   1505 	}
   1506 
   1507 // ***************************************************************************
   1508 #if COMPILER_LIKES_PRAGMA_MARK
   1509 #pragma mark -
   1510 #pragma mark - DNS Message Creation Functions
   1511 #endif
   1512 
   1513 mDNSexport void InitializeDNSMessage(DNSMessageHeader *h, mDNSOpaque16 id, mDNSOpaque16 flags)
   1514 	{
   1515 	h->id             = id;
   1516 	h->flags          = flags;
   1517 	h->numQuestions   = 0;
   1518 	h->numAnswers     = 0;
   1519 	h->numAuthorities = 0;
   1520 	h->numAdditionals = 0;
   1521 	}
   1522 
   1523 mDNSexport const mDNSu8 *FindCompressionPointer(const mDNSu8 *const base, const mDNSu8 *const end, const mDNSu8 *const domname)
   1524 	{
   1525 	const mDNSu8 *result = end - *domname - 1;
   1526 
   1527 	if (*domname == 0) return(mDNSNULL);	// There's no point trying to match just the root label
   1528 
   1529 	// This loop examines each possible starting position in packet, starting end of the packet and working backwards
   1530 	while (result >= base)
   1531 		{
   1532 		// If the length byte and first character of the label match, then check further to see
   1533 		// if this location in the packet will yield a useful name compression pointer.
   1534 		if (result[0] == domname[0] && result[1] == domname[1])
   1535 			{
   1536 			const mDNSu8 *name = domname;
   1537 			const mDNSu8 *targ = result;
   1538 			while (targ + *name < end)
   1539 				{
   1540 				// First see if this label matches
   1541 				int i;
   1542 				const mDNSu8 *pointertarget;
   1543 				for (i=0; i <= *name; i++) if (targ[i] != name[i]) break;
   1544 				if (i <= *name) break;							// If label did not match, bail out
   1545 				targ += 1 + *name;								// Else, did match, so advance target pointer
   1546 				name += 1 + *name;								// and proceed to check next label
   1547 				if (*name == 0 && *targ == 0) return(result);	// If no more labels, we found a match!
   1548 				if (*name == 0) break;							// If no more labels to match, we failed, so bail out
   1549 
   1550 				// The label matched, so now follow the pointer (if appropriate) and then see if the next label matches
   1551 				if (targ[0] < 0x40) continue;					// If length value, continue to check next label
   1552 				if (targ[0] < 0xC0) break;						// If 40-BF, not valid
   1553 				if (targ+1 >= end) break;						// Second byte not present!
   1554 				pointertarget = base + (((mDNSu16)(targ[0] & 0x3F)) << 8) + targ[1];
   1555 				if (targ < pointertarget) break;				// Pointertarget must point *backwards* in the packet
   1556 				if (pointertarget[0] >= 0x40) break;			// Pointertarget must point to a valid length byte
   1557 				targ = pointertarget;
   1558 				}
   1559 			}
   1560 		result--;	// We failed to match at this search position, so back up the tentative result pointer and try again
   1561 		}
   1562 	return(mDNSNULL);
   1563 	}
   1564 
   1565 // Put a string of dot-separated labels as length-prefixed labels
   1566 // domainname is a fully-qualified name (i.e. assumed to be ending in a dot, even if it doesn't)
   1567 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
   1568 // end points to the end of the message so far
   1569 // ptr points to where we want to put the name
   1570 // limit points to one byte past the end of the buffer that we must not overrun
   1571 // domainname is the name to put
   1572 mDNSexport mDNSu8 *putDomainNameAsLabels(const DNSMessage *const msg,
   1573 	mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name)
   1574 	{
   1575 	const mDNSu8 *const base        = (const mDNSu8 *)msg;
   1576 	const mDNSu8 *      np          = name->c;
   1577 	const mDNSu8 *const max         = name->c + MAX_DOMAIN_NAME;	// Maximum that's valid
   1578 	const mDNSu8 *      pointer     = mDNSNULL;
   1579 	const mDNSu8 *const searchlimit = ptr;
   1580 
   1581 	if (!ptr) { LogMsg("putDomainNameAsLabels %##s ptr is null", name->c); return(mDNSNULL); }
   1582 
   1583 	if (!*np)		// If just writing one-byte root label, make sure we have space for that
   1584 		{
   1585 		if (ptr >= limit) return(mDNSNULL);
   1586 		}
   1587 	else			// else, loop through writing labels and/or a compression offset
   1588 		{
   1589 		do	{
   1590 			if (*np > MAX_DOMAIN_LABEL)
   1591 				{ LogMsg("Malformed domain name %##s (label more than 63 bytes)", name->c); return(mDNSNULL); }
   1592 
   1593 			// This check correctly allows for the final trailing root label:
   1594 			// e.g.
   1595 			// Suppose our domain name is exactly 256 bytes long, including the final trailing root label.
   1596 			// Suppose np is now at name->c[249], and we're about to write our last non-null label ("local").
   1597 			// We know that max will be at name->c[256]
   1598 			// That means that np + 1 + 5 == max - 1, so we (just) pass the "if" test below, write our
   1599 			// six bytes, then exit the loop, write the final terminating root label, and the domain
   1600 			// name we've written is exactly 256 bytes long, exactly at the correct legal limit.
   1601 			// If the name is one byte longer, then we fail the "if" test below, and correctly bail out.
   1602 			if (np + 1 + *np >= max)
   1603 				{ LogMsg("Malformed domain name %##s (more than 256 bytes)", name->c); return(mDNSNULL); }
   1604 
   1605 			if (base) pointer = FindCompressionPointer(base, searchlimit, np);
   1606 			if (pointer)					// Use a compression pointer if we can
   1607 				{
   1608 				const mDNSu16 offset = (mDNSu16)(pointer - base);
   1609 				if (ptr+2 > limit) return(mDNSNULL);	// If we don't have two bytes of space left, give up
   1610 				*ptr++ = (mDNSu8)(0xC0 | (offset >> 8));
   1611 				*ptr++ = (mDNSu8)(        offset &  0xFF);
   1612 				return(ptr);
   1613 				}
   1614 			else							// Else copy one label and try again
   1615 				{
   1616 				int i;
   1617 				mDNSu8 len = *np++;
   1618 				// If we don't at least have enough space for this label *plus* a terminating zero on the end, give up
   1619 				if (ptr + 1 + len >= limit) return(mDNSNULL);
   1620 				*ptr++ = len;
   1621 				for (i=0; i<len; i++) *ptr++ = *np++;
   1622 				}
   1623 			} while (*np);					// While we've got characters remaining in the name, continue
   1624 		}
   1625 
   1626 	*ptr++ = 0;		// Put the final root label
   1627 	return(ptr);
   1628 	}
   1629 
   1630 mDNSlocal mDNSu8 *putVal16(mDNSu8 *ptr, mDNSu16 val)
   1631 	{
   1632 	ptr[0] = (mDNSu8)((val >> 8 ) & 0xFF);
   1633 	ptr[1] = (mDNSu8)((val      ) & 0xFF);
   1634 	return ptr + sizeof(mDNSOpaque16);
   1635 	}
   1636 
   1637 mDNSlocal mDNSu8 *putVal32(mDNSu8 *ptr, mDNSu32 val)
   1638 	{
   1639 	ptr[0] = (mDNSu8)((val >> 24) & 0xFF);
   1640 	ptr[1] = (mDNSu8)((val >> 16) & 0xFF);
   1641 	ptr[2] = (mDNSu8)((val >>  8) & 0xFF);
   1642 	ptr[3] = (mDNSu8)((val      ) & 0xFF);
   1643 	return ptr + sizeof(mDNSu32);
   1644 	}
   1645 
   1646 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
   1647 mDNSexport mDNSu8 *putRData(const DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const ResourceRecord *const rr)
   1648 	{
   1649 	const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
   1650 	switch (rr->rrtype)
   1651 		{
   1652 		case kDNSType_A:	if (rr->rdlength != 4)
   1653 								{ debugf("putRData: Illegal length %d for kDNSType_A", rr->rdlength); return(mDNSNULL); }
   1654 							if (ptr + 4 > limit) return(mDNSNULL);
   1655 							*ptr++ = rdb->ipv4.b[0];
   1656 							*ptr++ = rdb->ipv4.b[1];
   1657 							*ptr++ = rdb->ipv4.b[2];
   1658 							*ptr++ = rdb->ipv4.b[3];
   1659 							return(ptr);
   1660 
   1661 		case kDNSType_NS:
   1662 		case kDNSType_CNAME:
   1663 		case kDNSType_PTR:
   1664 		case kDNSType_DNAME:return(putDomainNameAsLabels(msg, ptr, limit, &rdb->name));
   1665 
   1666 		case kDNSType_SOA:  ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.mname);
   1667 							if (!ptr) return(mDNSNULL);
   1668 							ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.rname);
   1669 							if (!ptr || ptr + 20 > limit) return(mDNSNULL);
   1670 							ptr = putVal32(ptr, rdb->soa.serial);
   1671 							ptr = putVal32(ptr, rdb->soa.refresh);
   1672 							ptr = putVal32(ptr, rdb->soa.retry);
   1673 							ptr = putVal32(ptr, rdb->soa.expire);
   1674 							ptr = putVal32(ptr, rdb->soa.min);
   1675 			                return(ptr);
   1676 
   1677 		case kDNSType_NULL:
   1678 		case kDNSType_HINFO:
   1679 		case kDNSType_TSIG:
   1680 		case kDNSType_TXT:
   1681 		case kDNSType_X25:
   1682 		case kDNSType_ISDN:
   1683 		case kDNSType_LOC:
   1684 		case kDNSType_DHCID:if (ptr + rr->rdlength > limit) return(mDNSNULL);
   1685 							mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
   1686 							return(ptr + rr->rdlength);
   1687 
   1688 		case kDNSType_MX:
   1689 		case kDNSType_AFSDB:
   1690 		case kDNSType_RT:
   1691 		case kDNSType_KX:	if (ptr + 3 > limit) return(mDNSNULL);
   1692 							ptr = putVal16(ptr, rdb->mx.preference);
   1693 							return(putDomainNameAsLabels(msg, ptr, limit, &rdb->mx.exchange));
   1694 
   1695 		case kDNSType_RP:	ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.mbox);
   1696 							if (!ptr) return(mDNSNULL);
   1697 							ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.txt);
   1698 			                return(ptr);
   1699 
   1700 		case kDNSType_PX:	if (ptr + 5 > limit) return(mDNSNULL);
   1701 							ptr = putVal16(ptr, rdb->px.preference);
   1702 							ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.map822);
   1703 							if (!ptr) return(mDNSNULL);
   1704 							ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.mapx400);
   1705 			                return(ptr);
   1706 
   1707 		case kDNSType_AAAA:	if (rr->rdlength != sizeof(rdb->ipv6))
   1708 								{ debugf("putRData: Illegal length %d for kDNSType_AAAA", rr->rdlength); return(mDNSNULL); }
   1709 							if (ptr + sizeof(rdb->ipv6) > limit) return(mDNSNULL);
   1710 							mDNSPlatformMemCopy(ptr, &rdb->ipv6, sizeof(rdb->ipv6));
   1711 							return(ptr + sizeof(rdb->ipv6));
   1712 
   1713 		case kDNSType_SRV:	if (ptr + 7 > limit) return(mDNSNULL);
   1714 							*ptr++ = (mDNSu8)(rdb->srv.priority >> 8);
   1715 							*ptr++ = (mDNSu8)(rdb->srv.priority &  0xFF);
   1716 							*ptr++ = (mDNSu8)(rdb->srv.weight   >> 8);
   1717 							*ptr++ = (mDNSu8)(rdb->srv.weight   &  0xFF);
   1718 							*ptr++ = rdb->srv.port.b[0];
   1719 							*ptr++ = rdb->srv.port.b[1];
   1720 							return(putDomainNameAsLabels(msg, ptr, limit, &rdb->srv.target));
   1721 
   1722 		case kDNSType_OPT:	{
   1723 							int len = 0;
   1724 							const rdataOPT *opt;
   1725 							const rdataOPT *const end = (const rdataOPT *)&rr->rdata->u.data[rr->rdlength];
   1726 							for (opt = &rr->rdata->u.opt[0]; opt < end; opt++) len += DNSOpt_Data_Space(opt);
   1727 							if (ptr + len > limit) { LogMsg("ERROR: putOptRData - out of space"); return mDNSNULL; }
   1728 
   1729 							for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
   1730 								{
   1731 								const int space = DNSOpt_Data_Space(opt);
   1732 								ptr = putVal16(ptr, opt->opt);
   1733 								ptr = putVal16(ptr, (mDNSu16)space - 4);
   1734 								switch (opt->opt)
   1735 									{
   1736 									case kDNSOpt_LLQ:
   1737 										ptr = putVal16(ptr, opt->u.llq.vers);
   1738 										ptr = putVal16(ptr, opt->u.llq.llqOp);
   1739 										ptr = putVal16(ptr, opt->u.llq.err);
   1740 										mDNSPlatformMemCopy(ptr, opt->u.llq.id.b, 8);  // 8-byte id
   1741 										ptr += 8;
   1742 										ptr = putVal32(ptr, opt->u.llq.llqlease);
   1743 										break;
   1744 									case kDNSOpt_Lease:
   1745 										ptr = putVal32(ptr, opt->u.updatelease);
   1746 										break;
   1747 									case kDNSOpt_Owner:
   1748 										*ptr++ = opt->u.owner.vers;
   1749 										*ptr++ = opt->u.owner.seq;
   1750 										mDNSPlatformMemCopy(ptr, opt->u.owner.HMAC.b, 6);  // 6-byte Host identifier
   1751 										ptr += 6;
   1752 										if (space >= DNSOpt_OwnerData_ID_Wake_Space)
   1753 											{
   1754 											mDNSPlatformMemCopy(ptr, opt->u.owner.IMAC.b, 6);	// 6-byte interface MAC
   1755 											ptr += 6;
   1756 											if (space > DNSOpt_OwnerData_ID_Wake_Space)
   1757 												{
   1758 												mDNSPlatformMemCopy(ptr, opt->u.owner.password.b, space - DNSOpt_OwnerData_ID_Wake_Space);
   1759 												ptr += space - DNSOpt_OwnerData_ID_Wake_Space;
   1760 												}
   1761 											}
   1762 										break;
   1763 									}
   1764 								}
   1765 							return ptr;
   1766 							}
   1767 
   1768 		case kDNSType_NSEC: {
   1769 							// For our simplified use of NSEC synthetic records:
   1770 							// nextname is always the record's own name,
   1771 							// the block number is always 0,
   1772 							// the count byte is a value in the range 1-32,
   1773 							// followed by the 1-32 data bytes
   1774 							int i, j;
   1775 							for (i=sizeof(rdataNSEC); i>0; i--) if (rdb->nsec.bitmap[i-1]) break;
   1776 							ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
   1777 							if (!ptr) return(mDNSNULL);
   1778 							if (i)		// Only put a block if at least one type exists for this name
   1779 								{
   1780 								if (ptr + 2 + i > limit) return(mDNSNULL);
   1781 								*ptr++ = 0;
   1782 								*ptr++ = (mDNSu8)i;
   1783 								for (j=0; j<i; j++) *ptr++ = rdb->nsec.bitmap[j];
   1784 								}
   1785 							return ptr;
   1786 							}
   1787 
   1788 		default:			debugf("putRData: Warning! Writing unknown resource type %d as raw data", rr->rrtype);
   1789 							if (ptr + rr->rdlength > limit) return(mDNSNULL);
   1790 							mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
   1791 							return(ptr + rr->rdlength);
   1792 		}
   1793 	}
   1794 
   1795 #define IsUnicastUpdate(X) (!mDNSOpaque16IsZero((X)->h.id) && ((X)->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update)
   1796 
   1797 mDNSexport mDNSu8 *PutResourceRecordTTLWithLimit(DNSMessage *const msg, mDNSu8 *ptr, mDNSu16 *count, ResourceRecord *rr, mDNSu32 ttl, const mDNSu8 *limit)
   1798 	{
   1799 	mDNSu8 *endofrdata;
   1800 	mDNSu16 actualLength;
   1801 	// When sending SRV to conventional DNS server (i.e. in DNS update requests) we should not do name compression on the rdata (RFC 2782)
   1802 	const DNSMessage *const rdatacompressionbase = (IsUnicastUpdate(msg) && rr->rrtype == kDNSType_SRV) ? mDNSNULL : msg;
   1803 
   1804 	if (rr->RecordType == kDNSRecordTypeUnregistered)
   1805 		{
   1806 		LogMsg("PutResourceRecord ERROR! Attempt to put kDNSRecordTypeUnregistered %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
   1807 		return(ptr);
   1808 		}
   1809 
   1810 	if (!ptr) { LogMsg("PutResourceRecordTTLWithLimit ptr is null"); return(mDNSNULL); }
   1811 
   1812 	ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
   1813 	if (!ptr || ptr + 10 >= limit) return(mDNSNULL);	// If we're out-of-space, return mDNSNULL
   1814 	ptr[0] = (mDNSu8)(rr->rrtype  >> 8);
   1815 	ptr[1] = (mDNSu8)(rr->rrtype  &  0xFF);
   1816 	ptr[2] = (mDNSu8)(rr->rrclass >> 8);
   1817 	ptr[3] = (mDNSu8)(rr->rrclass &  0xFF);
   1818 	ptr[4] = (mDNSu8)((ttl >> 24) &  0xFF);
   1819 	ptr[5] = (mDNSu8)((ttl >> 16) &  0xFF);
   1820 	ptr[6] = (mDNSu8)((ttl >>  8) &  0xFF);
   1821 	ptr[7] = (mDNSu8)( ttl        &  0xFF);
   1822 	// ptr[8] and ptr[9] filled in *after* we find out how much space the rdata takes
   1823 
   1824 	endofrdata = putRData(rdatacompressionbase, ptr+10, limit, rr);
   1825 	if (!endofrdata) { verbosedebugf("Ran out of space in PutResourceRecord for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype)); return(mDNSNULL); }
   1826 
   1827 	// Go back and fill in the actual number of data bytes we wrote
   1828 	// (actualLength can be less than rdlength when domain name compression is used)
   1829 	actualLength = (mDNSu16)(endofrdata - ptr - 10);
   1830 	ptr[8] = (mDNSu8)(actualLength >> 8);
   1831 	ptr[9] = (mDNSu8)(actualLength &  0xFF);
   1832 
   1833 	if (count) (*count)++;
   1834 	else LogMsg("PutResourceRecordTTL: ERROR: No target count to update for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
   1835 	return(endofrdata);
   1836 	}
   1837 
   1838 mDNSlocal mDNSu8 *putEmptyResourceRecord(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, mDNSu16 *count, const AuthRecord *rr)
   1839 	{
   1840 	ptr = putDomainNameAsLabels(msg, ptr, limit, rr->resrec.name);
   1841 	if (!ptr || ptr + 10 > limit) return(mDNSNULL);		// If we're out-of-space, return mDNSNULL
   1842 	ptr[0] = (mDNSu8)(rr->resrec.rrtype  >> 8);				// Put type
   1843 	ptr[1] = (mDNSu8)(rr->resrec.rrtype  &  0xFF);
   1844 	ptr[2] = (mDNSu8)(rr->resrec.rrclass >> 8);				// Put class
   1845 	ptr[3] = (mDNSu8)(rr->resrec.rrclass &  0xFF);
   1846 	ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0;				// TTL is zero
   1847 	ptr[8] = ptr[9] = 0;								// RDATA length is zero
   1848 	(*count)++;
   1849 	return(ptr + 10);
   1850 	}
   1851 
   1852 mDNSexport mDNSu8 *putQuestion(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name, mDNSu16 rrtype, mDNSu16 rrclass)
   1853 	{
   1854 	ptr = putDomainNameAsLabels(msg, ptr, limit, name);
   1855 	if (!ptr || ptr+4 >= limit) return(mDNSNULL);			// If we're out-of-space, return mDNSNULL
   1856 	ptr[0] = (mDNSu8)(rrtype  >> 8);
   1857 	ptr[1] = (mDNSu8)(rrtype  &  0xFF);
   1858 	ptr[2] = (mDNSu8)(rrclass >> 8);
   1859 	ptr[3] = (mDNSu8)(rrclass &  0xFF);
   1860 	msg->h.numQuestions++;
   1861 	return(ptr+4);
   1862 	}
   1863 
   1864 // for dynamic updates
   1865 mDNSexport mDNSu8 *putZone(DNSMessage *const msg, mDNSu8 *ptr, mDNSu8 *limit, const domainname *zone, mDNSOpaque16 zoneClass)
   1866 	{
   1867 	ptr = putDomainNameAsLabels(msg, ptr, limit, zone);
   1868 	if (!ptr || ptr + 4 > limit) return mDNSNULL;		// If we're out-of-space, return NULL
   1869 	*ptr++ = (mDNSu8)(kDNSType_SOA  >> 8);
   1870 	*ptr++ = (mDNSu8)(kDNSType_SOA  &  0xFF);
   1871 	*ptr++ = zoneClass.b[0];
   1872 	*ptr++ = zoneClass.b[1];
   1873 	msg->h.mDNS_numZones++;
   1874 	return ptr;
   1875 	}
   1876 
   1877 // for dynamic updates
   1878 mDNSexport mDNSu8 *putPrereqNameNotInUse(const domainname *const name, DNSMessage *const msg, mDNSu8 *const ptr, mDNSu8 *const end)
   1879 	{
   1880 	AuthRecord prereq;
   1881 	mDNS_SetupResourceRecord(&prereq, mDNSNULL, mDNSInterface_Any, kDNSQType_ANY, kStandardTTL, 0, AuthRecordAny, mDNSNULL, mDNSNULL);
   1882 	AssignDomainName(&prereq.namestorage, name);
   1883 	prereq.resrec.rrtype = kDNSQType_ANY;
   1884 	prereq.resrec.rrclass = kDNSClass_NONE;
   1885 	return putEmptyResourceRecord(msg, ptr, end, &msg->h.mDNS_numPrereqs, &prereq);
   1886 	}
   1887 
   1888 // for dynamic updates
   1889 mDNSexport mDNSu8 *putDeletionRecord(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr)
   1890 	{
   1891 	// deletion: specify record w/ TTL 0, class NONE
   1892 	const mDNSu16 origclass = rr->rrclass;
   1893 	rr->rrclass = kDNSClass_NONE;
   1894 	ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0);
   1895 	rr->rrclass = origclass;
   1896 	return ptr;
   1897 	}
   1898 
   1899 // for dynamic updates
   1900 mDNSexport mDNSu8 *putDeletionRecordWithLimit(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr, mDNSu8 *limit)
   1901 	{
   1902 	// deletion: specify record w/ TTL 0, class NONE
   1903 	const mDNSu16 origclass = rr->rrclass;
   1904 	rr->rrclass = kDNSClass_NONE;
   1905 	ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0, limit);
   1906 	rr->rrclass = origclass;
   1907 	return ptr;
   1908 	}
   1909 
   1910 mDNSexport mDNSu8 *putDeleteRRSetWithLimit(DNSMessage *msg, mDNSu8 *ptr, const domainname *name, mDNSu16 rrtype, mDNSu8 *limit)
   1911 	{
   1912 	mDNSu16 class = kDNSQClass_ANY;
   1913 
   1914 	ptr = putDomainNameAsLabels(msg, ptr, limit, name);
   1915 	if (!ptr || ptr + 10 >= limit) return mDNSNULL;	// If we're out-of-space, return mDNSNULL
   1916 	ptr[0] = (mDNSu8)(rrtype  >> 8);
   1917 	ptr[1] = (mDNSu8)(rrtype  &  0xFF);
   1918 	ptr[2] = (mDNSu8)(class >> 8);
   1919 	ptr[3] = (mDNSu8)(class &  0xFF);
   1920 	ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
   1921 	ptr[8] = ptr[9] = 0; // zero rdlength/rdata
   1922 
   1923 	msg->h.mDNS_numUpdates++;
   1924 	return ptr + 10;
   1925 	}
   1926 
   1927 // for dynamic updates
   1928 mDNSexport mDNSu8 *putDeleteAllRRSets(DNSMessage *msg, mDNSu8 *ptr, const domainname *name)
   1929 	{
   1930 	const mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
   1931 	mDNSu16 class = kDNSQClass_ANY;
   1932 	mDNSu16 rrtype = kDNSQType_ANY;
   1933 
   1934 	ptr = putDomainNameAsLabels(msg, ptr, limit, name);
   1935 	if (!ptr || ptr + 10 >= limit) return mDNSNULL;	// If we're out-of-space, return mDNSNULL
   1936 	ptr[0] = (mDNSu8)(rrtype >> 8);
   1937 	ptr[1] = (mDNSu8)(rrtype &  0xFF);
   1938 	ptr[2] = (mDNSu8)(class  >> 8);
   1939 	ptr[3] = (mDNSu8)(class  &  0xFF);
   1940 	ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
   1941 	ptr[8] = ptr[9] = 0; // zero rdlength/rdata
   1942 
   1943 	msg->h.mDNS_numUpdates++;
   1944 	return ptr + 10;
   1945 	}
   1946 
   1947 // for dynamic updates
   1948 mDNSexport mDNSu8 *putUpdateLease(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease)
   1949 	{
   1950 	AuthRecord rr;
   1951 	mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
   1952 	rr.resrec.rrclass    = NormalMaxDNSMessageData;
   1953 	rr.resrec.rdlength   = sizeof(rdataOPT);	// One option in this OPT record
   1954 	rr.resrec.rdestimate = sizeof(rdataOPT);
   1955 	rr.resrec.rdata->u.opt[0].opt           = kDNSOpt_Lease;
   1956 	rr.resrec.rdata->u.opt[0].u.updatelease = lease;
   1957 	end = PutResourceRecordTTLJumbo(msg, end, &msg->h.numAdditionals, &rr.resrec, 0);
   1958 	if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTL"); return mDNSNULL; }
   1959 	return end;
   1960 	}
   1961 
   1962 // for dynamic updates
   1963 mDNSexport mDNSu8 *putUpdateLeaseWithLimit(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease, mDNSu8 *limit)
   1964 	{
   1965 	AuthRecord rr;
   1966 	mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
   1967 	rr.resrec.rrclass    = NormalMaxDNSMessageData;
   1968 	rr.resrec.rdlength   = sizeof(rdataOPT);	// One option in this OPT record
   1969 	rr.resrec.rdestimate = sizeof(rdataOPT);
   1970 	rr.resrec.rdata->u.opt[0].opt           = kDNSOpt_Lease;
   1971 	rr.resrec.rdata->u.opt[0].u.updatelease = lease;
   1972 	end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, 0, limit);
   1973 	if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
   1974 	return end;
   1975 	}
   1976 
   1977 mDNSexport mDNSu8 *putHINFO(const mDNS *const m, DNSMessage *const msg, mDNSu8 *end, DomainAuthInfo *authInfo, mDNSu8 *limit)
   1978 	{
   1979 	if (authInfo && authInfo->AutoTunnel)
   1980 		{
   1981 		AuthRecord hinfo;
   1982 		mDNSu8 *h = hinfo.rdatastorage.u.data;
   1983 		mDNSu16 len = 2 + m->HIHardware.c[0] + m->HISoftware.c[0];
   1984 		mDNSu8 *newptr;
   1985 		mDNS_SetupResourceRecord(&hinfo, mDNSNULL, mDNSInterface_Any, kDNSType_HINFO, 0, kDNSRecordTypeUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
   1986 		AppendDomainLabel(&hinfo.namestorage, &m->hostlabel);
   1987 		AppendDomainName (&hinfo.namestorage, &authInfo->domain);
   1988 		hinfo.resrec.rroriginalttl = 0;
   1989 		mDNSPlatformMemCopy(h, &m->HIHardware, 1 + (mDNSu32)m->HIHardware.c[0]);
   1990 		h += 1 + (int)h[0];
   1991 		mDNSPlatformMemCopy(h, &m->HISoftware, 1 + (mDNSu32)m->HISoftware.c[0]);
   1992 		hinfo.resrec.rdlength   = len;
   1993 		hinfo.resrec.rdestimate = len;
   1994 		newptr = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &hinfo.resrec, 0, limit);
   1995 		return newptr;
   1996 		}
   1997 	else
   1998 		return end;
   1999 	}
   2000 
   2001 // ***************************************************************************
   2002 #if COMPILER_LIKES_PRAGMA_MARK
   2003 #pragma mark -
   2004 #pragma mark - DNS Message Parsing Functions
   2005 #endif
   2006 
   2007 mDNSexport mDNSu32 DomainNameHashValue(const domainname *const name)
   2008 	{
   2009 	mDNSu32 sum = 0;
   2010 	const mDNSu8 *c;
   2011 
   2012 	for (c = name->c; c[0] != 0 && c[1] != 0; c += 2)
   2013 		{
   2014 		sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8) |
   2015 				(mDNSIsUpperCase(c[1]) ? c[1] + 'a' - 'A' : c[1]);
   2016 		sum = (sum<<3) | (sum>>29);
   2017 		}
   2018 	if (c[0]) sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8);
   2019 	return(sum);
   2020 	}
   2021 
   2022 mDNSexport void SetNewRData(ResourceRecord *const rr, RData *NewRData, mDNSu16 rdlength)
   2023 	{
   2024 	domainname *target;
   2025 	if (NewRData)
   2026 		{
   2027 		rr->rdata    = NewRData;
   2028 		rr->rdlength = rdlength;
   2029 		}
   2030 	// Must not try to get target pointer until after updating rr->rdata
   2031 	target = GetRRDomainNameTarget(rr);
   2032 	rr->rdlength   = GetRDLength(rr, mDNSfalse);
   2033 	rr->rdestimate = GetRDLength(rr, mDNStrue);
   2034 	rr->rdatahash  = target ? DomainNameHashValue(target) : RDataHashValue(rr);
   2035 	}
   2036 
   2037 mDNSexport const mDNSu8 *skipDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end)
   2038 	{
   2039 	mDNSu16 total = 0;
   2040 
   2041 	if (ptr < (mDNSu8*)msg || ptr >= end)
   2042 		{ debugf("skipDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
   2043 
   2044 	while (1)						// Read sequence of labels
   2045 		{
   2046 		const mDNSu8 len = *ptr++;	// Read length of this label
   2047 		if (len == 0) return(ptr);	// If length is zero, that means this name is complete
   2048 		switch (len & 0xC0)
   2049 			{
   2050 			case 0x00:	if (ptr + len >= end)					// Remember: expect at least one more byte for the root label
   2051 							{ debugf("skipDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
   2052 						if (total + 1 + len >= MAX_DOMAIN_NAME)	// Remember: expect at least one more byte for the root label
   2053 							{ debugf("skipDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
   2054 						ptr += len;
   2055 						total += 1 + len;
   2056 						break;
   2057 
   2058 			case 0x40:	debugf("skipDomainName: Extended EDNS0 label types 0x%X not supported", len); return(mDNSNULL);
   2059 			case 0x80:	debugf("skipDomainName: Illegal label length 0x%X", len); return(mDNSNULL);
   2060 			case 0xC0:	return(ptr+1);
   2061 			}
   2062 		}
   2063 	}
   2064 
   2065 // Routine to fetch an FQDN from the DNS message, following compression pointers if necessary.
   2066 mDNSexport const mDNSu8 *getDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end,
   2067 	domainname *const name)
   2068 	{
   2069 	const mDNSu8 *nextbyte = mDNSNULL;					// Record where we got to before we started following pointers
   2070 	mDNSu8       *np = name->c;							// Name pointer
   2071 	const mDNSu8 *const limit = np + MAX_DOMAIN_NAME;	// Limit so we don't overrun buffer
   2072 
   2073 	if (ptr < (mDNSu8*)msg || ptr >= end)
   2074 		{ debugf("getDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
   2075 
   2076 	*np = 0;						// Tentatively place the root label here (may be overwritten if we have more labels)
   2077 
   2078 	while (1)						// Read sequence of labels
   2079 		{
   2080 		const mDNSu8 len = *ptr++;	// Read length of this label
   2081 		if (len == 0) break;		// If length is zero, that means this name is complete
   2082 		switch (len & 0xC0)
   2083 			{
   2084 			int i;
   2085 			mDNSu16 offset;
   2086 
   2087 			case 0x00:	if (ptr + len >= end)		// Remember: expect at least one more byte for the root label
   2088 							{ debugf("getDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
   2089 						if (np + 1 + len >= limit)	// Remember: expect at least one more byte for the root label
   2090 							{ debugf("getDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
   2091 						*np++ = len;
   2092 						for (i=0; i<len; i++) *np++ = *ptr++;
   2093 						*np = 0;	// Tentatively place the root label here (may be overwritten if we have more labels)
   2094 						break;
   2095 
   2096 			case 0x40:	debugf("getDomainName: Extended EDNS0 label types 0x%X not supported in name %##s", len, name->c);
   2097 						return(mDNSNULL);
   2098 
   2099 			case 0x80:	debugf("getDomainName: Illegal label length 0x%X in domain name %##s", len, name->c); return(mDNSNULL);
   2100 
   2101 			case 0xC0:	offset = (mDNSu16)((((mDNSu16)(len & 0x3F)) << 8) | *ptr++);
   2102 						if (!nextbyte) nextbyte = ptr;	// Record where we got to before we started following pointers
   2103 						ptr = (mDNSu8 *)msg + offset;
   2104 						if (ptr < (mDNSu8*)msg || ptr >= end)
   2105 							{ debugf("getDomainName: Illegal compression pointer not within packet boundaries"); return(mDNSNULL); }
   2106 						if (*ptr & 0xC0)
   2107 							{ debugf("getDomainName: Compression pointer must point to real label"); return(mDNSNULL); }
   2108 						break;
   2109 			}
   2110 		}
   2111 
   2112 	if (nextbyte) return(nextbyte);
   2113 	else return(ptr);
   2114 	}
   2115 
   2116 mDNSexport const mDNSu8 *skipResourceRecord(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
   2117 	{
   2118 	mDNSu16 pktrdlength;
   2119 
   2120 	ptr = skipDomainName(msg, ptr, end);
   2121 	if (!ptr) { debugf("skipResourceRecord: Malformed RR name"); return(mDNSNULL); }
   2122 
   2123 	if (ptr + 10 > end) { debugf("skipResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
   2124 	pktrdlength = (mDNSu16)((mDNSu16)ptr[8] <<  8 | ptr[9]);
   2125 	ptr += 10;
   2126 	if (ptr + pktrdlength > end) { debugf("skipResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
   2127 
   2128 	return(ptr + pktrdlength);
   2129 	}
   2130 
   2131 mDNSexport const mDNSu8 *GetLargeResourceRecord(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr,
   2132     const mDNSu8 *end, const mDNSInterfaceID InterfaceID, mDNSu8 RecordType, LargeCacheRecord *const largecr)
   2133 	{
   2134 	CacheRecord *const rr = &largecr->r;
   2135 	RDataBody2 *const rdb = (RDataBody2 *)rr->smallrdatastorage.data;
   2136 	mDNSu16 pktrdlength;
   2137 
   2138 	if (largecr == &m->rec && m->rec.r.resrec.RecordType)
   2139 		{
   2140 		LogMsg("GetLargeResourceRecord: m->rec appears to be already in use for %s", CRDisplayString(m, &m->rec.r));
   2141 #if ForceAlerts
   2142 		*(long*)0 = 0;
   2143 #endif
   2144 		}
   2145 
   2146 	rr->next              = mDNSNULL;
   2147 	rr->resrec.name       = &largecr->namestorage;
   2148 
   2149 	rr->NextInKAList      = mDNSNULL;
   2150 	rr->TimeRcvd          = m ? m->timenow : 0;
   2151 	rr->DelayDelivery     = 0;
   2152 	rr->NextRequiredQuery = m ? m->timenow : 0;		// Will be updated to the real value when we call SetNextCacheCheckTimeForRecord()
   2153 	rr->LastUsed          = m ? m->timenow : 0;
   2154 	rr->CRActiveQuestion  = mDNSNULL;
   2155 	rr->UnansweredQueries = 0;
   2156 	rr->LastUnansweredTime= 0;
   2157 #if ENABLE_MULTI_PACKET_QUERY_SNOOPING
   2158 	rr->MPUnansweredQ     = 0;
   2159 	rr->MPLastUnansweredQT= 0;
   2160 	rr->MPUnansweredKA    = 0;
   2161 	rr->MPExpectingKA     = mDNSfalse;
   2162 #endif
   2163 	rr->NextInCFList      = mDNSNULL;
   2164 
   2165 	rr->resrec.InterfaceID       = InterfaceID;
   2166 	rr->resrec.rDNSServer = mDNSNULL;
   2167 
   2168 	ptr = getDomainName(msg, ptr, end, &largecr->namestorage);		// Will bail out correctly if ptr is NULL
   2169 	if (!ptr) { debugf("GetLargeResourceRecord: Malformed RR name"); return(mDNSNULL); }
   2170 	rr->resrec.namehash = DomainNameHashValue(rr->resrec.name);
   2171 
   2172 	if (ptr + 10 > end) { debugf("GetLargeResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
   2173 
   2174 	rr->resrec.rrtype            = (mDNSu16) ((mDNSu16)ptr[0] <<  8 | ptr[1]);
   2175 	rr->resrec.rrclass           = (mDNSu16)(((mDNSu16)ptr[2] <<  8 | ptr[3]) & kDNSClass_Mask);
   2176 	rr->resrec.rroriginalttl     = (mDNSu32) ((mDNSu32)ptr[4] << 24 | (mDNSu32)ptr[5] << 16 | (mDNSu32)ptr[6] << 8 | ptr[7]);
   2177 	if (rr->resrec.rroriginalttl > 0x70000000UL / mDNSPlatformOneSecond && (mDNSs32)rr->resrec.rroriginalttl != -1)
   2178 		rr->resrec.rroriginalttl = 0x70000000UL / mDNSPlatformOneSecond;
   2179 	// Note: We don't have to adjust m->NextCacheCheck here -- this is just getting a record into memory for
   2180 	// us to look at. If we decide to copy it into the cache, then we'll update m->NextCacheCheck accordingly.
   2181 	pktrdlength           = (mDNSu16)((mDNSu16)ptr[8] <<  8 | ptr[9]);
   2182 
   2183 	// If mDNS record has cache-flush bit set, we mark it unique
   2184 	// For uDNS records, all are implicitly deemed unique (a single DNS server is always
   2185 	// authoritative for the entire RRSet), unless this is a truncated response
   2186 	if (ptr[2] & (kDNSClass_UniqueRRSet >> 8) || (!InterfaceID && !(msg->h.flags.b[0] & kDNSFlag0_TC)))
   2187 		RecordType |= kDNSRecordTypePacketUniqueMask;
   2188 	ptr += 10;
   2189 	if (ptr + pktrdlength > end) { debugf("GetLargeResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
   2190 	end = ptr + pktrdlength;		// Adjust end to indicate the end of the rdata for this resource record
   2191 
   2192 	rr->resrec.rdata = (RData*)&rr->smallrdatastorage;
   2193 	rr->resrec.rdata->MaxRDLength = MaximumRDSize;
   2194 
   2195 	if (!RecordType) LogMsg("GetLargeResourceRecord: No RecordType for %##s", rr->resrec.name->c);
   2196 
   2197 	// IMPORTANT: Any record type we understand and unpack into a structure containing domainnames needs to have corresponding
   2198 	// cases in SameRDataBody() and RDataHashValue() to do a semantic comparison (or checksum) of the structure instead of a blind
   2199 	// bitwise memory compare (or sum). This is because a domainname is a fixed size structure holding variable-length data.
   2200 	// Any bytes past the logical end of the name are undefined, and a blind bitwise memory compare may indicate that
   2201 	// two domainnames are different when semantically they are the same name and it's only the unused bytes that differ.
   2202 	if (rr->resrec.rrclass == kDNSQClass_ANY && pktrdlength == 0)	// Used in update packets to mean "Delete An RRset" (RFC 2136)
   2203 		rr->resrec.rdlength = 0;
   2204 	else switch (rr->resrec.rrtype)
   2205 		{
   2206 		case kDNSType_A:	if (pktrdlength != sizeof(mDNSv4Addr)) goto fail;
   2207 							rdb->ipv4.b[0] = ptr[0];
   2208 							rdb->ipv4.b[1] = ptr[1];
   2209 							rdb->ipv4.b[2] = ptr[2];
   2210 							rdb->ipv4.b[3] = ptr[3];
   2211 							break;
   2212 
   2213 		case kDNSType_NS:
   2214 		case kDNSType_CNAME:
   2215 		case kDNSType_PTR:
   2216 		case kDNSType_DNAME:ptr = getDomainName(msg, ptr, end, &rdb->name);
   2217 							if (ptr != end) { debugf("GetLargeResourceRecord: Malformed CNAME/PTR RDATA name"); goto fail; }
   2218 							//debugf("%##s PTR %##s rdlen %d", rr->resrec.name.c, rdb->name.c, pktrdlength);
   2219 							break;
   2220 
   2221 		case kDNSType_SOA:  ptr = getDomainName(msg, ptr, end, &rdb->soa.mname);
   2222 							if (!ptr)              { debugf("GetLargeResourceRecord: Malformed SOA RDATA mname"); goto fail; }
   2223 							ptr = getDomainName(msg, ptr, end, &rdb->soa.rname);
   2224 							if (!ptr)              { debugf("GetLargeResourceRecord: Malformed SOA RDATA rname"); goto fail; }
   2225 							if (ptr + 0x14 != end) { debugf("GetLargeResourceRecord: Malformed SOA RDATA");       goto fail; }
   2226 							rdb->soa.serial  = (mDNSs32) ((mDNSs32)ptr[0x00] << 24 | (mDNSs32)ptr[0x01] << 16 | (mDNSs32)ptr[0x02] << 8 | ptr[0x03]);
   2227 							rdb->soa.refresh = (mDNSu32) ((mDNSu32)ptr[0x04] << 24 | (mDNSu32)ptr[0x05] << 16 | (mDNSu32)ptr[0x06] << 8 | ptr[0x07]);
   2228 							rdb->soa.retry   = (mDNSu32) ((mDNSu32)ptr[0x08] << 24 | (mDNSu32)ptr[0x09] << 16 | (mDNSu32)ptr[0x0A] << 8 | ptr[0x0B]);
   2229 							rdb->soa.expire  = (mDNSu32) ((mDNSu32)ptr[0x0C] << 24 | (mDNSu32)ptr[0x0D] << 16 | (mDNSu32)ptr[0x0E] << 8 | ptr[0x0F]);
   2230 							rdb->soa.min     = (mDNSu32) ((mDNSu32)ptr[0x10] << 24 | (mDNSu32)ptr[0x11] << 16 | (mDNSu32)ptr[0x12] << 8 | ptr[0x13]);
   2231 							break;
   2232 
   2233 		case kDNSType_NULL:
   2234 		case kDNSType_HINFO:
   2235 		case kDNSType_TSIG:
   2236 		case kDNSType_TXT:
   2237 		case kDNSType_X25:
   2238 		case kDNSType_ISDN:
   2239 		case kDNSType_LOC:
   2240 		case kDNSType_DHCID:if (pktrdlength > rr->resrec.rdata->MaxRDLength)
   2241 								{
   2242 								debugf("GetLargeResourceRecord: %s rdata size (%d) exceeds storage (%d)",
   2243 									DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
   2244 								goto fail;
   2245 								}
   2246 							rr->resrec.rdlength = pktrdlength;
   2247 							mDNSPlatformMemCopy(rdb->data, ptr, pktrdlength);
   2248 							break;
   2249 
   2250 		case kDNSType_MX:
   2251 		case kDNSType_AFSDB:
   2252 		case kDNSType_RT:
   2253 		case kDNSType_KX:	if (pktrdlength < 3) goto fail;	// Preference + domainname
   2254 							rdb->mx.preference = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
   2255 							ptr = getDomainName(msg, ptr+2, end, &rdb->mx.exchange);
   2256 							if (ptr != end) { debugf("GetLargeResourceRecord: Malformed MX name"); goto fail; }
   2257 							//debugf("%##s SRV %##s rdlen %d", rr->resrec.name.c, rdb->srv.target.c, pktrdlength);
   2258 							break;
   2259 
   2260 		case kDNSType_RP:	ptr = getDomainName(msg, ptr, end, &rdb->rp.mbox);	// Domainname + domainname
   2261 							if (!ptr)       { debugf("GetLargeResourceRecord: Malformed RP mbox"); goto fail; }
   2262 							ptr = getDomainName(msg, ptr, end, &rdb->rp.txt);
   2263 							if (ptr != end) { debugf("GetLargeResourceRecord: Malformed RP txt"); goto fail; }
   2264 							break;
   2265 
   2266 		case kDNSType_PX:	if (pktrdlength < 4) goto fail;	// Preference + domainname + domainname
   2267 							rdb->px.preference = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
   2268 							ptr = getDomainName(msg, ptr, end, &rdb->px.map822);
   2269 							if (!ptr)       { debugf("GetLargeResourceRecord: Malformed PX map822"); goto fail; }
   2270 							ptr = getDomainName(msg, ptr, end, &rdb->px.mapx400);
   2271 							if (ptr != end) { debugf("GetLargeResourceRecord: Malformed PX mapx400"); goto fail; }
   2272 							break;
   2273 
   2274 		case kDNSType_AAAA:	if (pktrdlength != sizeof(mDNSv6Addr)) goto fail;
   2275 							mDNSPlatformMemCopy(&rdb->ipv6, ptr, sizeof(rdb->ipv6));
   2276 							break;
   2277 
   2278 		case kDNSType_SRV:	if (pktrdlength < 7) goto fail;	// Priority + weight + port + domainname
   2279 							rdb->srv.priority = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
   2280 							rdb->srv.weight   = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
   2281 							rdb->srv.port.b[0] = ptr[4];
   2282 							rdb->srv.port.b[1] = ptr[5];
   2283 							ptr = getDomainName(msg, ptr+6, end, &rdb->srv.target);
   2284 							if (ptr != end) { debugf("GetLargeResourceRecord: Malformed SRV RDATA name"); goto fail; }
   2285 							//debugf("%##s SRV %##s rdlen %d", rr->resrec.name.c, rdb->srv.target.c, pktrdlength);
   2286 							break;
   2287 
   2288 		case kDNSType_OPT:	{
   2289 							rdataOPT *opt = rr->resrec.rdata->u.opt;
   2290 							rr->resrec.rdlength = 0;
   2291 							while (ptr < end && (mDNSu8 *)(opt+1) < &rr->resrec.rdata->u.data[MaximumRDSize])
   2292 								{
   2293 								const rdataOPT *const currentopt = opt;
   2294 								if (ptr + 4 > end) { LogInfo("GetLargeResourceRecord: OPT RDATA ptr + 4 > end"); goto fail; }
   2295 								opt->opt    = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
   2296 								opt->optlen = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
   2297 								ptr += 4;
   2298 								if (ptr + opt->optlen > end) { LogInfo("GetLargeResourceRecord: ptr + opt->optlen > end"); goto fail; }
   2299 								switch (opt->opt)
   2300 									{
   2301 									case kDNSOpt_LLQ:
   2302 										if (opt->optlen == DNSOpt_LLQData_Space - 4)
   2303 											{
   2304 											opt->u.llq.vers  = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
   2305 											opt->u.llq.llqOp = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
   2306 											opt->u.llq.err   = (mDNSu16)((mDNSu16)ptr[4] <<  8 | ptr[5]);
   2307 											mDNSPlatformMemCopy(opt->u.llq.id.b, ptr+6, 8);
   2308 											opt->u.llq.llqlease = (mDNSu32) ((mDNSu32)ptr[14] << 24 | (mDNSu32)ptr[15] << 16 | (mDNSu32)ptr[16] << 8 | ptr[17]);
   2309 											if (opt->u.llq.llqlease > 0x70000000UL / mDNSPlatformOneSecond)
   2310 												opt->u.llq.llqlease = 0x70000000UL / mDNSPlatformOneSecond;
   2311 											opt++;
   2312 											}
   2313 										break;
   2314 									case kDNSOpt_Lease:
   2315 										if (opt->optlen == DNSOpt_LeaseData_Space - 4)
   2316 											{
   2317 											opt->u.updatelease = (mDNSu32) ((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
   2318 											if (opt->u.updatelease > 0x70000000UL / mDNSPlatformOneSecond)
   2319 												opt->u.updatelease = 0x70000000UL / mDNSPlatformOneSecond;
   2320 											opt++;
   2321 											}
   2322 										break;
   2323 									case kDNSOpt_Owner:
   2324 										if (ValidOwnerLength(opt->optlen))
   2325 											{
   2326 											opt->u.owner.vers = ptr[0];
   2327 											opt->u.owner.seq  = ptr[1];
   2328 											mDNSPlatformMemCopy(opt->u.owner.HMAC.b, ptr+2, 6);		// 6-byte MAC address
   2329 											mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+2, 6);		// 6-byte MAC address
   2330 											opt->u.owner.password = zeroEthAddr;
   2331 											if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
   2332 												{
   2333 												mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+8, 6);	// 6-byte MAC address
   2334 												// This mDNSPlatformMemCopy is safe because the ValidOwnerLength(opt->optlen) check above
   2335 												// ensures that opt->optlen is no more than DNSOpt_OwnerData_ID_Wake_PW6_Space - 4
   2336 												if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
   2337 													mDNSPlatformMemCopy(opt->u.owner.password.b, ptr+14, opt->optlen - (DNSOpt_OwnerData_ID_Wake_Space-4));
   2338 												}
   2339 											opt++;
   2340 											}
   2341 										break;
   2342 									}
   2343 								ptr += currentopt->optlen;
   2344 								}
   2345 							rr->resrec.rdlength = (mDNSu16)((mDNSu8*)opt - rr->resrec.rdata->u.data);
   2346 							if (ptr != end) { LogInfo("GetLargeResourceRecord: Malformed OptRdata"); goto fail; }
   2347 							break;
   2348 							}
   2349 
   2350 		case kDNSType_NSEC: {
   2351 							unsigned int i, j;
   2352 							domainname d;
   2353 							ptr = getDomainName(msg, ptr, end, &d);		// Ignored for our simplified use of NSEC synthetic records
   2354 							if (!ptr) { LogInfo("GetLargeResourceRecord: Malformed NSEC nextname"); goto fail; }
   2355 							mDNSPlatformMemZero(rdb->nsec.bitmap, sizeof(rdb->nsec.bitmap));
   2356 							if (ptr < end)
   2357 								{
   2358 								if (*ptr++ != 0) { debugf("GetLargeResourceRecord: We only handle block zero NSECs"); goto fail; }
   2359 								i = *ptr++;
   2360 								if (i > sizeof(rdataNSEC)) { debugf("GetLargeResourceRecord: invalid block length %d", i); goto fail; }
   2361 								for (j=0; j<i; j++) rdb->nsec.bitmap[j] = *ptr++;
   2362 								}
   2363 							if (ptr != end) { debugf("GetLargeResourceRecord: Malformed NSEC"); goto fail; }
   2364 							break;
   2365 							}
   2366 
   2367 		default:			if (pktrdlength > rr->resrec.rdata->MaxRDLength)
   2368 								{
   2369 								debugf("GetLargeResourceRecord: rdata %d (%s) size (%d) exceeds storage (%d)",
   2370 									rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
   2371 								goto fail;
   2372 								}
   2373 							debugf("GetLargeResourceRecord: Warning! Reading resource type %d (%s) as opaque data",
   2374 								rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype));
   2375 							// Note: Just because we don't understand the record type, that doesn't
   2376 							// mean we fail. The DNS protocol specifies rdlength, so we can
   2377 							// safely skip over unknown records and ignore them.
   2378 							// We also grab a binary copy of the rdata anyway, since the caller
   2379 							// might know how to interpret it even if we don't.
   2380 							rr->resrec.rdlength = pktrdlength;
   2381 							mDNSPlatformMemCopy(rdb->data, ptr, pktrdlength);
   2382 							break;
   2383 		}
   2384 
   2385 	SetNewRData(&rr->resrec, mDNSNULL, 0);		// Sets rdlength, rdestimate, rdatahash for us
   2386 
   2387 	// Success! Now fill in RecordType to show this record contains valid data
   2388 	rr->resrec.RecordType = RecordType;
   2389 	return(end);
   2390 
   2391 fail:
   2392 	// If we were unable to parse the rdata in this record, we indicate that by
   2393 	// returing a 'kDNSRecordTypePacketNegative' record with rdlength set to zero
   2394 	rr->resrec.RecordType = kDNSRecordTypePacketNegative;
   2395 	rr->resrec.rdlength   = 0;
   2396 	rr->resrec.rdestimate = 0;
   2397 	rr->resrec.rdatahash  = 0;
   2398 	return(end);
   2399 	}
   2400 
   2401 mDNSexport const mDNSu8 *skipQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
   2402 	{
   2403 	ptr = skipDomainName(msg, ptr, end);
   2404 	if (!ptr) { debugf("skipQuestion: Malformed domain name in DNS question section"); return(mDNSNULL); }
   2405 	if (ptr+4 > end) { debugf("skipQuestion: Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
   2406 	return(ptr+4);
   2407 	}
   2408 
   2409 mDNSexport const mDNSu8 *getQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end, const mDNSInterfaceID InterfaceID,
   2410 	DNSQuestion *question)
   2411 	{
   2412 	mDNSPlatformMemZero(question, sizeof(*question));
   2413 	question->InterfaceID = InterfaceID;
   2414 	if (!InterfaceID) question->TargetQID = onesID;	// In DNSQuestions we use TargetQID as the indicator of whether it's unicast or multicast
   2415 	ptr = getDomainName(msg, ptr, end, &question->qname);
   2416 	if (!ptr) { debugf("Malformed domain name in DNS question section"); return(mDNSNULL); }
   2417 	if (ptr+4 > end) { debugf("Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
   2418 
   2419 	question->qnamehash = DomainNameHashValue(&question->qname);
   2420 	question->qtype  = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);			// Get type
   2421 	question->qclass = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);			// and class
   2422 	return(ptr+4);
   2423 	}
   2424 
   2425 mDNSexport const mDNSu8 *LocateAnswers(const DNSMessage *const msg, const mDNSu8 *const end)
   2426 	{
   2427 	int i;
   2428 	const mDNSu8 *ptr = msg->data;
   2429 	for (i = 0; i < msg->h.numQuestions && ptr; i++) ptr = skipQuestion(msg, ptr, end);
   2430 	return(ptr);
   2431 	}
   2432 
   2433 mDNSexport const mDNSu8 *LocateAuthorities(const DNSMessage *const msg, const mDNSu8 *const end)
   2434 	{
   2435 	int i;
   2436 	const mDNSu8 *ptr = LocateAnswers(msg, end);
   2437 	for (i = 0; i < msg->h.numAnswers && ptr; i++) ptr = skipResourceRecord(msg, ptr, end);
   2438 	return(ptr);
   2439 	}
   2440 
   2441 mDNSexport const mDNSu8 *LocateAdditionals(const DNSMessage *const msg, const mDNSu8 *const end)
   2442 	{
   2443 	int i;
   2444 	const mDNSu8 *ptr = LocateAuthorities(msg, end);
   2445 	for (i = 0; i < msg->h.numAuthorities; i++) ptr = skipResourceRecord(msg, ptr, end);
   2446 	return (ptr);
   2447 	}
   2448 
   2449 mDNSexport const mDNSu8 *LocateOptRR(const DNSMessage *const msg, const mDNSu8 *const end, int minsize)
   2450 	{
   2451 	int i;
   2452 	const mDNSu8 *ptr = LocateAdditionals(msg, end);
   2453 
   2454 	// Locate the OPT record.
   2455 	// According to RFC 2671, "One OPT pseudo-RR can be added to the additional data section of either a request or a response."
   2456 	// This implies that there may be *at most* one OPT record per DNS message, in the Additional Section,
   2457 	// but not necessarily the *last* entry in the Additional Section.
   2458 	for (i = 0; ptr && i < msg->h.numAdditionals; i++)
   2459 		{
   2460 		if (ptr + DNSOpt_Header_Space + minsize <= end &&	// Make sure we have 11+minsize bytes of data
   2461 			ptr[0] == 0                                &&	// Name must be root label
   2462 			ptr[1] == (kDNSType_OPT >> 8  )            &&	// rrtype OPT
   2463 			ptr[2] == (kDNSType_OPT & 0xFF)            &&
   2464 			((mDNSu16)ptr[9] << 8 | (mDNSu16)ptr[10]) >= (mDNSu16)minsize)
   2465 			return(ptr);
   2466 		else
   2467 			ptr = skipResourceRecord(msg, ptr, end);
   2468 		}
   2469 	return(mDNSNULL);
   2470 	}
   2471 
   2472 // On success, GetLLQOptData returns pointer to storage within shared "m->rec";
   2473 // it is caller's responsibilty to clear m->rec.r.resrec.RecordType after use
   2474 // Note: An OPT RDataBody actually contains one or more variable-length rdataOPT objects packed together
   2475 // The code that currently calls this assumes there's only one, instead of iterating through the set
   2476 mDNSexport const rdataOPT *GetLLQOptData(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end)
   2477 	{
   2478 	const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LLQData_Space);
   2479 	if (ptr)
   2480 		{
   2481 		ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
   2482 		if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative) return(&m->rec.r.resrec.rdata->u.opt[0]);
   2483 		}
   2484 	return(mDNSNULL);
   2485 	}
   2486 
   2487 // Get the lease life of records in a dynamic update
   2488 // returns 0 on error or if no lease present
   2489 mDNSexport mDNSu32 GetPktLease(mDNS *m, DNSMessage *msg, const mDNSu8 *end)
   2490 	{
   2491 	mDNSu32 result = 0;
   2492 	const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LeaseData_Space);
   2493 	if (ptr) ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
   2494 	if (ptr && m->rec.r.resrec.rdlength >= DNSOpt_LeaseData_Space && m->rec.r.resrec.rdata->u.opt[0].opt == kDNSOpt_Lease)
   2495 		result = m->rec.r.resrec.rdata->u.opt[0].u.updatelease;
   2496 	m->rec.r.resrec.RecordType = 0;		// Clear RecordType to show we're not still using it
   2497 	return(result);
   2498 	}
   2499 
   2500 mDNSlocal const mDNSu8 *DumpRecords(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end, int count, char *label)
   2501 	{
   2502 	int i;
   2503 	LogMsg("%2d %s", count, label);
   2504 	for (i = 0; i < count && ptr; i++)
   2505 		{
   2506 		// This puts a LargeCacheRecord on the stack instead of using the shared m->rec storage,
   2507 		// but since it's only used for debugging (and probably only on OS X, not on
   2508 		// embedded systems) putting a 9kB object on the stack isn't a big problem.
   2509 		LargeCacheRecord largecr;
   2510 		ptr = GetLargeResourceRecord(m, msg, ptr, end, mDNSInterface_Any, kDNSRecordTypePacketAns, &largecr);
   2511 		if (ptr) LogMsg("%2d TTL%8d %s", i, largecr.r.resrec.rroriginalttl, CRDisplayString(m, &largecr.r));
   2512 		}
   2513 	if (!ptr) LogMsg("ERROR: Premature end of packet data");
   2514 	return(ptr);
   2515 	}
   2516 
   2517 #define DNS_OP_Name(X) (                              \
   2518 	(X) == kDNSFlag0_OP_StdQuery ? ""         :       \
   2519 	(X) == kDNSFlag0_OP_Iquery   ? "Iquery "  :       \
   2520 	(X) == kDNSFlag0_OP_Status   ? "Status "  :       \
   2521 	(X) == kDNSFlag0_OP_Unused3  ? "Unused3 " :       \
   2522 	(X) == kDNSFlag0_OP_Notify   ? "Notify "  :       \
   2523 	(X) == kDNSFlag0_OP_Update   ? "Update "  : "?? " )
   2524 
   2525 #define DNS_RC_Name(X) (                             \
   2526 	(X) == kDNSFlag1_RC_NoErr    ? "NoErr"    :      \
   2527 	(X) == kDNSFlag1_RC_FormErr  ? "FormErr"  :      \
   2528 	(X) == kDNSFlag1_RC_ServFail ? "ServFail" :      \
   2529 	(X) == kDNSFlag1_RC_NXDomain ? "NXDomain" :      \
   2530 	(X) == kDNSFlag1_RC_NotImpl  ? "NotImpl"  :      \
   2531 	(X) == kDNSFlag1_RC_Refused  ? "Refused"  :      \
   2532 	(X) == kDNSFlag1_RC_YXDomain ? "YXDomain" :      \
   2533 	(X) == kDNSFlag1_RC_YXRRSet  ? "YXRRSet"  :      \
   2534 	(X) == kDNSFlag1_RC_NXRRSet  ? "NXRRSet"  :      \
   2535 	(X) == kDNSFlag1_RC_NotAuth  ? "NotAuth"  :      \
   2536 	(X) == kDNSFlag1_RC_NotZone  ? "NotZone"  : "??" )
   2537 
   2538 // Note: DumpPacket expects the packet header fields in host byte order, not network byte order
   2539 mDNSexport void DumpPacket(mDNS *const m, mStatus status, mDNSBool sent, char *transport,
   2540 	const mDNSAddr *srcaddr, mDNSIPPort srcport,
   2541 	const mDNSAddr *dstaddr, mDNSIPPort dstport, const DNSMessage *const msg, const mDNSu8 *const end)
   2542 	{
   2543 	mDNSBool IsUpdate = ((msg->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update);
   2544 	const mDNSu8 *ptr = msg->data;
   2545 	int i;
   2546 	DNSQuestion q;
   2547 	char tbuffer[64], sbuffer[64], dbuffer[64] = "";
   2548 	if (!status) tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), sent ? "Sent" : "Received"                        )] = 0;
   2549 	else         tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), "ERROR %d %sing", status, sent ? "Send" : "Receiv")] = 0;
   2550 	if (sent) sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "port "        )] = 0;
   2551 	else      sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "%#a:", srcaddr)] = 0;
   2552 	if (dstaddr || !mDNSIPPortIsZero(dstport))
   2553 		dbuffer[mDNS_snprintf(dbuffer, sizeof(dbuffer), " to %#a:%d", dstaddr, mDNSVal16(dstport))] = 0;
   2554 
   2555 	LogMsg("-- %s %s DNS %s%s (flags %02X%02X) RCODE: %s (%d) %s%s%s%s%s%sID: %d %d bytes from %s%d%s%s --",
   2556 		tbuffer, transport,
   2557 		DNS_OP_Name(msg->h.flags.b[0] & kDNSFlag0_OP_Mask),
   2558 		msg->h.flags.b[0] & kDNSFlag0_QR_Response ? "Response" : "Query",
   2559 		msg->h.flags.b[0], msg->h.flags.b[1],
   2560 		DNS_RC_Name(msg->h.flags.b[1] & kDNSFlag1_RC_Mask),
   2561 		msg->h.flags.b[1] & kDNSFlag1_RC_Mask,
   2562 		msg->h.flags.b[0] & kDNSFlag0_AA ? "AA " : "",
   2563 		msg->h.flags.b[0] & kDNSFlag0_TC ? "TC " : "",
   2564 		msg->h.flags.b[0] & kDNSFlag0_RD ? "RD " : "",
   2565 		msg->h.flags.b[1] & kDNSFlag1_RA ? "RA " : "",
   2566 		msg->h.flags.b[1] & kDNSFlag1_AD ? "AD " : "",
   2567 		msg->h.flags.b[1] & kDNSFlag1_CD ? "CD " : "",
   2568 		mDNSVal16(msg->h.id),
   2569 		end - msg->data,
   2570 		sbuffer, mDNSVal16(srcport), dbuffer,
   2571 		(msg->h.flags.b[0] & kDNSFlag0_TC) ? " (truncated)" : ""
   2572 		);
   2573 
   2574 	LogMsg("%2d %s", msg->h.numQuestions, IsUpdate ? "Zone" : "Questions");
   2575 	for (i = 0; i < msg->h.numQuestions && ptr; i++)
   2576 		{
   2577 		ptr = getQuestion(msg, ptr, end, mDNSInterface_Any, &q);
   2578 		if (ptr) LogMsg("%2d %##s %s", i, q.qname.c, DNSTypeName(q.qtype));
   2579 		}
   2580 	ptr = DumpRecords(m, msg, ptr, end, msg->h.numAnswers,     IsUpdate ? "Prerequisites" : "Answers");
   2581 	ptr = DumpRecords(m, msg, ptr, end, msg->h.numAuthorities, IsUpdate ? "Updates"       : "Authorities");
   2582 	ptr = DumpRecords(m, msg, ptr, end, msg->h.numAdditionals, "Additionals");
   2583 	LogMsg("--------------");
   2584 	}
   2585 
   2586 // ***************************************************************************
   2587 #if COMPILER_LIKES_PRAGMA_MARK
   2588 #pragma mark -
   2589 #pragma mark - Packet Sending Functions
   2590 #endif
   2591 
   2592 // Stub definition of TCPSocket_struct so we can access flags field. (Rest of TCPSocket_struct is platform-dependent.)
   2593 struct TCPSocket_struct { TCPSocketFlags flags; /* ... */ };
   2594 
   2595 struct UDPSocket_struct
   2596 	{
   2597 	mDNSIPPort port; // MUST BE FIRST FIELD -- mDNSCoreReceive expects every UDPSocket_struct to begin with mDNSIPPort port
   2598 	};
   2599 
   2600 // Note: When we sign a DNS message using DNSDigest_SignMessage(), the current real-time clock value is used, which
   2601 // is why we generally defer signing until we send the message, to ensure the signature is as fresh as possible.
   2602 mDNSexport mStatus mDNSSendDNSMessage(mDNS *const m, DNSMessage *const msg, mDNSu8 *end,
   2603     mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst, mDNSIPPort dstport, TCPSocket *sock, DomainAuthInfo *authInfo)
   2604 	{
   2605 	mStatus status = mStatus_NoError;
   2606 	const mDNSu16 numAdditionals = msg->h.numAdditionals;
   2607 	mDNSu8 *newend;
   2608 	mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
   2609 
   2610 	// Zero-length message data is okay (e.g. for a DNS Update ack, where all we need is an ID and an error code
   2611 	if (end < msg->data || end - msg->data > AbsoluteMaxDNSMessageData)
   2612 		{
   2613 		LogMsg("mDNSSendDNSMessage: invalid message %p %p %d", msg->data, end, end - msg->data);
   2614 		return mStatus_BadParamErr;
   2615 		}
   2616 
   2617 	newend = putHINFO(m, msg, end, authInfo, limit);
   2618 	if (!newend) LogMsg("mDNSSendDNSMessage: putHINFO failed msg %p end %p, limit %p", msg->data, end, limit); // Not fatal
   2619 	else end = newend;
   2620 
   2621 	// Put all the integer values in IETF byte-order (MSB first, LSB second)
   2622 	SwapDNSHeaderBytes(msg);
   2623 
   2624 	if (authInfo) DNSDigest_SignMessage(msg, &end, authInfo, 0);	// DNSDigest_SignMessage operates on message in network byte order
   2625 	if (!end) { LogMsg("mDNSSendDNSMessage: DNSDigest_SignMessage failed"); status = mStatus_NoMemoryErr; }
   2626 	else
   2627 		{
   2628 		// Send the packet on the wire
   2629 		if (!sock)
   2630 			status = mDNSPlatformSendUDP(m, msg, end, InterfaceID, src, dst, dstport);
   2631 		else
   2632 			{
   2633 			mDNSu16 msglen = (mDNSu16)(end - (mDNSu8 *)msg);
   2634 			mDNSu8 lenbuf[2] = { (mDNSu8)(msglen >> 8), (mDNSu8)(msglen & 0xFF) };
   2635 			long nsent = mDNSPlatformWriteTCP(sock, (char*)lenbuf, 2);		// Should do scatter/gather here -- this is probably going out as two packets
   2636 			if (nsent != 2) { LogMsg("mDNSSendDNSMessage: write msg length failed %d/%d", nsent, 2); status = mStatus_ConnFailed; }
   2637 			else
   2638 				{
   2639 				nsent = mDNSPlatformWriteTCP(sock, (char *)msg, msglen);
   2640 				if (nsent != msglen) { LogMsg("mDNSSendDNSMessage: write msg body failed %d/%d", nsent, msglen); status = mStatus_ConnFailed; }
   2641 				}
   2642 			}
   2643 		}
   2644 
   2645 	// Swap the integer values back the way they were (remember that numAdditionals may have been changed by putHINFO and/or SignMessage)
   2646 	SwapDNSHeaderBytes(msg);
   2647 
   2648 	// Dump the packet with the HINFO and TSIG
   2649 	if (mDNS_PacketLoggingEnabled && !mDNSOpaque16IsZero(msg->h.id))
   2650 		DumpPacket(m, status, mDNStrue, sock && (sock->flags & kTCPSocketFlags_UseTLS) ? "TLS" : sock ? "TCP" : "UDP", mDNSNULL, src ? src->port : MulticastDNSPort, dst, dstport, msg, end);
   2651 
   2652 	// put the number of additionals back the way it was
   2653 	msg->h.numAdditionals = numAdditionals;
   2654 
   2655 	return(status);
   2656 	}
   2657 
   2658 // ***************************************************************************
   2659 #if COMPILER_LIKES_PRAGMA_MARK
   2660 #pragma mark -
   2661 #pragma mark - RR List Management & Task Management
   2662 #endif
   2663 
   2664 mDNSexport void mDNS_Lock_(mDNS *const m, const char * const functionname)
   2665 	{
   2666 	// MUST grab the platform lock FIRST!
   2667 	mDNSPlatformLock(m);
   2668 
   2669 	// Normally, mDNS_reentrancy is zero and so is mDNS_busy
   2670 	// However, when we call a client callback mDNS_busy is one, and we increment mDNS_reentrancy too
   2671 	// If that client callback does mDNS API calls, mDNS_reentrancy and mDNS_busy will both be one
   2672 	// If mDNS_busy != mDNS_reentrancy that's a bad sign
   2673 	if (m->mDNS_busy != m->mDNS_reentrancy)
   2674 		{
   2675 		LogMsg("%s: mDNS_Lock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
   2676 #if ForceAlerts
   2677 		*(long*)0 = 0;
   2678 #endif
   2679 		}
   2680 
   2681 	// If this is an initial entry into the mDNSCore code, set m->timenow
   2682 	// else, if this is a re-entrant entry into the mDNSCore code, m->timenow should already be set
   2683 	if (m->mDNS_busy == 0)
   2684 		{
   2685 		if (m->timenow)
   2686 			LogMsg("%s: mDNS_Lock: m->timenow already set (%ld/%ld)", functionname, m->timenow, mDNS_TimeNow_NoLock(m));
   2687 		m->timenow = mDNS_TimeNow_NoLock(m);
   2688 		if (m->timenow == 0) m->timenow = 1;
   2689 		}
   2690 	else if (m->timenow == 0)
   2691 		{
   2692 		LogMsg("%s: mDNS_Lock: m->mDNS_busy is %ld but m->timenow not set", functionname, m->mDNS_busy);
   2693 		m->timenow = mDNS_TimeNow_NoLock(m);
   2694 		if (m->timenow == 0) m->timenow = 1;
   2695 		}
   2696 
   2697 	if (m->timenow_last - m->timenow > 0)
   2698 		{
   2699 		m->timenow_adjust += m->timenow_last - m->timenow;
   2700 		LogMsg("%s: mDNSPlatformRawTime went backwards by %ld ticks; setting correction factor to %ld", functionname, m->timenow_last - m->timenow, m->timenow_adjust);
   2701 		m->timenow = m->timenow_last;
   2702 		}
   2703 	m->timenow_last = m->timenow;
   2704 
   2705 	// Increment mDNS_busy so we'll recognise re-entrant calls
   2706 	m->mDNS_busy++;
   2707 	}
   2708 
   2709 mDNSlocal AuthRecord *AnyLocalRecordReady(const mDNS *const m)
   2710 	{
   2711 	AuthRecord *rr;
   2712 	for (rr = m->NewLocalRecords; rr; rr = rr->next)
   2713 		if (LocalRecordReady(rr)) return rr;
   2714 	return mDNSNULL;
   2715 	}
   2716 
   2717 mDNSlocal mDNSs32 GetNextScheduledEvent(const mDNS *const m)
   2718 	{
   2719 	mDNSs32 e = m->timenow + 0x78000000;
   2720 	if (m->mDNSPlatformStatus != mStatus_NoError) return(e);
   2721 	if (m->NewQuestions)
   2722 		{
   2723 		if (m->NewQuestions->DelayAnswering) e = m->NewQuestions->DelayAnswering;
   2724 		else return(m->timenow);
   2725 		}
   2726 	if (m->NewLocalOnlyQuestions)                     return(m->timenow);
   2727 	if (m->NewLocalRecords && AnyLocalRecordReady(m)) return(m->timenow);
   2728 	if (m->NewLocalOnlyRecords)                       return(m->timenow);
   2729 	if (m->SPSProxyListChanged)                       return(m->timenow);
   2730 	if (m->LocalRemoveEvents)                         return(m->timenow);
   2731 
   2732 #ifndef UNICAST_DISABLED
   2733 	if (e - m->NextuDNSEvent         > 0) e = m->NextuDNSEvent;
   2734 	if (e - m->NextScheduledNATOp    > 0) e = m->NextScheduledNATOp;
   2735 	if (m->NextSRVUpdate && e - m->NextSRVUpdate > 0) e = m->NextSRVUpdate;
   2736 #endif
   2737 
   2738 	if (e - m->NextCacheCheck        > 0) e = m->NextCacheCheck;
   2739 	if (e - m->NextScheduledSPS      > 0) e = m->NextScheduledSPS;
   2740 	// NextScheduledSPRetry only valid when DelaySleep not set
   2741 	if (!m->DelaySleep && m->SleepLimit && e - m->NextScheduledSPRetry > 0) e = m->NextScheduledSPRetry;
   2742 	if (m->DelaySleep && e - m->DelaySleep > 0) e = m->DelaySleep;
   2743 
   2744 	if (m->SuppressSending)
   2745 		{
   2746 		if (e - m->SuppressSending       > 0) e = m->SuppressSending;
   2747 		}
   2748 	else
   2749 		{
   2750 		if (e - m->NextScheduledQuery    > 0) e = m->NextScheduledQuery;
   2751 		if (e - m->NextScheduledProbe    > 0) e = m->NextScheduledProbe;
   2752 		if (e - m->NextScheduledResponse > 0) e = m->NextScheduledResponse;
   2753 		}
   2754 	if (e - m->NextScheduledStopTime > 0) e = m->NextScheduledStopTime;
   2755 	return(e);
   2756 	}
   2757 
   2758 mDNSexport void ShowTaskSchedulingError(mDNS *const m)
   2759 	{
   2760 	AuthRecord *rr;
   2761 	mDNS_Lock(m);
   2762 
   2763 	LogMsg("Task Scheduling Error: Continuously busy for more than a second");
   2764 
   2765 	// Note: To accurately diagnose *why* we're busy, the debugging code here needs to mirror the logic in GetNextScheduledEvent above
   2766 
   2767 	if (m->NewQuestions && (!m->NewQuestions->DelayAnswering || m->timenow - m->NewQuestions->DelayAnswering >= 0))
   2768 		LogMsg("Task Scheduling Error: NewQuestion %##s (%s)",
   2769 			m->NewQuestions->qname.c, DNSTypeName(m->NewQuestions->qtype));
   2770 
   2771 	if (m->NewLocalOnlyQuestions)
   2772 		LogMsg("Task Scheduling Error: NewLocalOnlyQuestions %##s (%s)",
   2773 			m->NewLocalOnlyQuestions->qname.c, DNSTypeName(m->NewLocalOnlyQuestions->qtype));
   2774 
   2775 	if (m->NewLocalRecords)
   2776 		{
   2777 		rr = AnyLocalRecordReady(m);
   2778 		if (rr) LogMsg("Task Scheduling Error: NewLocalRecords %s", ARDisplayString(m, rr));
   2779 		}
   2780 
   2781 	if (m->NewLocalOnlyRecords) LogMsg("Task Scheduling Error: NewLocalOnlyRecords");
   2782 
   2783 	if (m->SPSProxyListChanged) LogMsg("Task Scheduling Error: SPSProxyListChanged");
   2784 	if (m->LocalRemoveEvents)   LogMsg("Task Scheduling Error: LocalRemoveEvents");
   2785 
   2786 	if (m->timenow - m->NextScheduledEvent    >= 0)
   2787 		LogMsg("Task Scheduling Error: m->NextScheduledEvent %d",    m->timenow - m->NextScheduledEvent);
   2788 
   2789 #ifndef UNICAST_DISABLED
   2790 	if (m->timenow - m->NextuDNSEvent         >= 0)
   2791 		LogMsg("Task Scheduling Error: m->NextuDNSEvent %d",         m->timenow - m->NextuDNSEvent);
   2792 	if (m->timenow - m->NextScheduledNATOp    >= 0)
   2793 		LogMsg("Task Scheduling Error: m->NextScheduledNATOp %d",    m->timenow - m->NextScheduledNATOp);
   2794 	if (m->NextSRVUpdate && m->timenow - m->NextSRVUpdate >= 0)
   2795 		LogMsg("Task Scheduling Error: m->NextSRVUpdate %d",         m->timenow - m->NextSRVUpdate);
   2796 #endif
   2797 
   2798 	if (m->timenow - m->NextCacheCheck        >= 0)
   2799 		LogMsg("Task Scheduling Error: m->NextCacheCheck %d",        m->timenow - m->NextCacheCheck);
   2800 	if (m->timenow - m->NextScheduledSPS      >= 0)
   2801 		LogMsg("Task Scheduling Error: m->NextScheduledSPS %d",      m->timenow - m->NextScheduledSPS);
   2802 	if (!m->DelaySleep && m->SleepLimit && m->timenow - m->NextScheduledSPRetry >= 0)
   2803 		LogMsg("Task Scheduling Error: m->NextScheduledSPRetry %d",  m->timenow - m->NextScheduledSPRetry);
   2804 	if (m->DelaySleep && m->timenow - m->DelaySleep >= 0)
   2805 		LogMsg("Task Scheduling Error: m->DelaySleep %d",            m->timenow - m->DelaySleep);
   2806 
   2807 	if (m->SuppressSending && m->timenow - m->SuppressSending >= 0)
   2808 		LogMsg("Task Scheduling Error: m->SuppressSending %d",       m->timenow - m->SuppressSending);
   2809 	if (m->timenow - m->NextScheduledQuery    >= 0)
   2810 		LogMsg("Task Scheduling Error: m->NextScheduledQuery %d",    m->timenow - m->NextScheduledQuery);
   2811 	if (m->timenow - m->NextScheduledProbe    >= 0)
   2812 		LogMsg("Task Scheduling Error: m->NextScheduledProbe %d",    m->timenow - m->NextScheduledProbe);
   2813 	if (m->timenow - m->NextScheduledResponse >= 0)
   2814 		LogMsg("Task Scheduling Error: m->NextScheduledResponse %d", m->timenow - m->NextScheduledResponse);
   2815 
   2816 	mDNS_Unlock(m);
   2817 	}
   2818 
   2819 mDNSexport void mDNS_Unlock_(mDNS *const m, const char * const functionname)
   2820 	{
   2821 	// Decrement mDNS_busy
   2822 	m->mDNS_busy--;
   2823 
   2824 	// Check for locking failures
   2825 	if (m->mDNS_busy != m->mDNS_reentrancy)
   2826 		{
   2827 		LogMsg("%s: mDNS_Unlock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
   2828 #if ForceAlerts
   2829 		*(long*)0 = 0;
   2830 #endif
   2831 		}
   2832 
   2833 	// If this is a final exit from the mDNSCore code, set m->NextScheduledEvent and clear m->timenow
   2834 	if (m->mDNS_busy == 0)
   2835 		{
   2836 		m->NextScheduledEvent = GetNextScheduledEvent(m);
   2837 		if (m->timenow == 0) LogMsg("%s: mDNS_Unlock: ERROR! m->timenow aready zero", functionname);
   2838 		m->timenow = 0;
   2839 		}
   2840 
   2841 	// MUST release the platform lock LAST!
   2842 	mDNSPlatformUnlock(m);
   2843 	}
   2844 
   2845 // ***************************************************************************
   2846 #if COMPILER_LIKES_PRAGMA_MARK
   2847 #pragma mark -
   2848 #pragma mark - Specialized mDNS version of vsnprintf
   2849 #endif
   2850 
   2851 static const struct mDNSprintf_format
   2852 	{
   2853 	unsigned      leftJustify : 1;
   2854 	unsigned      forceSign : 1;
   2855 	unsigned      zeroPad : 1;
   2856 	unsigned      havePrecision : 1;
   2857 	unsigned      hSize : 1;
   2858 	unsigned      lSize : 1;
   2859 	char          altForm;
   2860 	char          sign;		// +, - or space
   2861 	unsigned int  fieldWidth;
   2862 	unsigned int  precision;
   2863 	} mDNSprintf_format_default = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
   2864 
   2865 mDNSexport mDNSu32 mDNS_vsnprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, va_list arg)
   2866 	{
   2867 	mDNSu32 nwritten = 0;
   2868 	int c;
   2869 	if (buflen == 0) return(0);
   2870 	buflen--;		// Pre-reserve one space in the buffer for the terminating null
   2871 	if (buflen == 0) goto exit;
   2872 
   2873 	for (c = *fmt; c != 0; c = *++fmt)
   2874 		{
   2875 		if (c != '%')
   2876 			{
   2877 			*sbuffer++ = (char)c;
   2878 			if (++nwritten >= buflen) goto exit;
   2879 			}
   2880 		else
   2881 			{
   2882 			unsigned int i=0, j;
   2883 			// The mDNS Vsprintf Argument Conversion Buffer is used as a temporary holding area for
   2884 			// generating decimal numbers, hexdecimal numbers, IP addresses, domain name strings, etc.
   2885 			// The size needs to be enough for a 256-byte domain name plus some error text.
   2886 			#define mDNS_VACB_Size 300
   2887 			char mDNS_VACB[mDNS_VACB_Size];
   2888 			#define mDNS_VACB_Lim (&mDNS_VACB[mDNS_VACB_Size])
   2889 			#define mDNS_VACB_Remain(s) ((mDNSu32)(mDNS_VACB_Lim - s))
   2890 			char *s = mDNS_VACB_Lim, *digits;
   2891 			struct mDNSprintf_format F = mDNSprintf_format_default;
   2892 
   2893 			while (1)	//  decode flags
   2894 				{
   2895 				c = *++fmt;
   2896 				if      (c == '-') F.leftJustify = 1;
   2897 				else if (c == '+') F.forceSign = 1;
   2898 				else if (c == ' ') F.sign = ' ';
   2899 				else if (c == '#') F.altForm++;
   2900 				else if (c == '0') F.zeroPad = 1;
   2901 				else break;
   2902 				}
   2903 
   2904 			if (c == '*')	//  decode field width
   2905 				{
   2906 				int f = va_arg(arg, int);
   2907 				if (f < 0) { f = -f; F.leftJustify = 1; }
   2908 				F.fieldWidth = (unsigned int)f;
   2909 				c = *++fmt;
   2910 				}
   2911 			else
   2912 				{
   2913 				for (; c >= '0' && c <= '9'; c = *++fmt)
   2914 					F.fieldWidth = (10 * F.fieldWidth) + (c - '0');
   2915 				}
   2916 
   2917 			if (c == '.')	//  decode precision
   2918 				{
   2919 				if ((c = *++fmt) == '*')
   2920 					{ F.precision = va_arg(arg, unsigned int); c = *++fmt; }
   2921 				else for (; c >= '0' && c <= '9'; c = *++fmt)
   2922 						F.precision = (10 * F.precision) + (c - '0');
   2923 				F.havePrecision = 1;
   2924 				}
   2925 
   2926 			if (F.leftJustify) F.zeroPad = 0;
   2927 
   2928 			conv:
   2929 			switch (c)	//  perform appropriate conversion
   2930 				{
   2931 				unsigned long n;
   2932 				case 'h' :	F.hSize = 1; c = *++fmt; goto conv;
   2933 				case 'l' :	// fall through
   2934 				case 'L' :	F.lSize = 1; c = *++fmt; goto conv;
   2935 				case 'd' :
   2936 				case 'i' :	if (F.lSize) n = (unsigned long)va_arg(arg, long);
   2937 							else n = (unsigned long)va_arg(arg, int);
   2938 							if (F.hSize) n = (short) n;
   2939 							if ((long) n < 0) { n = (unsigned long)-(long)n; F.sign = '-'; }
   2940 							else if (F.forceSign) F.sign = '+';
   2941 							goto decimal;
   2942 				case 'u' :	if (F.lSize) n = va_arg(arg, unsigned long);
   2943 							else n = va_arg(arg, unsigned int);
   2944 							if (F.hSize) n = (unsigned short) n;
   2945 							F.sign = 0;
   2946 							goto decimal;
   2947 				decimal:	if (!F.havePrecision)
   2948 								{
   2949 								if (F.zeroPad)
   2950 									{
   2951 									F.precision = F.fieldWidth;
   2952 									if (F.sign) --F.precision;
   2953 									}
   2954 								if (F.precision < 1) F.precision = 1;
   2955 								}
   2956 							if (F.precision > mDNS_VACB_Size - 1)
   2957 								F.precision = mDNS_VACB_Size - 1;
   2958 							for (i = 0; n; n /= 10, i++) *--s = (char)(n % 10 + '0');
   2959 							for (; i < F.precision; i++) *--s = '0';
   2960 							if (F.sign) { *--s = F.sign; i++; }
   2961 							break;
   2962 
   2963 				case 'o' :	if (F.lSize) n = va_arg(arg, unsigned long);
   2964 							else n = va_arg(arg, unsigned int);
   2965 							if (F.hSize) n = (unsigned short) n;
   2966 							if (!F.havePrecision)
   2967 								{
   2968 								if (F.zeroPad) F.precision = F.fieldWidth;
   2969 								if (F.precision < 1) F.precision = 1;
   2970 								}
   2971 							if (F.precision > mDNS_VACB_Size - 1)
   2972 								F.precision = mDNS_VACB_Size - 1;
   2973 							for (i = 0; n; n /= 8, i++) *--s = (char)(n % 8 + '0');
   2974 							if (F.altForm && i && *s != '0') { *--s = '0'; i++; }
   2975 							for (; i < F.precision; i++) *--s = '0';
   2976 							break;
   2977 
   2978 				case 'a' :	{
   2979 							unsigned char *a = va_arg(arg, unsigned char *);
   2980 							if (!a) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
   2981 							else
   2982 								{
   2983 								s = mDNS_VACB;	// Adjust s to point to the start of the buffer, not the end
   2984 								if (F.altForm)
   2985 									{
   2986 									mDNSAddr *ip = (mDNSAddr*)a;
   2987 									switch (ip->type)
   2988 										{
   2989 										case mDNSAddrType_IPv4: F.precision =  4; a = (unsigned char *)&ip->ip.v4; break;
   2990 										case mDNSAddrType_IPv6: F.precision = 16; a = (unsigned char *)&ip->ip.v6; break;
   2991 										default:                F.precision =  0; break;
   2992 										}
   2993 									}
   2994 								if (F.altForm && !F.precision)
   2995 									i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "ZERO ADDRESS");
   2996 								else switch (F.precision)
   2997 									{
   2998 									case  4: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%d.%d.%d.%d",
   2999 														a[0], a[1], a[2], a[3]); break;
   3000 									case  6: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%02X:%02X:%02X:%02X:%02X:%02X",
   3001 														a[0], a[1], a[2], a[3], a[4], a[5]); break;
   3002 									case 16: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB),
   3003 														"%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X",
   3004 														a[0x0], a[0x1], a[0x2], a[0x3], a[0x4], a[0x5], a[0x6], a[0x7],
   3005 														a[0x8], a[0x9], a[0xA], a[0xB], a[0xC], a[0xD], a[0xE], a[0xF]); break;
   3006 									default: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%s", "<< ERROR: Must specify"
   3007 														" address size (i.e. %.4a=IPv4, %.6a=Ethernet, %.16a=IPv6) >>"); break;
   3008 									}
   3009 								}
   3010 							}
   3011 							break;
   3012 
   3013 				case 'p' :	F.havePrecision = F.lSize = 1;
   3014 							F.precision = sizeof(void*) * 2;	// 8 characters on 32-bit; 16 characters on 64-bit
   3015 				case 'X' :	digits = "0123456789ABCDEF";
   3016 							goto hexadecimal;
   3017 				case 'x' :	digits = "0123456789abcdef";
   3018 				hexadecimal:if (F.lSize) n = va_arg(arg, unsigned long);
   3019 							else n = va_arg(arg, unsigned int);
   3020 							if (F.hSize) n = (unsigned short) n;
   3021 							if (!F.havePrecision)
   3022 								{
   3023 								if (F.zeroPad)
   3024 									{
   3025 									F.precision = F.fieldWidth;
   3026 									if (F.altForm) F.precision -= 2;
   3027 									}
   3028 								if (F.precision < 1) F.precision = 1;
   3029 								}
   3030 							if (F.precision > mDNS_VACB_Size - 1)
   3031 								F.precision = mDNS_VACB_Size - 1;
   3032 							for (i = 0; n; n /= 16, i++) *--s = digits[n % 16];
   3033 							for (; i < F.precision; i++) *--s = '0';
   3034 							if (F.altForm) { *--s = (char)c; *--s = '0'; i += 2; }
   3035 							break;
   3036 
   3037 				case 'c' :	*--s = (char)va_arg(arg, int); i = 1; break;
   3038 
   3039 				case 's' :	s = va_arg(arg, char *);
   3040 							if (!s) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
   3041 							else switch (F.altForm)
   3042 								{
   3043 								case 0: i=0;
   3044 										if (!F.havePrecision)				// C string
   3045 											while (s[i]) i++;
   3046 										else
   3047 											{
   3048 											while ((i < F.precision) && s[i]) i++;
   3049 											// Make sure we don't truncate in the middle of a UTF-8 character
   3050 											// If last character we got was any kind of UTF-8 multi-byte character,
   3051 											// then see if we have to back up.
   3052 											// This is not as easy as the similar checks below, because
   3053 											// here we can't assume it's safe to examine the *next* byte, so we
   3054 											// have to confine ourselves to working only backwards in the string.
   3055 											j = i;		// Record where we got to
   3056 											// Now, back up until we find first non-continuation-char
   3057 											while (i>0 && (s[i-1] & 0xC0) == 0x80) i--;
   3058 											// Now s[i-1] is the first non-continuation-char
   3059 											// and (j-i) is the number of continuation-chars we found
   3060 											if (i>0 && (s[i-1] & 0xC0) == 0xC0)	// If we found a start-char
   3061 												{
   3062 												i--;		// Tentatively eliminate this start-char as well
   3063 												// Now (j-i) is the number of characters we're considering eliminating.
   3064 												// To be legal UTF-8, the start-char must contain (j-i) one-bits,
   3065 												// followed by a zero bit. If we shift it right by (7-(j-i)) bits
   3066 												// (with sign extension) then the result has to be 0xFE.
   3067 												// If this is right, then we reinstate the tentatively eliminated bytes.
   3068 												if (((j-i) < 7) && (((s[i] >> (7-(j-i))) & 0xFF) == 0xFE)) i = j;
   3069 												}
   3070 											}
   3071 										break;
   3072 								case 1: i = (unsigned char) *s++; break;	// Pascal string
   3073 								case 2: {									// DNS label-sequence name
   3074 										unsigned char *a = (unsigned char *)s;
   3075 										s = mDNS_VACB;	// Adjust s to point to the start of the buffer, not the end
   3076 										if (*a == 0) *s++ = '.';	// Special case for root DNS name
   3077 										while (*a)
   3078 											{
   3079 											char buf[63*4+1];
   3080 											if (*a > 63)
   3081 												{ s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<INVALID LABEL LENGTH %u>>", *a); break; }
   3082 											if (s + *a >= &mDNS_VACB[254])
   3083 												{ s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<NAME TOO LONG>>"); break; }
   3084 											// Need to use ConvertDomainLabelToCString to do proper escaping here,
   3085 											// so it's clear what's a literal dot and what's a label separator
   3086 											ConvertDomainLabelToCString((domainlabel*)a, buf);
   3087 											s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "%s.", buf);
   3088 											a += 1 + *a;
   3089 											}
   3090 										i = (mDNSu32)(s - mDNS_VACB);
   3091 										s = mDNS_VACB;	// Reset s back to the start of the buffer
   3092 										break;
   3093 										}
   3094 								}
   3095 							// Make sure we don't truncate in the middle of a UTF-8 character (see similar comment below)
   3096 							if (F.havePrecision && i > F.precision)
   3097 								{ i = F.precision; while (i>0 && (s[i] & 0xC0) == 0x80) i--; }
   3098 							break;
   3099 
   3100 				case 'n' :	s = va_arg(arg, char *);
   3101 							if      (F.hSize) * (short *) s = (short)nwritten;
   3102 							else if (F.lSize) * (long  *) s = (long)nwritten;
   3103 							else              * (int   *) s = (int)nwritten;
   3104 							continue;
   3105 
   3106 				default:	s = mDNS_VACB;
   3107 							i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "<<UNKNOWN FORMAT CONVERSION CODE %%%c>>", c);
   3108 
   3109 				case '%' :	*sbuffer++ = (char)c;
   3110 							if (++nwritten >= buflen) goto exit;
   3111 							break;
   3112 				}
   3113 
   3114 			if (i < F.fieldWidth && !F.leftJustify)			// Pad on the left
   3115 				do	{
   3116 					*sbuffer++ = ' ';
   3117 					if (++nwritten >= buflen) goto exit;
   3118 					} while (i < --F.fieldWidth);
   3119 
   3120 			// Make sure we don't truncate in the middle of a UTF-8 character.
   3121 			// Note: s[i] is the first eliminated character; i.e. the next character *after* the last character of the
   3122 			// allowed output. If s[i] is a UTF-8 continuation character, then we've cut a unicode character in half,
   3123 			// so back up 'i' until s[i] is no longer a UTF-8 continuation character. (if the input was proprly
   3124 			// formed, s[i] will now be the UTF-8 start character of the multi-byte character we just eliminated).
   3125 			if (i > buflen - nwritten)
   3126 				{ i = buflen - nwritten; while (i>0 && (s[i] & 0xC0) == 0x80) i--; }
   3127 			for (j=0; j<i; j++) *sbuffer++ = *s++;			// Write the converted result
   3128 			nwritten += i;
   3129 			if (nwritten >= buflen) goto exit;
   3130 
   3131 			for (; i < F.fieldWidth; i++)					// Pad on the right
   3132 				{
   3133 				*sbuffer++ = ' ';
   3134 				if (++nwritten >= buflen) goto exit;
   3135 				}
   3136 			}
   3137 		}
   3138 	exit:
   3139 	*sbuffer++ = 0;
   3140 	return(nwritten);
   3141 	}
   3142 
   3143 mDNSexport mDNSu32 mDNS_snprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, ...)
   3144 	{
   3145 	mDNSu32 length;
   3146 
   3147 	va_list ptr;
   3148 	va_start(ptr,fmt);
   3149 	length = mDNS_vsnprintf(sbuffer, buflen, fmt, ptr);
   3150 	va_end(ptr);
   3151 
   3152 	return(length);
   3153 	}
   3154