Home | History | Annotate | Download | only in IterativeLinearSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_BICGSTAB_H
     12 #define EIGEN_BICGSTAB_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 /** \internal Low-level bi conjugate gradient stabilized algorithm
     19   * \param mat The matrix A
     20   * \param rhs The right hand side vector b
     21   * \param x On input and initial solution, on output the computed solution.
     22   * \param precond A preconditioner being able to efficiently solve for an
     23   *                approximation of Ax=b (regardless of b)
     24   * \param iters On input the max number of iteration, on output the number of performed iterations.
     25   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
     26   * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
     27   */
     28 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     29 bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
     30               const Preconditioner& precond, int& iters,
     31               typename Dest::RealScalar& tol_error)
     32 {
     33   using std::sqrt;
     34   using std::abs;
     35   typedef typename Dest::RealScalar RealScalar;
     36   typedef typename Dest::Scalar Scalar;
     37   typedef Matrix<Scalar,Dynamic,1> VectorType;
     38   RealScalar tol = tol_error;
     39   int maxIters = iters;
     40 
     41   int n = mat.cols();
     42   VectorType r  = rhs - mat * x;
     43   VectorType r0 = r;
     44 
     45   RealScalar r0_sqnorm = r0.squaredNorm();
     46   Scalar rho    = 1;
     47   Scalar alpha  = 1;
     48   Scalar w      = 1;
     49 
     50   VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
     51   VectorType y(n),  z(n);
     52   VectorType kt(n), ks(n);
     53 
     54   VectorType s(n), t(n);
     55 
     56   RealScalar tol2 = tol*tol;
     57   int i = 0;
     58 
     59   while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters )
     60   {
     61     Scalar rho_old = rho;
     62 
     63     rho = r0.dot(r);
     64     if (rho == Scalar(0)) return false; /* New search directions cannot be found */
     65     Scalar beta = (rho/rho_old) * (alpha / w);
     66     p = r + beta * (p - w * v);
     67 
     68     y = precond.solve(p);
     69 
     70     v.noalias() = mat * y;
     71 
     72     alpha = rho / r0.dot(v);
     73     s = r - alpha * v;
     74 
     75     z = precond.solve(s);
     76     t.noalias() = mat * z;
     77 
     78     w = t.dot(s) / t.squaredNorm();
     79     x += alpha * y + w * z;
     80     r = s - w * t;
     81     ++i;
     82   }
     83   tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
     84   iters = i;
     85   return true;
     86 }
     87 
     88 }
     89 
     90 template< typename _MatrixType,
     91           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
     92 class BiCGSTAB;
     93 
     94 namespace internal {
     95 
     96 template< typename _MatrixType, typename _Preconditioner>
     97 struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
     98 {
     99   typedef _MatrixType MatrixType;
    100   typedef _Preconditioner Preconditioner;
    101 };
    102 
    103 }
    104 
    105 /** \ingroup IterativeLinearSolvers_Module
    106   * \brief A bi conjugate gradient stabilized solver for sparse square problems
    107   *
    108   * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
    109   * stabilized algorithm. The vectors x and b can be either dense or sparse.
    110   *
    111   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
    112   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
    113   *
    114   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    115   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    116   * and NumTraits<Scalar>::epsilon() for the tolerance.
    117   *
    118   * This class can be used as the direct solver classes. Here is a typical usage example:
    119   * \code
    120   * int n = 10000;
    121   * VectorXd x(n), b(n);
    122   * SparseMatrix<double> A(n,n);
    123   * // fill A and b
    124   * BiCGSTAB<SparseMatrix<double> > solver;
    125   * solver(A);
    126   * x = solver.solve(b);
    127   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
    128   * std::cout << "estimated error: " << solver.error()      << std::endl;
    129   * // update b, and solve again
    130   * x = solver.solve(b);
    131   * \endcode
    132   *
    133   * By default the iterations start with x=0 as an initial guess of the solution.
    134   * One can control the start using the solveWithGuess() method. Here is a step by
    135   * step execution example starting with a random guess and printing the evolution
    136   * of the estimated error:
    137   * * \code
    138   * x = VectorXd::Random(n);
    139   * solver.setMaxIterations(1);
    140   * int i = 0;
    141   * do {
    142   *   x = solver.solveWithGuess(b,x);
    143   *   std::cout << i << " : " << solver.error() << std::endl;
    144   *   ++i;
    145   * } while (solver.info()!=Success && i<100);
    146   * \endcode
    147   * Note that such a step by step excution is slightly slower.
    148   *
    149   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
    150   */
    151 template< typename _MatrixType, typename _Preconditioner>
    152 class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
    153 {
    154   typedef IterativeSolverBase<BiCGSTAB> Base;
    155   using Base::mp_matrix;
    156   using Base::m_error;
    157   using Base::m_iterations;
    158   using Base::m_info;
    159   using Base::m_isInitialized;
    160 public:
    161   typedef _MatrixType MatrixType;
    162   typedef typename MatrixType::Scalar Scalar;
    163   typedef typename MatrixType::Index Index;
    164   typedef typename MatrixType::RealScalar RealScalar;
    165   typedef _Preconditioner Preconditioner;
    166 
    167 public:
    168 
    169   /** Default constructor. */
    170   BiCGSTAB() : Base() {}
    171 
    172   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    173     *
    174     * This constructor is a shortcut for the default constructor followed
    175     * by a call to compute().
    176     *
    177     * \warning this class stores a reference to the matrix A as well as some
    178     * precomputed values that depend on it. Therefore, if \a A is changed
    179     * this class becomes invalid. Call compute() to update it with the new
    180     * matrix A, or modify a copy of A.
    181     */
    182   BiCGSTAB(const MatrixType& A) : Base(A) {}
    183 
    184   ~BiCGSTAB() {}
    185 
    186   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    187     * \a x0 as an initial solution.
    188     *
    189     * \sa compute()
    190     */
    191   template<typename Rhs,typename Guess>
    192   inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
    193   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
    194   {
    195     eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
    196     eigen_assert(Base::rows()==b.rows()
    197               && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
    198     return internal::solve_retval_with_guess
    199             <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
    200   }
    201 
    202   /** \internal */
    203   template<typename Rhs,typename Dest>
    204   void _solveWithGuess(const Rhs& b, Dest& x) const
    205   {
    206     bool failed = false;
    207     for(int j=0; j<b.cols(); ++j)
    208     {
    209       m_iterations = Base::maxIterations();
    210       m_error = Base::m_tolerance;
    211 
    212       typename Dest::ColXpr xj(x,j);
    213       if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
    214         failed = true;
    215     }
    216     m_info = failed ? NumericalIssue
    217            : m_error <= Base::m_tolerance ? Success
    218            : NoConvergence;
    219     m_isInitialized = true;
    220   }
    221 
    222   /** \internal */
    223   template<typename Rhs,typename Dest>
    224   void _solve(const Rhs& b, Dest& x) const
    225   {
    226     x.setZero();
    227     _solveWithGuess(b,x);
    228   }
    229 
    230 protected:
    231 
    232 };
    233 
    234 
    235 namespace internal {
    236 
    237   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
    238 struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
    239   : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
    240 {
    241   typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
    242   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    243 
    244   template<typename Dest> void evalTo(Dest& dst) const
    245   {
    246     dec()._solve(rhs(),dst);
    247   }
    248 };
    249 
    250 } // end namespace internal
    251 
    252 } // end namespace Eigen
    253 
    254 #endif // EIGEN_BICGSTAB_H
    255