Home | History | Annotate | Download | only in crypto
      1 /*
      2  * Wrapper functions for crypto libraries
      3  * Copyright (c) 2004-2013, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This software may be distributed under the terms of the BSD license.
      6  * See README for more details.
      7  *
      8  * This file defines the cryptographic functions that need to be implemented
      9  * for wpa_supplicant and hostapd. When TLS is not used, internal
     10  * implementation of MD5, SHA1, and AES is used and no external libraries are
     11  * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
     12  * crypto library used by the TLS implementation is expected to be used for
     13  * non-TLS needs, too, in order to save space by not implementing these
     14  * functions twice.
     15  *
     16  * Wrapper code for using each crypto library is in its own file (crypto*.c)
     17  * and one of these files is build and linked in to provide the functions
     18  * defined here.
     19  */
     20 
     21 #ifndef CRYPTO_H
     22 #define CRYPTO_H
     23 
     24 /**
     25  * md4_vector - MD4 hash for data vector
     26  * @num_elem: Number of elements in the data vector
     27  * @addr: Pointers to the data areas
     28  * @len: Lengths of the data blocks
     29  * @mac: Buffer for the hash
     30  * Returns: 0 on success, -1 on failure
     31  */
     32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
     33 
     34 /**
     35  * md5_vector - MD5 hash for data vector
     36  * @num_elem: Number of elements in the data vector
     37  * @addr: Pointers to the data areas
     38  * @len: Lengths of the data blocks
     39  * @mac: Buffer for the hash
     40  * Returns: 0 on success, -1 on failure
     41  */
     42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
     43 
     44 
     45 /**
     46  * sha1_vector - SHA-1 hash for data vector
     47  * @num_elem: Number of elements in the data vector
     48  * @addr: Pointers to the data areas
     49  * @len: Lengths of the data blocks
     50  * @mac: Buffer for the hash
     51  * Returns: 0 on success, -1 on failure
     52  */
     53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
     54 		u8 *mac);
     55 
     56 /**
     57  * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
     58  * @seed: Seed/key for the PRF
     59  * @seed_len: Seed length in bytes
     60  * @x: Buffer for PRF output
     61  * @xlen: Output length in bytes
     62  * Returns: 0 on success, -1 on failure
     63  *
     64  * This function implements random number generation specified in NIST FIPS
     65  * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
     66  * SHA-1, but has different message padding.
     67  */
     68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
     69 			       size_t xlen);
     70 
     71 /**
     72  * sha256_vector - SHA256 hash for data vector
     73  * @num_elem: Number of elements in the data vector
     74  * @addr: Pointers to the data areas
     75  * @len: Lengths of the data blocks
     76  * @mac: Buffer for the hash
     77  * Returns: 0 on success, -1 on failure
     78  */
     79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
     80 		  u8 *mac);
     81 
     82 /**
     83  * des_encrypt - Encrypt one block with DES
     84  * @clear: 8 octets (in)
     85  * @key: 7 octets (in) (no parity bits included)
     86  * @cypher: 8 octets (out)
     87  */
     88 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
     89 
     90 /**
     91  * aes_encrypt_init - Initialize AES for encryption
     92  * @key: Encryption key
     93  * @len: Key length in bytes (usually 16, i.e., 128 bits)
     94  * Returns: Pointer to context data or %NULL on failure
     95  */
     96 void * aes_encrypt_init(const u8 *key, size_t len);
     97 
     98 /**
     99  * aes_encrypt - Encrypt one AES block
    100  * @ctx: Context pointer from aes_encrypt_init()
    101  * @plain: Plaintext data to be encrypted (16 bytes)
    102  * @crypt: Buffer for the encrypted data (16 bytes)
    103  */
    104 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
    105 
    106 /**
    107  * aes_encrypt_deinit - Deinitialize AES encryption
    108  * @ctx: Context pointer from aes_encrypt_init()
    109  */
    110 void aes_encrypt_deinit(void *ctx);
    111 
    112 /**
    113  * aes_decrypt_init - Initialize AES for decryption
    114  * @key: Decryption key
    115  * @len: Key length in bytes (usually 16, i.e., 128 bits)
    116  * Returns: Pointer to context data or %NULL on failure
    117  */
    118 void * aes_decrypt_init(const u8 *key, size_t len);
    119 
    120 /**
    121  * aes_decrypt - Decrypt one AES block
    122  * @ctx: Context pointer from aes_encrypt_init()
    123  * @crypt: Encrypted data (16 bytes)
    124  * @plain: Buffer for the decrypted data (16 bytes)
    125  */
    126 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
    127 
    128 /**
    129  * aes_decrypt_deinit - Deinitialize AES decryption
    130  * @ctx: Context pointer from aes_encrypt_init()
    131  */
    132 void aes_decrypt_deinit(void *ctx);
    133 
    134 
    135 enum crypto_hash_alg {
    136 	CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
    137 	CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
    138 	CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256
    139 };
    140 
    141 struct crypto_hash;
    142 
    143 /**
    144  * crypto_hash_init - Initialize hash/HMAC function
    145  * @alg: Hash algorithm
    146  * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
    147  * @key_len: Length of the key in bytes
    148  * Returns: Pointer to hash context to use with other hash functions or %NULL
    149  * on failure
    150  *
    151  * This function is only used with internal TLSv1 implementation
    152  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    153  * to implement this.
    154  */
    155 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
    156 				      size_t key_len);
    157 
    158 /**
    159  * crypto_hash_update - Add data to hash calculation
    160  * @ctx: Context pointer from crypto_hash_init()
    161  * @data: Data buffer to add
    162  * @len: Length of the buffer
    163  *
    164  * This function is only used with internal TLSv1 implementation
    165  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    166  * to implement this.
    167  */
    168 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
    169 
    170 /**
    171  * crypto_hash_finish - Complete hash calculation
    172  * @ctx: Context pointer from crypto_hash_init()
    173  * @hash: Buffer for hash value or %NULL if caller is just freeing the hash
    174  * context
    175  * @len: Pointer to length of the buffer or %NULL if caller is just freeing the
    176  * hash context; on return, this is set to the actual length of the hash value
    177  * Returns: 0 on success, -1 if buffer is too small (len set to needed length),
    178  * or -2 on other failures (including failed crypto_hash_update() operations)
    179  *
    180  * This function calculates the hash value and frees the context buffer that
    181  * was used for hash calculation.
    182  *
    183  * This function is only used with internal TLSv1 implementation
    184  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    185  * to implement this.
    186  */
    187 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
    188 
    189 
    190 enum crypto_cipher_alg {
    191 	CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
    192 	CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
    193 };
    194 
    195 struct crypto_cipher;
    196 
    197 /**
    198  * crypto_cipher_init - Initialize block/stream cipher function
    199  * @alg: Cipher algorithm
    200  * @iv: Initialization vector for block ciphers or %NULL for stream ciphers
    201  * @key: Cipher key
    202  * @key_len: Length of key in bytes
    203  * Returns: Pointer to cipher context to use with other cipher functions or
    204  * %NULL on failure
    205  *
    206  * This function is only used with internal TLSv1 implementation
    207  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    208  * to implement this.
    209  */
    210 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
    211 					  const u8 *iv, const u8 *key,
    212 					  size_t key_len);
    213 
    214 /**
    215  * crypto_cipher_encrypt - Cipher encrypt
    216  * @ctx: Context pointer from crypto_cipher_init()
    217  * @plain: Plaintext to cipher
    218  * @crypt: Resulting ciphertext
    219  * @len: Length of the plaintext
    220  * Returns: 0 on success, -1 on failure
    221  *
    222  * This function is only used with internal TLSv1 implementation
    223  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    224  * to implement this.
    225  */
    226 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
    227 				       const u8 *plain, u8 *crypt, size_t len);
    228 
    229 /**
    230  * crypto_cipher_decrypt - Cipher decrypt
    231  * @ctx: Context pointer from crypto_cipher_init()
    232  * @crypt: Ciphertext to decrypt
    233  * @plain: Resulting plaintext
    234  * @len: Length of the cipher text
    235  * Returns: 0 on success, -1 on failure
    236  *
    237  * This function is only used with internal TLSv1 implementation
    238  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    239  * to implement this.
    240  */
    241 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
    242 				       const u8 *crypt, u8 *plain, size_t len);
    243 
    244 /**
    245  * crypto_cipher_decrypt - Free cipher context
    246  * @ctx: Context pointer from crypto_cipher_init()
    247  *
    248  * This function is only used with internal TLSv1 implementation
    249  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    250  * to implement this.
    251  */
    252 void crypto_cipher_deinit(struct crypto_cipher *ctx);
    253 
    254 
    255 struct crypto_public_key;
    256 struct crypto_private_key;
    257 
    258 /**
    259  * crypto_public_key_import - Import an RSA public key
    260  * @key: Key buffer (DER encoded RSA public key)
    261  * @len: Key buffer length in bytes
    262  * Returns: Pointer to the public key or %NULL on failure
    263  *
    264  * This function can just return %NULL if the crypto library supports X.509
    265  * parsing. In that case, crypto_public_key_from_cert() is used to import the
    266  * public key from a certificate.
    267  *
    268  * This function is only used with internal TLSv1 implementation
    269  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    270  * to implement this.
    271  */
    272 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
    273 
    274 /**
    275  * crypto_private_key_import - Import an RSA private key
    276  * @key: Key buffer (DER encoded RSA private key)
    277  * @len: Key buffer length in bytes
    278  * @passwd: Key encryption password or %NULL if key is not encrypted
    279  * Returns: Pointer to the private key or %NULL on failure
    280  *
    281  * This function is only used with internal TLSv1 implementation
    282  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    283  * to implement this.
    284  */
    285 struct crypto_private_key * crypto_private_key_import(const u8 *key,
    286 						      size_t len,
    287 						      const char *passwd);
    288 
    289 /**
    290  * crypto_public_key_from_cert - Import an RSA public key from a certificate
    291  * @buf: DER encoded X.509 certificate
    292  * @len: Certificate buffer length in bytes
    293  * Returns: Pointer to public key or %NULL on failure
    294  *
    295  * This function can just return %NULL if the crypto library does not support
    296  * X.509 parsing. In that case, internal code will be used to parse the
    297  * certificate and public key is imported using crypto_public_key_import().
    298  *
    299  * This function is only used with internal TLSv1 implementation
    300  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    301  * to implement this.
    302  */
    303 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
    304 						       size_t len);
    305 
    306 /**
    307  * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
    308  * @key: Public key
    309  * @in: Plaintext buffer
    310  * @inlen: Length of plaintext buffer in bytes
    311  * @out: Output buffer for encrypted data
    312  * @outlen: Length of output buffer in bytes; set to used length on success
    313  * Returns: 0 on success, -1 on failure
    314  *
    315  * This function is only used with internal TLSv1 implementation
    316  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    317  * to implement this.
    318  */
    319 int __must_check crypto_public_key_encrypt_pkcs1_v15(
    320 	struct crypto_public_key *key, const u8 *in, size_t inlen,
    321 	u8 *out, size_t *outlen);
    322 
    323 /**
    324  * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
    325  * @key: Private key
    326  * @in: Encrypted buffer
    327  * @inlen: Length of encrypted buffer in bytes
    328  * @out: Output buffer for encrypted data
    329  * @outlen: Length of output buffer in bytes; set to used length on success
    330  * Returns: 0 on success, -1 on failure
    331  *
    332  * This function is only used with internal TLSv1 implementation
    333  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    334  * to implement this.
    335  */
    336 int __must_check crypto_private_key_decrypt_pkcs1_v15(
    337 	struct crypto_private_key *key, const u8 *in, size_t inlen,
    338 	u8 *out, size_t *outlen);
    339 
    340 /**
    341  * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
    342  * @key: Private key from crypto_private_key_import()
    343  * @in: Plaintext buffer
    344  * @inlen: Length of plaintext buffer in bytes
    345  * @out: Output buffer for encrypted (signed) data
    346  * @outlen: Length of output buffer in bytes; set to used length on success
    347  * Returns: 0 on success, -1 on failure
    348  *
    349  * This function is only used with internal TLSv1 implementation
    350  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    351  * to implement this.
    352  */
    353 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
    354 					       const u8 *in, size_t inlen,
    355 					       u8 *out, size_t *outlen);
    356 
    357 /**
    358  * crypto_public_key_free - Free public key
    359  * @key: Public key
    360  *
    361  * This function is only used with internal TLSv1 implementation
    362  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    363  * to implement this.
    364  */
    365 void crypto_public_key_free(struct crypto_public_key *key);
    366 
    367 /**
    368  * crypto_private_key_free - Free private key
    369  * @key: Private key from crypto_private_key_import()
    370  *
    371  * This function is only used with internal TLSv1 implementation
    372  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    373  * to implement this.
    374  */
    375 void crypto_private_key_free(struct crypto_private_key *key);
    376 
    377 /**
    378  * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
    379  * @key: Public key
    380  * @crypt: Encrypted signature data (using the private key)
    381  * @crypt_len: Encrypted signature data length
    382  * @plain: Buffer for plaintext (at least crypt_len bytes)
    383  * @plain_len: Plaintext length (max buffer size on input, real len on output);
    384  * Returns: 0 on success, -1 on failure
    385  */
    386 int __must_check crypto_public_key_decrypt_pkcs1(
    387 	struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
    388 	u8 *plain, size_t *plain_len);
    389 
    390 /**
    391  * crypto_global_init - Initialize crypto wrapper
    392  *
    393  * This function is only used with internal TLSv1 implementation
    394  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    395  * to implement this.
    396  */
    397 int __must_check crypto_global_init(void);
    398 
    399 /**
    400  * crypto_global_deinit - Deinitialize crypto wrapper
    401  *
    402  * This function is only used with internal TLSv1 implementation
    403  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    404  * to implement this.
    405  */
    406 void crypto_global_deinit(void);
    407 
    408 /**
    409  * crypto_mod_exp - Modular exponentiation of large integers
    410  * @base: Base integer (big endian byte array)
    411  * @base_len: Length of base integer in bytes
    412  * @power: Power integer (big endian byte array)
    413  * @power_len: Length of power integer in bytes
    414  * @modulus: Modulus integer (big endian byte array)
    415  * @modulus_len: Length of modulus integer in bytes
    416  * @result: Buffer for the result
    417  * @result_len: Result length (max buffer size on input, real len on output)
    418  * Returns: 0 on success, -1 on failure
    419  *
    420  * This function calculates result = base ^ power mod modulus. modules_len is
    421  * used as the maximum size of modulus buffer. It is set to the used size on
    422  * success.
    423  *
    424  * This function is only used with internal TLSv1 implementation
    425  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
    426  * to implement this.
    427  */
    428 int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
    429 				const u8 *power, size_t power_len,
    430 				const u8 *modulus, size_t modulus_len,
    431 				u8 *result, size_t *result_len);
    432 
    433 /**
    434  * rc4_skip - XOR RC4 stream to given data with skip-stream-start
    435  * @key: RC4 key
    436  * @keylen: RC4 key length
    437  * @skip: number of bytes to skip from the beginning of the RC4 stream
    438  * @data: data to be XOR'ed with RC4 stream
    439  * @data_len: buf length
    440  * Returns: 0 on success, -1 on failure
    441  *
    442  * Generate RC4 pseudo random stream for the given key, skip beginning of the
    443  * stream, and XOR the end result with the data buffer to perform RC4
    444  * encryption/decryption.
    445  */
    446 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
    447 	     u8 *data, size_t data_len);
    448 
    449 /**
    450  * crypto_get_random - Generate cryptographically strong pseudy-random bytes
    451  * @buf: Buffer for data
    452  * @len: Number of bytes to generate
    453  * Returns: 0 on success, -1 on failure
    454  *
    455  * If the PRNG does not have enough entropy to ensure unpredictable byte
    456  * sequence, this functions must return -1.
    457  */
    458 int crypto_get_random(void *buf, size_t len);
    459 
    460 
    461 /**
    462  * struct crypto_bignum - bignum
    463  *
    464  * Internal data structure for bignum implementation. The contents is specific
    465  * to the used crypto library.
    466  */
    467 struct crypto_bignum;
    468 
    469 /**
    470  * crypto_bignum_init - Allocate memory for bignum
    471  * Returns: Pointer to allocated bignum or %NULL on failure
    472  */
    473 struct crypto_bignum * crypto_bignum_init(void);
    474 
    475 /**
    476  * crypto_bignum_init_set - Allocate memory for bignum and set the value
    477  * @buf: Buffer with unsigned binary value
    478  * @len: Length of buf in octets
    479  * Returns: Pointer to allocated bignum or %NULL on failure
    480  */
    481 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
    482 
    483 /**
    484  * crypto_bignum_deinit - Free bignum
    485  * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
    486  * @clear: Whether to clear the value from memory
    487  */
    488 void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
    489 
    490 /**
    491  * crypto_bignum_to_bin - Set binary buffer to unsigned bignum
    492  * @a: Bignum
    493  * @buf: Buffer for the binary number
    494  * @len: Length of @buf in octets
    495  * @padlen: Length in octets to pad the result to or 0 to indicate no padding
    496  * Returns: Number of octets written on success, -1 on failure
    497  */
    498 int crypto_bignum_to_bin(const struct crypto_bignum *a,
    499 			 u8 *buf, size_t buflen, size_t padlen);
    500 
    501 /**
    502  * crypto_bignum_add - c = a + b
    503  * @a: Bignum
    504  * @b: Bignum
    505  * @c: Bignum; used to store the result of a + b
    506  * Returns: 0 on success, -1 on failure
    507  */
    508 int crypto_bignum_add(const struct crypto_bignum *a,
    509 		      const struct crypto_bignum *b,
    510 		      struct crypto_bignum *c);
    511 
    512 /**
    513  * crypto_bignum_mod - c = a % b
    514  * @a: Bignum
    515  * @b: Bignum
    516  * @c: Bignum; used to store the result of a % b
    517  * Returns: 0 on success, -1 on failure
    518  */
    519 int crypto_bignum_mod(const struct crypto_bignum *a,
    520 		      const struct crypto_bignum *b,
    521 		      struct crypto_bignum *c);
    522 
    523 /**
    524  * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
    525  * @a: Bignum; base
    526  * @b: Bignum; exponent
    527  * @c: Bignum; modulus
    528  * @d: Bignum; used to store the result of a^b (mod c)
    529  * Returns: 0 on success, -1 on failure
    530  */
    531 int crypto_bignum_exptmod(const struct crypto_bignum *a,
    532 			  const struct crypto_bignum *b,
    533 			  const struct crypto_bignum *c,
    534 			  struct crypto_bignum *d);
    535 
    536 /**
    537  * crypto_bignum_rshift - b = a >> n
    538  * @a: Bignum
    539  * @n: Number of bits to shift
    540  * @b: Bignum; used to store the result of a >> n
    541  * Returns: 0 on success, -1 on failure
    542  */
    543 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
    544 			 struct crypto_bignum *b);
    545 
    546 /**
    547  * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
    548  * @a: Bignum
    549  * @b: Bignum
    550  * @c: Bignum; used to store the result
    551  * Returns: 0 on success, -1 on failure
    552  */
    553 int crypto_bignum_inverse(const struct crypto_bignum *a,
    554 			  const struct crypto_bignum *b,
    555 			  struct crypto_bignum *c);
    556 
    557 /**
    558  * crypto_bignum_sub - c = a - b
    559  * @a: Bignum
    560  * @b: Bignum
    561  * @c: Bignum; used to store the result of a - b
    562  * Returns: 0 on success, -1 on failure
    563  */
    564 int crypto_bignum_sub(const struct crypto_bignum *a,
    565 		      const struct crypto_bignum *b,
    566 		      struct crypto_bignum *c);
    567 
    568 /**
    569  * crypto_bignum_div - c = a / b
    570  * @a: Bignum
    571  * @b: Bignum
    572  * @c: Bignum; used to store the result of a / b
    573  * Returns: 0 on success, -1 on failure
    574  */
    575 int crypto_bignum_div(const struct crypto_bignum *a,
    576 		      const struct crypto_bignum *b,
    577 		      struct crypto_bignum *c);
    578 
    579 /**
    580  * crypto_bignum_mulmod - d = a * b (mod c)
    581  * @a: Bignum
    582  * @b: Bignum
    583  * @c: Bignum
    584  * @d: Bignum; used to store the result of (a * b) % c
    585  * Returns: 0 on success, -1 on failure
    586  */
    587 int crypto_bignum_mulmod(const struct crypto_bignum *a,
    588 			 const struct crypto_bignum *b,
    589 			 const struct crypto_bignum *c,
    590 			 struct crypto_bignum *d);
    591 
    592 /**
    593  * crypto_bignum_cmp - Compare two bignums
    594  * @a: Bignum
    595  * @b: Bignum
    596  * Returns: -1 if a < b, 0 if a == b, or 1 if a > b
    597  */
    598 int crypto_bignum_cmp(const struct crypto_bignum *a,
    599 		      const struct crypto_bignum *b);
    600 
    601 /**
    602  * crypto_bignum_bits - Get size of a bignum in bits
    603  * @a: Bignum
    604  * Returns: Number of bits in the bignum
    605  */
    606 int crypto_bignum_bits(const struct crypto_bignum *a);
    607 
    608 /**
    609  * crypto_bignum_is_zero - Is the given bignum zero
    610  * @a: Bignum
    611  * Returns: 1 if @a is zero or 0 if not
    612  */
    613 int crypto_bignum_is_zero(const struct crypto_bignum *a);
    614 
    615 /**
    616  * crypto_bignum_is_one - Is the given bignum one
    617  * @a: Bignum
    618  * Returns: 1 if @a is one or 0 if not
    619  */
    620 int crypto_bignum_is_one(const struct crypto_bignum *a);
    621 
    622 /**
    623  * struct crypto_ec - Elliptic curve context
    624  *
    625  * Internal data structure for EC implementation. The contents is specific
    626  * to the used crypto library.
    627  */
    628 struct crypto_ec;
    629 
    630 /**
    631  * crypto_ec_init - Initialize elliptic curve context
    632  * @group: Identifying number for the ECC group (IANA "Group Description"
    633  *	attribute registrty for RFC 2409)
    634  * Returns: Pointer to EC context or %NULL on failure
    635  */
    636 struct crypto_ec * crypto_ec_init(int group);
    637 
    638 /**
    639  * crypto_ec_deinit - Deinitialize elliptic curve context
    640  * @e: EC context from crypto_ec_init()
    641  */
    642 void crypto_ec_deinit(struct crypto_ec *e);
    643 
    644 /**
    645  * crypto_ec_prime_len - Get length of the prime in octets
    646  * @e: EC context from crypto_ec_init()
    647  * Returns: Length of the prime defining the group
    648  */
    649 size_t crypto_ec_prime_len(struct crypto_ec *e);
    650 
    651 /**
    652  * crypto_ec_prime_len_bits - Get length of the prime in bits
    653  * @e: EC context from crypto_ec_init()
    654  * Returns: Length of the prime defining the group in bits
    655  */
    656 size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
    657 
    658 /**
    659  * crypto_ec_get_prime - Get prime defining an EC group
    660  * @e: EC context from crypto_ec_init()
    661  * Returns: Prime (bignum) defining the group
    662  */
    663 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
    664 
    665 /**
    666  * crypto_ec_get_order - Get order of an EC group
    667  * @e: EC context from crypto_ec_init()
    668  * Returns: Order (bignum) of the group
    669  */
    670 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
    671 
    672 /**
    673  * struct crypto_ec_point - Elliptic curve point
    674  *
    675  * Internal data structure for EC implementation to represent a point. The
    676  * contents is specific to the used crypto library.
    677  */
    678 struct crypto_ec_point;
    679 
    680 /**
    681  * crypto_ec_point_init - Initialize data for an EC point
    682  * @e: EC context from crypto_ec_init()
    683  * Returns: Pointer to EC point data or %NULL on failure
    684  */
    685 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
    686 
    687 /**
    688  * crypto_ec_point_deinit - Deinitialize EC point data
    689  * @p: EC point data from crypto_ec_point_init()
    690  * @clear: Whether to clear the EC point value from memory
    691  */
    692 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
    693 
    694 /**
    695  * crypto_ec_point_to_bin - Write EC point value as binary data
    696  * @e: EC context from crypto_ec_init()
    697  * @p: EC point data from crypto_ec_point_init()
    698  * @x: Buffer for writing the binary data for x coordinate or %NULL if not used
    699  * @y: Buffer for writing the binary data for y coordinate or %NULL if not used
    700  * Returns: 0 on success, -1 on failure
    701  *
    702  * This function can be used to write an EC point as binary data in a format
    703  * that has the x and y coordinates in big endian byte order fields padded to
    704  * the length of the prime defining the group.
    705  */
    706 int crypto_ec_point_to_bin(struct crypto_ec *e,
    707 			   const struct crypto_ec_point *point, u8 *x, u8 *y);
    708 
    709 /**
    710  * crypto_ec_point_from_bin - Create EC point from binary data
    711  * @e: EC context from crypto_ec_init()
    712  * @val: Binary data to read the EC point from
    713  * Returns: Pointer to EC point data or %NULL on failure
    714  *
    715  * This function readers x and y coordinates of the EC point from the provided
    716  * buffer assuming the values are in big endian byte order with fields padded to
    717  * the length of the prime defining the group.
    718  */
    719 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
    720 						  const u8 *val);
    721 
    722 /**
    723  * crypto_bignum_add - c = a + b
    724  * @e: EC context from crypto_ec_init()
    725  * @a: Bignum
    726  * @b: Bignum
    727  * @c: Bignum; used to store the result of a + b
    728  * Returns: 0 on success, -1 on failure
    729  */
    730 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
    731 			const struct crypto_ec_point *b,
    732 			struct crypto_ec_point *c);
    733 
    734 /**
    735  * crypto_bignum_mul - res = b * p
    736  * @e: EC context from crypto_ec_init()
    737  * @p: EC point
    738  * @b: Bignum
    739  * @res: EC point; used to store the result of b * p
    740  * Returns: 0 on success, -1 on failure
    741  */
    742 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
    743 			const struct crypto_bignum *b,
    744 			struct crypto_ec_point *res);
    745 
    746 /**
    747  * crypto_ec_point_invert - Compute inverse of an EC point
    748  * @e: EC context from crypto_ec_init()
    749  * @p: EC point to invert (and result of the operation)
    750  * Returns: 0 on success, -1 on failure
    751  */
    752 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
    753 
    754 /**
    755  * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
    756  * @e: EC context from crypto_ec_init()
    757  * @p: EC point to use for the returning the result
    758  * @x: x coordinate
    759  * @y_bit: y-bit (0 or 1) for selecting the y value to use
    760  * Returns: 0 on success, -1 on failure
    761  */
    762 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
    763 				  struct crypto_ec_point *p,
    764 				  const struct crypto_bignum *x, int y_bit);
    765 
    766 /**
    767  * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
    768  * @e: EC context from crypto_ec_init()
    769  * @p: EC point
    770  * Returns: 1 if the specified EC point is the neutral element of the group or
    771  *	0 if not
    772  */
    773 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
    774 				   const struct crypto_ec_point *p);
    775 
    776 /**
    777  * crypto_ec_point_is_on_curve - Check whether EC point is on curve
    778  * @e: EC context from crypto_ec_init()
    779  * @p: EC point
    780  * Returns: 1 if the specified EC point is on the curve or 0 if not
    781  */
    782 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
    783 				const struct crypto_ec_point *p);
    784 
    785 #endif /* CRYPTO_H */
    786