Home | History | Annotate | Download | only in IterativeLinearSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_CONJUGATE_GRADIENT_H
     11 #define EIGEN_CONJUGATE_GRADIENT_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 /** \internal Low-level conjugate gradient algorithm
     18   * \param mat The matrix A
     19   * \param rhs The right hand side vector b
     20   * \param x On input and initial solution, on output the computed solution.
     21   * \param precond A preconditioner being able to efficiently solve for an
     22   *                approximation of Ax=b (regardless of b)
     23   * \param iters On input the max number of iteration, on output the number of performed iterations.
     24   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
     25   */
     26 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     27 EIGEN_DONT_INLINE
     28 void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
     29                         const Preconditioner& precond, int& iters,
     30                         typename Dest::RealScalar& tol_error)
     31 {
     32   using std::sqrt;
     33   using std::abs;
     34   typedef typename Dest::RealScalar RealScalar;
     35   typedef typename Dest::Scalar Scalar;
     36   typedef Matrix<Scalar,Dynamic,1> VectorType;
     37 
     38   RealScalar tol = tol_error;
     39   int maxIters = iters;
     40 
     41   int n = mat.cols();
     42 
     43   VectorType residual = rhs - mat * x; //initial residual
     44   VectorType p(n);
     45 
     46   p = precond.solve(residual);      //initial search direction
     47 
     48   VectorType z(n), tmp(n);
     49   RealScalar absNew = internal::real(residual.dot(p));  // the square of the absolute value of r scaled by invM
     50   RealScalar rhsNorm2 = rhs.squaredNorm();
     51   RealScalar residualNorm2 = 0;
     52   RealScalar threshold = tol*tol*rhsNorm2;
     53   int i = 0;
     54   while(i < maxIters)
     55   {
     56     tmp.noalias() = mat * p;              // the bottleneck of the algorithm
     57 
     58     Scalar alpha = absNew / p.dot(tmp);   // the amount we travel on dir
     59     x += alpha * p;                       // update solution
     60     residual -= alpha * tmp;              // update residue
     61 
     62     residualNorm2 = residual.squaredNorm();
     63     if(residualNorm2 < threshold)
     64       break;
     65 
     66     z = precond.solve(residual);          // approximately solve for "A z = residual"
     67 
     68     RealScalar absOld = absNew;
     69     absNew = internal::real(residual.dot(z));     // update the absolute value of r
     70     RealScalar beta = absNew / absOld;            // calculate the Gram-Schmidt value used to create the new search direction
     71     p = z + beta * p;                             // update search direction
     72     i++;
     73   }
     74   tol_error = sqrt(residualNorm2 / rhsNorm2);
     75   iters = i;
     76 }
     77 
     78 }
     79 
     80 template< typename _MatrixType, int _UpLo=Lower,
     81           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
     82 class ConjugateGradient;
     83 
     84 namespace internal {
     85 
     86 template< typename _MatrixType, int _UpLo, typename _Preconditioner>
     87 struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
     88 {
     89   typedef _MatrixType MatrixType;
     90   typedef _Preconditioner Preconditioner;
     91 };
     92 
     93 }
     94 
     95 /** \ingroup IterativeLinearSolvers_Module
     96   * \brief A conjugate gradient solver for sparse self-adjoint problems
     97   *
     98   * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
     99   * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
    100   *
    101   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
    102   * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
    103   *               or Upper. Default is Lower.
    104   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
    105   *
    106   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    107   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    108   * and NumTraits<Scalar>::epsilon() for the tolerance.
    109   *
    110   * This class can be used as the direct solver classes. Here is a typical usage example:
    111   * \code
    112   * int n = 10000;
    113   * VectorXd x(n), b(n);
    114   * SparseMatrix<double> A(n,n);
    115   * // fill A and b
    116   * ConjugateGradient<SparseMatrix<double> > cg;
    117   * cg.compute(A);
    118   * x = cg.solve(b);
    119   * std::cout << "#iterations:     " << cg.iterations() << std::endl;
    120   * std::cout << "estimated error: " << cg.error()      << std::endl;
    121   * // update b, and solve again
    122   * x = cg.solve(b);
    123   * \endcode
    124   *
    125   * By default the iterations start with x=0 as an initial guess of the solution.
    126   * One can control the start using the solveWithGuess() method. Here is a step by
    127   * step execution example starting with a random guess and printing the evolution
    128   * of the estimated error:
    129   * * \code
    130   * x = VectorXd::Random(n);
    131   * cg.setMaxIterations(1);
    132   * int i = 0;
    133   * do {
    134   *   x = cg.solveWithGuess(b,x);
    135   *   std::cout << i << " : " << cg.error() << std::endl;
    136   *   ++i;
    137   * } while (cg.info()!=Success && i<100);
    138   * \endcode
    139   * Note that such a step by step excution is slightly slower.
    140   *
    141   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
    142   */
    143 template< typename _MatrixType, int _UpLo, typename _Preconditioner>
    144 class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
    145 {
    146   typedef IterativeSolverBase<ConjugateGradient> Base;
    147   using Base::mp_matrix;
    148   using Base::m_error;
    149   using Base::m_iterations;
    150   using Base::m_info;
    151   using Base::m_isInitialized;
    152 public:
    153   typedef _MatrixType MatrixType;
    154   typedef typename MatrixType::Scalar Scalar;
    155   typedef typename MatrixType::Index Index;
    156   typedef typename MatrixType::RealScalar RealScalar;
    157   typedef _Preconditioner Preconditioner;
    158 
    159   enum {
    160     UpLo = _UpLo
    161   };
    162 
    163 public:
    164 
    165   /** Default constructor. */
    166   ConjugateGradient() : Base() {}
    167 
    168   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    169     *
    170     * This constructor is a shortcut for the default constructor followed
    171     * by a call to compute().
    172     *
    173     * \warning this class stores a reference to the matrix A as well as some
    174     * precomputed values that depend on it. Therefore, if \a A is changed
    175     * this class becomes invalid. Call compute() to update it with the new
    176     * matrix A, or modify a copy of A.
    177     */
    178   ConjugateGradient(const MatrixType& A) : Base(A) {}
    179 
    180   ~ConjugateGradient() {}
    181 
    182   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    183     * \a x0 as an initial solution.
    184     *
    185     * \sa compute()
    186     */
    187   template<typename Rhs,typename Guess>
    188   inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
    189   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
    190   {
    191     eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
    192     eigen_assert(Base::rows()==b.rows()
    193               && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
    194     return internal::solve_retval_with_guess
    195             <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
    196   }
    197 
    198   /** \internal */
    199   template<typename Rhs,typename Dest>
    200   void _solveWithGuess(const Rhs& b, Dest& x) const
    201   {
    202     m_iterations = Base::maxIterations();
    203     m_error = Base::m_tolerance;
    204 
    205     for(int j=0; j<b.cols(); ++j)
    206     {
    207       m_iterations = Base::maxIterations();
    208       m_error = Base::m_tolerance;
    209 
    210       typename Dest::ColXpr xj(x,j);
    211       internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
    212                                    Base::m_preconditioner, m_iterations, m_error);
    213     }
    214 
    215     m_isInitialized = true;
    216     m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
    217   }
    218 
    219   /** \internal */
    220   template<typename Rhs,typename Dest>
    221   void _solve(const Rhs& b, Dest& x) const
    222   {
    223     x.setOnes();
    224     _solveWithGuess(b,x);
    225   }
    226 
    227 protected:
    228 
    229 };
    230 
    231 
    232 namespace internal {
    233 
    234 template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
    235 struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
    236   : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
    237 {
    238   typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
    239   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    240 
    241   template<typename Dest> void evalTo(Dest& dst) const
    242   {
    243     dec()._solve(rhs(),dst);
    244   }
    245 };
    246 
    247 } // end namespace internal
    248 
    249 } // end namespace Eigen
    250 
    251 #endif // EIGEN_CONJUGATE_GRADIENT_H
    252