Home | History | Annotate | Download | only in IPO
      1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass deletes dead arguments from internal functions.  Dead argument
     11 // elimination removes arguments which are directly dead, as well as arguments
     12 // only passed into function calls as dead arguments of other functions.  This
     13 // pass also deletes dead return values in a similar way.
     14 //
     15 // This pass is often useful as a cleanup pass to run after aggressive
     16 // interprocedural passes, which add possibly-dead arguments or return values.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "deadargelim"
     21 #include "llvm/Transforms/IPO.h"
     22 #include "llvm/ADT/DenseMap.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/DIBuilder.h"
     27 #include "llvm/DebugInfo.h"
     28 #include "llvm/IR/CallingConv.h"
     29 #include "llvm/IR/Constant.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Instructions.h"
     32 #include "llvm/IR/IntrinsicInst.h"
     33 #include "llvm/IR/LLVMContext.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/Pass.h"
     36 #include "llvm/Support/CallSite.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include <map>
     40 #include <set>
     41 using namespace llvm;
     42 
     43 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
     44 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
     45 STATISTIC(NumArgumentsReplacedWithUndef,
     46           "Number of unread args replaced with undef");
     47 namespace {
     48   /// DAE - The dead argument elimination pass.
     49   ///
     50   class DAE : public ModulePass {
     51   public:
     52 
     53     /// Struct that represents (part of) either a return value or a function
     54     /// argument.  Used so that arguments and return values can be used
     55     /// interchangeably.
     56     struct RetOrArg {
     57       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
     58                IsArg(IsArg) {}
     59       const Function *F;
     60       unsigned Idx;
     61       bool IsArg;
     62 
     63       /// Make RetOrArg comparable, so we can put it into a map.
     64       bool operator<(const RetOrArg &O) const {
     65         if (F != O.F)
     66           return F < O.F;
     67         else if (Idx != O.Idx)
     68           return Idx < O.Idx;
     69         else
     70           return IsArg < O.IsArg;
     71       }
     72 
     73       /// Make RetOrArg comparable, so we can easily iterate the multimap.
     74       bool operator==(const RetOrArg &O) const {
     75         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
     76       }
     77 
     78       std::string getDescription() const {
     79         return std::string((IsArg ? "Argument #" : "Return value #"))
     80                + utostr(Idx) + " of function " + F->getName().str();
     81       }
     82     };
     83 
     84     /// Liveness enum - During our initial pass over the program, we determine
     85     /// that things are either alive or maybe alive. We don't mark anything
     86     /// explicitly dead (even if we know they are), since anything not alive
     87     /// with no registered uses (in Uses) will never be marked alive and will
     88     /// thus become dead in the end.
     89     enum Liveness { Live, MaybeLive };
     90 
     91     /// Convenience wrapper
     92     RetOrArg CreateRet(const Function *F, unsigned Idx) {
     93       return RetOrArg(F, Idx, false);
     94     }
     95     /// Convenience wrapper
     96     RetOrArg CreateArg(const Function *F, unsigned Idx) {
     97       return RetOrArg(F, Idx, true);
     98     }
     99 
    100     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
    101     /// This maps a return value or argument to any MaybeLive return values or
    102     /// arguments it uses. This allows the MaybeLive values to be marked live
    103     /// when any of its users is marked live.
    104     /// For example (indices are left out for clarity):
    105     ///  - Uses[ret F] = ret G
    106     ///    This means that F calls G, and F returns the value returned by G.
    107     ///  - Uses[arg F] = ret G
    108     ///    This means that some function calls G and passes its result as an
    109     ///    argument to F.
    110     ///  - Uses[ret F] = arg F
    111     ///    This means that F returns one of its own arguments.
    112     ///  - Uses[arg F] = arg G
    113     ///    This means that G calls F and passes one of its own (G's) arguments
    114     ///    directly to F.
    115     UseMap Uses;
    116 
    117     typedef std::set<RetOrArg> LiveSet;
    118     typedef std::set<const Function*> LiveFuncSet;
    119 
    120     /// This set contains all values that have been determined to be live.
    121     LiveSet LiveValues;
    122     /// This set contains all values that are cannot be changed in any way.
    123     LiveFuncSet LiveFunctions;
    124 
    125     typedef SmallVector<RetOrArg, 5> UseVector;
    126 
    127     // Map each LLVM function to corresponding metadata with debug info. If
    128     // the function is replaced with another one, we should patch the pointer
    129     // to LLVM function in metadata.
    130     // As the code generation for module is finished (and DIBuilder is
    131     // finalized) we assume that subprogram descriptors won't be changed, and
    132     // they are stored in map for short duration anyway.
    133     typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
    134     FunctionDIMap FunctionDIs;
    135 
    136   protected:
    137     // DAH uses this to specify a different ID.
    138     explicit DAE(char &ID) : ModulePass(ID) {}
    139 
    140   public:
    141     static char ID; // Pass identification, replacement for typeid
    142     DAE() : ModulePass(ID) {
    143       initializeDAEPass(*PassRegistry::getPassRegistry());
    144     }
    145 
    146     bool runOnModule(Module &M);
    147 
    148     virtual bool ShouldHackArguments() const { return false; }
    149 
    150   private:
    151     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
    152     Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
    153                        unsigned RetValNum = 0);
    154     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
    155 
    156     void CollectFunctionDIs(Module &M);
    157     void SurveyFunction(const Function &F);
    158     void MarkValue(const RetOrArg &RA, Liveness L,
    159                    const UseVector &MaybeLiveUses);
    160     void MarkLive(const RetOrArg &RA);
    161     void MarkLive(const Function &F);
    162     void PropagateLiveness(const RetOrArg &RA);
    163     bool RemoveDeadStuffFromFunction(Function *F);
    164     bool DeleteDeadVarargs(Function &Fn);
    165     bool RemoveDeadArgumentsFromCallers(Function &Fn);
    166   };
    167 }
    168 
    169 
    170 char DAE::ID = 0;
    171 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
    172 
    173 namespace {
    174   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
    175   /// deletes arguments to functions which are external.  This is only for use
    176   /// by bugpoint.
    177   struct DAH : public DAE {
    178     static char ID;
    179     DAH() : DAE(ID) {}
    180 
    181     virtual bool ShouldHackArguments() const { return true; }
    182   };
    183 }
    184 
    185 char DAH::ID = 0;
    186 INITIALIZE_PASS(DAH, "deadarghaX0r",
    187                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
    188                 false, false)
    189 
    190 /// createDeadArgEliminationPass - This pass removes arguments from functions
    191 /// which are not used by the body of the function.
    192 ///
    193 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
    194 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
    195 
    196 /// CollectFunctionDIs - Map each function in the module to its debug info
    197 /// descriptor.
    198 void DAE::CollectFunctionDIs(Module &M) {
    199   FunctionDIs.clear();
    200 
    201   for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    202        E = M.named_metadata_end(); I != E; ++I) {
    203     NamedMDNode &NMD = *I;
    204     for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
    205          MDIndex < MDNum; ++MDIndex) {
    206       MDNode *Node = NMD.getOperand(MDIndex);
    207       if (!DIDescriptor(Node).isCompileUnit())
    208         continue;
    209       DICompileUnit CU(Node);
    210       const DIArray &SPs = CU.getSubprograms();
    211       for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
    212            SPIndex < SPNum; ++SPIndex) {
    213         DISubprogram SP(SPs.getElement(SPIndex));
    214         if (!SP.Verify())
    215           continue;
    216         if (Function *F = SP.getFunction())
    217           FunctionDIs[F] = SP;
    218       }
    219     }
    220   }
    221 }
    222 
    223 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
    224 /// llvm.vastart is never called, the varargs list is dead for the function.
    225 bool DAE::DeleteDeadVarargs(Function &Fn) {
    226   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
    227   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
    228 
    229   // Ensure that the function is only directly called.
    230   if (Fn.hasAddressTaken())
    231     return false;
    232 
    233   // Okay, we know we can transform this function if safe.  Scan its body
    234   // looking for calls to llvm.vastart.
    235   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    236     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    237       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    238         if (II->getIntrinsicID() == Intrinsic::vastart)
    239           return false;
    240       }
    241     }
    242   }
    243 
    244   // If we get here, there are no calls to llvm.vastart in the function body,
    245   // remove the "..." and adjust all the calls.
    246 
    247   // Start by computing a new prototype for the function, which is the same as
    248   // the old function, but doesn't have isVarArg set.
    249   FunctionType *FTy = Fn.getFunctionType();
    250 
    251   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
    252   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
    253                                                 Params, false);
    254   unsigned NumArgs = Params.size();
    255 
    256   // Create the new function body and insert it into the module...
    257   Function *NF = Function::Create(NFTy, Fn.getLinkage());
    258   NF->copyAttributesFrom(&Fn);
    259   Fn.getParent()->getFunctionList().insert(&Fn, NF);
    260   NF->takeName(&Fn);
    261 
    262   // Loop over all of the callers of the function, transforming the call sites
    263   // to pass in a smaller number of arguments into the new function.
    264   //
    265   std::vector<Value*> Args;
    266   while (!Fn.use_empty()) {
    267     CallSite CS(Fn.use_back());
    268     Instruction *Call = CS.getInstruction();
    269 
    270     // Pass all the same arguments.
    271     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
    272 
    273     // Drop any attributes that were on the vararg arguments.
    274     AttributeSet PAL = CS.getAttributes();
    275     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
    276       SmallVector<AttributeSet, 8> AttributesVec;
    277       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
    278         AttributesVec.push_back(PAL.getSlotAttributes(i));
    279       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    280         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
    281                                                   PAL.getFnAttributes()));
    282       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
    283     }
    284 
    285     Instruction *New;
    286     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    287       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    288                                Args, "", Call);
    289       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    290       cast<InvokeInst>(New)->setAttributes(PAL);
    291     } else {
    292       New = CallInst::Create(NF, Args, "", Call);
    293       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    294       cast<CallInst>(New)->setAttributes(PAL);
    295       if (cast<CallInst>(Call)->isTailCall())
    296         cast<CallInst>(New)->setTailCall();
    297     }
    298     New->setDebugLoc(Call->getDebugLoc());
    299 
    300     Args.clear();
    301 
    302     if (!Call->use_empty())
    303       Call->replaceAllUsesWith(New);
    304 
    305     New->takeName(Call);
    306 
    307     // Finally, remove the old call from the program, reducing the use-count of
    308     // F.
    309     Call->eraseFromParent();
    310   }
    311 
    312   // Since we have now created the new function, splice the body of the old
    313   // function right into the new function, leaving the old rotting hulk of the
    314   // function empty.
    315   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
    316 
    317   // Loop over the argument list, transferring uses of the old arguments over to
    318   // the new arguments, also transferring over the names as well.  While we're at
    319   // it, remove the dead arguments from the DeadArguments list.
    320   //
    321   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
    322        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    323     // Move the name and users over to the new version.
    324     I->replaceAllUsesWith(I2);
    325     I2->takeName(I);
    326   }
    327 
    328   // Patch the pointer to LLVM function in debug info descriptor.
    329   FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
    330   if (DI != FunctionDIs.end())
    331     DI->second.replaceFunction(NF);
    332 
    333   // Finally, nuke the old function.
    334   Fn.eraseFromParent();
    335   return true;
    336 }
    337 
    338 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
    339 /// arguments that are unused, and changes the caller parameters to be undefined
    340 /// instead.
    341 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
    342 {
    343   if (Fn.isDeclaration() || Fn.mayBeOverridden())
    344     return false;
    345 
    346   // Functions with local linkage should already have been handled.
    347   if (Fn.hasLocalLinkage())
    348     return false;
    349 
    350   if (Fn.use_empty())
    351     return false;
    352 
    353   SmallVector<unsigned, 8> UnusedArgs;
    354   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
    355        I != E; ++I) {
    356     Argument *Arg = I;
    357 
    358     if (Arg->use_empty() && !Arg->hasByValAttr())
    359       UnusedArgs.push_back(Arg->getArgNo());
    360   }
    361 
    362   if (UnusedArgs.empty())
    363     return false;
    364 
    365   bool Changed = false;
    366 
    367   for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
    368        I != E; ++I) {
    369     CallSite CS(*I);
    370     if (!CS || !CS.isCallee(I))
    371       continue;
    372 
    373     // Now go through all unused args and replace them with "undef".
    374     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
    375       unsigned ArgNo = UnusedArgs[I];
    376 
    377       Value *Arg = CS.getArgument(ArgNo);
    378       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
    379       ++NumArgumentsReplacedWithUndef;
    380       Changed = true;
    381     }
    382   }
    383 
    384   return Changed;
    385 }
    386 
    387 /// Convenience function that returns the number of return values. It returns 0
    388 /// for void functions and 1 for functions not returning a struct. It returns
    389 /// the number of struct elements for functions returning a struct.
    390 static unsigned NumRetVals(const Function *F) {
    391   if (F->getReturnType()->isVoidTy())
    392     return 0;
    393   else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
    394     return STy->getNumElements();
    395   else
    396     return 1;
    397 }
    398 
    399 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
    400 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
    401 /// liveness of Use.
    402 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
    403   // We're live if our use or its Function is already marked as live.
    404   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    405     return Live;
    406 
    407   // We're maybe live otherwise, but remember that we must become live if
    408   // Use becomes live.
    409   MaybeLiveUses.push_back(Use);
    410   return MaybeLive;
    411 }
    412 
    413 
    414 /// SurveyUse - This looks at a single use of an argument or return value
    415 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
    416 /// if it causes the used value to become MaybeLive.
    417 ///
    418 /// RetValNum is the return value number to use when this use is used in a
    419 /// return instruction. This is used in the recursion, you should always leave
    420 /// it at 0.
    421 DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
    422                              UseVector &MaybeLiveUses, unsigned RetValNum) {
    423     const User *V = *U;
    424     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
    425       // The value is returned from a function. It's only live when the
    426       // function's return value is live. We use RetValNum here, for the case
    427       // that U is really a use of an insertvalue instruction that uses the
    428       // original Use.
    429       RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
    430       // We might be live, depending on the liveness of Use.
    431       return MarkIfNotLive(Use, MaybeLiveUses);
    432     }
    433     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
    434       if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
    435           && IV->hasIndices())
    436         // The use we are examining is inserted into an aggregate. Our liveness
    437         // depends on all uses of that aggregate, but if it is used as a return
    438         // value, only index at which we were inserted counts.
    439         RetValNum = *IV->idx_begin();
    440 
    441       // Note that if we are used as the aggregate operand to the insertvalue,
    442       // we don't change RetValNum, but do survey all our uses.
    443 
    444       Liveness Result = MaybeLive;
    445       for (Value::const_use_iterator I = IV->use_begin(),
    446            E = V->use_end(); I != E; ++I) {
    447         Result = SurveyUse(I, MaybeLiveUses, RetValNum);
    448         if (Result == Live)
    449           break;
    450       }
    451       return Result;
    452     }
    453 
    454     if (ImmutableCallSite CS = V) {
    455       const Function *F = CS.getCalledFunction();
    456       if (F) {
    457         // Used in a direct call.
    458 
    459         // Find the argument number. We know for sure that this use is an
    460         // argument, since if it was the function argument this would be an
    461         // indirect call and the we know can't be looking at a value of the
    462         // label type (for the invoke instruction).
    463         unsigned ArgNo = CS.getArgumentNo(U);
    464 
    465         if (ArgNo >= F->getFunctionType()->getNumParams())
    466           // The value is passed in through a vararg! Must be live.
    467           return Live;
    468 
    469         assert(CS.getArgument(ArgNo)
    470                == CS->getOperand(U.getOperandNo())
    471                && "Argument is not where we expected it");
    472 
    473         // Value passed to a normal call. It's only live when the corresponding
    474         // argument to the called function turns out live.
    475         RetOrArg Use = CreateArg(F, ArgNo);
    476         return MarkIfNotLive(Use, MaybeLiveUses);
    477       }
    478     }
    479     // Used in any other way? Value must be live.
    480     return Live;
    481 }
    482 
    483 /// SurveyUses - This looks at all the uses of the given value
    484 /// Returns the Liveness deduced from the uses of this value.
    485 ///
    486 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
    487 /// the result is Live, MaybeLiveUses might be modified but its content should
    488 /// be ignored (since it might not be complete).
    489 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
    490   // Assume it's dead (which will only hold if there are no uses at all..).
    491   Liveness Result = MaybeLive;
    492   // Check each use.
    493   for (Value::const_use_iterator I = V->use_begin(),
    494        E = V->use_end(); I != E; ++I) {
    495     Result = SurveyUse(I, MaybeLiveUses);
    496     if (Result == Live)
    497       break;
    498   }
    499   return Result;
    500 }
    501 
    502 // SurveyFunction - This performs the initial survey of the specified function,
    503 // checking out whether or not it uses any of its incoming arguments or whether
    504 // any callers use the return value.  This fills in the LiveValues set and Uses
    505 // map.
    506 //
    507 // We consider arguments of non-internal functions to be intrinsically alive as
    508 // well as arguments to functions which have their "address taken".
    509 //
    510 void DAE::SurveyFunction(const Function &F) {
    511   unsigned RetCount = NumRetVals(&F);
    512   // Assume all return values are dead
    513   typedef SmallVector<Liveness, 5> RetVals;
    514   RetVals RetValLiveness(RetCount, MaybeLive);
    515 
    516   typedef SmallVector<UseVector, 5> RetUses;
    517   // These vectors map each return value to the uses that make it MaybeLive, so
    518   // we can add those to the Uses map if the return value really turns out to be
    519   // MaybeLive. Initialized to a list of RetCount empty lists.
    520   RetUses MaybeLiveRetUses(RetCount);
    521 
    522   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    523     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
    524       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
    525           != F.getFunctionType()->getReturnType()) {
    526         // We don't support old style multiple return values.
    527         MarkLive(F);
    528         return;
    529       }
    530 
    531   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
    532     MarkLive(F);
    533     return;
    534   }
    535 
    536   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
    537   // Keep track of the number of live retvals, so we can skip checks once all
    538   // of them turn out to be live.
    539   unsigned NumLiveRetVals = 0;
    540   Type *STy = dyn_cast<StructType>(F.getReturnType());
    541   // Loop all uses of the function.
    542   for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
    543        I != E; ++I) {
    544     // If the function is PASSED IN as an argument, its address has been
    545     // taken.
    546     ImmutableCallSite CS(*I);
    547     if (!CS || !CS.isCallee(I)) {
    548       MarkLive(F);
    549       return;
    550     }
    551 
    552     // If this use is anything other than a call site, the function is alive.
    553     const Instruction *TheCall = CS.getInstruction();
    554     if (!TheCall) {   // Not a direct call site?
    555       MarkLive(F);
    556       return;
    557     }
    558 
    559     // If we end up here, we are looking at a direct call to our function.
    560 
    561     // Now, check how our return value(s) is/are used in this caller. Don't
    562     // bother checking return values if all of them are live already.
    563     if (NumLiveRetVals != RetCount) {
    564       if (STy) {
    565         // Check all uses of the return value.
    566         for (Value::const_use_iterator I = TheCall->use_begin(),
    567              E = TheCall->use_end(); I != E; ++I) {
    568           const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
    569           if (Ext && Ext->hasIndices()) {
    570             // This use uses a part of our return value, survey the uses of
    571             // that part and store the results for this index only.
    572             unsigned Idx = *Ext->idx_begin();
    573             if (RetValLiveness[Idx] != Live) {
    574               RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
    575               if (RetValLiveness[Idx] == Live)
    576                 NumLiveRetVals++;
    577             }
    578           } else {
    579             // Used by something else than extractvalue. Mark all return
    580             // values as live.
    581             for (unsigned i = 0; i != RetCount; ++i )
    582               RetValLiveness[i] = Live;
    583             NumLiveRetVals = RetCount;
    584             break;
    585           }
    586         }
    587       } else {
    588         // Single return value
    589         RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
    590         if (RetValLiveness[0] == Live)
    591           NumLiveRetVals = RetCount;
    592       }
    593     }
    594   }
    595 
    596   // Now we've inspected all callers, record the liveness of our return values.
    597   for (unsigned i = 0; i != RetCount; ++i)
    598     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
    599 
    600   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
    601 
    602   // Now, check all of our arguments.
    603   unsigned i = 0;
    604   UseVector MaybeLiveArgUses;
    605   for (Function::const_arg_iterator AI = F.arg_begin(),
    606        E = F.arg_end(); AI != E; ++AI, ++i) {
    607     // See what the effect of this use is (recording any uses that cause
    608     // MaybeLive in MaybeLiveArgUses).
    609     Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
    610     // Mark the result.
    611     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    612     // Clear the vector again for the next iteration.
    613     MaybeLiveArgUses.clear();
    614   }
    615 }
    616 
    617 /// MarkValue - This function marks the liveness of RA depending on L. If L is
    618 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
    619 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
    620 /// live later on.
    621 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
    622                     const UseVector &MaybeLiveUses) {
    623   switch (L) {
    624     case Live: MarkLive(RA); break;
    625     case MaybeLive:
    626     {
    627       // Note any uses of this value, so this return value can be
    628       // marked live whenever one of the uses becomes live.
    629       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
    630            UE = MaybeLiveUses.end(); UI != UE; ++UI)
    631         Uses.insert(std::make_pair(*UI, RA));
    632       break;
    633     }
    634   }
    635 }
    636 
    637 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
    638 /// changed in any way. Additionally,
    639 /// mark any values that are used as this function's parameters or by its return
    640 /// values (according to Uses) live as well.
    641 void DAE::MarkLive(const Function &F) {
    642   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
    643   // Mark the function as live.
    644   LiveFunctions.insert(&F);
    645   // Mark all arguments as live.
    646   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    647     PropagateLiveness(CreateArg(&F, i));
    648   // Mark all return values as live.
    649   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    650     PropagateLiveness(CreateRet(&F, i));
    651 }
    652 
    653 /// MarkLive - Mark the given return value or argument as live. Additionally,
    654 /// mark any values that are used by this value (according to Uses) live as
    655 /// well.
    656 void DAE::MarkLive(const RetOrArg &RA) {
    657   if (LiveFunctions.count(RA.F))
    658     return; // Function was already marked Live.
    659 
    660   if (!LiveValues.insert(RA).second)
    661     return; // We were already marked Live.
    662 
    663   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
    664   PropagateLiveness(RA);
    665 }
    666 
    667 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
    668 /// to any other values it uses (according to Uses).
    669 void DAE::PropagateLiveness(const RetOrArg &RA) {
    670   // We don't use upper_bound (or equal_range) here, because our recursive call
    671   // to ourselves is likely to cause the upper_bound (which is the first value
    672   // not belonging to RA) to become erased and the iterator invalidated.
    673   UseMap::iterator Begin = Uses.lower_bound(RA);
    674   UseMap::iterator E = Uses.end();
    675   UseMap::iterator I;
    676   for (I = Begin; I != E && I->first == RA; ++I)
    677     MarkLive(I->second);
    678 
    679   // Erase RA from the Uses map (from the lower bound to wherever we ended up
    680   // after the loop).
    681   Uses.erase(Begin, I);
    682 }
    683 
    684 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
    685 // that are not in LiveValues. Transform the function and all of the callees of
    686 // the function to not have these arguments and return values.
    687 //
    688 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
    689   // Don't modify fully live functions
    690   if (LiveFunctions.count(F))
    691     return false;
    692 
    693   // Start by computing a new prototype for the function, which is the same as
    694   // the old function, but has fewer arguments and a different return type.
    695   FunctionType *FTy = F->getFunctionType();
    696   std::vector<Type*> Params;
    697 
    698   // Set up to build a new list of parameter attributes.
    699   SmallVector<AttributeSet, 8> AttributesVec;
    700   const AttributeSet &PAL = F->getAttributes();
    701 
    702   // Find out the new return value.
    703   Type *RetTy = FTy->getReturnType();
    704   Type *NRetTy = NULL;
    705   unsigned RetCount = NumRetVals(F);
    706 
    707   // -1 means unused, other numbers are the new index
    708   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
    709   std::vector<Type*> RetTypes;
    710   if (RetTy->isVoidTy()) {
    711     NRetTy = RetTy;
    712   } else {
    713     StructType *STy = dyn_cast<StructType>(RetTy);
    714     if (STy)
    715       // Look at each of the original return values individually.
    716       for (unsigned i = 0; i != RetCount; ++i) {
    717         RetOrArg Ret = CreateRet(F, i);
    718         if (LiveValues.erase(Ret)) {
    719           RetTypes.push_back(STy->getElementType(i));
    720           NewRetIdxs[i] = RetTypes.size() - 1;
    721         } else {
    722           ++NumRetValsEliminated;
    723           DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
    724                 << F->getName() << "\n");
    725         }
    726       }
    727     else
    728       // We used to return a single value.
    729       if (LiveValues.erase(CreateRet(F, 0))) {
    730         RetTypes.push_back(RetTy);
    731         NewRetIdxs[0] = 0;
    732       } else {
    733         DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
    734               << "\n");
    735         ++NumRetValsEliminated;
    736       }
    737     if (RetTypes.size() > 1)
    738       // More than one return type? Return a struct with them. Also, if we used
    739       // to return a struct and didn't change the number of return values,
    740       // return a struct again. This prevents changing {something} into
    741       // something and {} into void.
    742       // Make the new struct packed if we used to return a packed struct
    743       // already.
    744       NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    745     else if (RetTypes.size() == 1)
    746       // One return type? Just a simple value then, but only if we didn't use to
    747       // return a struct with that simple value before.
    748       NRetTy = RetTypes.front();
    749     else if (RetTypes.size() == 0)
    750       // No return types? Make it void, but only if we didn't use to return {}.
    751       NRetTy = Type::getVoidTy(F->getContext());
    752   }
    753 
    754   assert(NRetTy && "No new return type found?");
    755 
    756   // The existing function return attributes.
    757   AttributeSet RAttrs = PAL.getRetAttributes();
    758 
    759   // Remove any incompatible attributes, but only if we removed all return
    760   // values. Otherwise, ensure that we don't have any conflicting attributes
    761   // here. Currently, this should not be possible, but special handling might be
    762   // required when new return value attributes are added.
    763   if (NRetTy->isVoidTy())
    764     RAttrs =
    765       AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
    766                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    767          removeAttributes(AttributeFuncs::
    768                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
    769                           AttributeSet::ReturnIndex));
    770   else
    771     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    772              hasAttributes(AttributeFuncs::
    773                            typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
    774                            AttributeSet::ReturnIndex) &&
    775            "Return attributes no longer compatible?");
    776 
    777   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    778     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
    779 
    780   // Remember which arguments are still alive.
    781   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
    782   // Construct the new parameter list from non-dead arguments. Also construct
    783   // a new set of parameter attributes to correspond. Skip the first parameter
    784   // attribute, since that belongs to the return value.
    785   unsigned i = 0;
    786   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    787        I != E; ++I, ++i) {
    788     RetOrArg Arg = CreateArg(F, i);
    789     if (LiveValues.erase(Arg)) {
    790       Params.push_back(I->getType());
    791       ArgAlive[i] = true;
    792 
    793       // Get the original parameter attributes (skipping the first one, that is
    794       // for the return value.
    795       if (PAL.hasAttributes(i + 1)) {
    796         AttrBuilder B(PAL, i + 1);
    797         AttributesVec.
    798           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
    799       }
    800     } else {
    801       ++NumArgumentsEliminated;
    802       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
    803             << ") from " << F->getName() << "\n");
    804     }
    805   }
    806 
    807   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    808     AttributesVec.push_back(AttributeSet::get(F->getContext(),
    809                                               PAL.getFnAttributes()));
    810 
    811   // Reconstruct the AttributesList based on the vector we constructed.
    812   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
    813 
    814   // Create the new function type based on the recomputed parameters.
    815   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
    816 
    817   // No change?
    818   if (NFTy == FTy)
    819     return false;
    820 
    821   // Create the new function body and insert it into the module...
    822   Function *NF = Function::Create(NFTy, F->getLinkage());
    823   NF->copyAttributesFrom(F);
    824   NF->setAttributes(NewPAL);
    825   // Insert the new function before the old function, so we won't be processing
    826   // it again.
    827   F->getParent()->getFunctionList().insert(F, NF);
    828   NF->takeName(F);
    829 
    830   // Loop over all of the callers of the function, transforming the call sites
    831   // to pass in a smaller number of arguments into the new function.
    832   //
    833   std::vector<Value*> Args;
    834   while (!F->use_empty()) {
    835     CallSite CS(F->use_back());
    836     Instruction *Call = CS.getInstruction();
    837 
    838     AttributesVec.clear();
    839     const AttributeSet &CallPAL = CS.getAttributes();
    840 
    841     // The call return attributes.
    842     AttributeSet RAttrs = CallPAL.getRetAttributes();
    843 
    844     // Adjust in case the function was changed to return void.
    845     RAttrs =
    846       AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
    847                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    848         removeAttributes(AttributeFuncs::
    849                          typeIncompatible(NF->getReturnType(),
    850                                           AttributeSet::ReturnIndex),
    851                          AttributeSet::ReturnIndex));
    852     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    853       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
    854 
    855     // Declare these outside of the loops, so we can reuse them for the second
    856     // loop, which loops the varargs.
    857     CallSite::arg_iterator I = CS.arg_begin();
    858     unsigned i = 0;
    859     // Loop over those operands, corresponding to the normal arguments to the
    860     // original function, and add those that are still alive.
    861     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
    862       if (ArgAlive[i]) {
    863         Args.push_back(*I);
    864         // Get original parameter attributes, but skip return attributes.
    865         if (CallPAL.hasAttributes(i + 1)) {
    866           AttrBuilder B(CallPAL, i + 1);
    867           AttributesVec.
    868             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    869         }
    870       }
    871 
    872     // Push any varargs arguments on the list. Don't forget their attributes.
    873     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
    874       Args.push_back(*I);
    875       if (CallPAL.hasAttributes(i + 1)) {
    876         AttrBuilder B(CallPAL, i + 1);
    877         AttributesVec.
    878           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    879       }
    880     }
    881 
    882     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
    883       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
    884                                                 CallPAL.getFnAttributes()));
    885 
    886     // Reconstruct the AttributesList based on the vector we constructed.
    887     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
    888 
    889     Instruction *New;
    890     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    891       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    892                                Args, "", Call);
    893       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    894       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
    895     } else {
    896       New = CallInst::Create(NF, Args, "", Call);
    897       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    898       cast<CallInst>(New)->setAttributes(NewCallPAL);
    899       if (cast<CallInst>(Call)->isTailCall())
    900         cast<CallInst>(New)->setTailCall();
    901     }
    902     New->setDebugLoc(Call->getDebugLoc());
    903 
    904     Args.clear();
    905 
    906     if (!Call->use_empty()) {
    907       if (New->getType() == Call->getType()) {
    908         // Return type not changed? Just replace users then.
    909         Call->replaceAllUsesWith(New);
    910         New->takeName(Call);
    911       } else if (New->getType()->isVoidTy()) {
    912         // Our return value has uses, but they will get removed later on.
    913         // Replace by null for now.
    914         if (!Call->getType()->isX86_MMXTy())
    915           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
    916       } else {
    917         assert(RetTy->isStructTy() &&
    918                "Return type changed, but not into a void. The old return type"
    919                " must have been a struct!");
    920         Instruction *InsertPt = Call;
    921         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    922           BasicBlock::iterator IP = II->getNormalDest()->begin();
    923           while (isa<PHINode>(IP)) ++IP;
    924           InsertPt = IP;
    925         }
    926 
    927         // We used to return a struct. Instead of doing smart stuff with all the
    928         // uses of this struct, we will just rebuild it using
    929         // extract/insertvalue chaining and let instcombine clean that up.
    930         //
    931         // Start out building up our return value from undef
    932         Value *RetVal = UndefValue::get(RetTy);
    933         for (unsigned i = 0; i != RetCount; ++i)
    934           if (NewRetIdxs[i] != -1) {
    935             Value *V;
    936             if (RetTypes.size() > 1)
    937               // We are still returning a struct, so extract the value from our
    938               // return value
    939               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
    940                                            InsertPt);
    941             else
    942               // We are now returning a single element, so just insert that
    943               V = New;
    944             // Insert the value at the old position
    945             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
    946           }
    947         // Now, replace all uses of the old call instruction with the return
    948         // struct we built
    949         Call->replaceAllUsesWith(RetVal);
    950         New->takeName(Call);
    951       }
    952     }
    953 
    954     // Finally, remove the old call from the program, reducing the use-count of
    955     // F.
    956     Call->eraseFromParent();
    957   }
    958 
    959   // Since we have now created the new function, splice the body of the old
    960   // function right into the new function, leaving the old rotting hulk of the
    961   // function empty.
    962   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    963 
    964   // Loop over the argument list, transferring uses of the old arguments over to
    965   // the new arguments, also transferring over the names as well.
    966   i = 0;
    967   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
    968        I2 = NF->arg_begin(); I != E; ++I, ++i)
    969     if (ArgAlive[i]) {
    970       // If this is a live argument, move the name and users over to the new
    971       // version.
    972       I->replaceAllUsesWith(I2);
    973       I2->takeName(I);
    974       ++I2;
    975     } else {
    976       // If this argument is dead, replace any uses of it with null constants
    977       // (these are guaranteed to become unused later on).
    978       if (!I->getType()->isX86_MMXTy())
    979         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
    980     }
    981 
    982   // If we change the return value of the function we must rewrite any return
    983   // instructions.  Check this now.
    984   if (F->getReturnType() != NF->getReturnType())
    985     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
    986       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    987         Value *RetVal;
    988 
    989         if (NFTy->getReturnType()->isVoidTy()) {
    990           RetVal = 0;
    991         } else {
    992           assert (RetTy->isStructTy());
    993           // The original return value was a struct, insert
    994           // extractvalue/insertvalue chains to extract only the values we need
    995           // to return and insert them into our new result.
    996           // This does generate messy code, but we'll let it to instcombine to
    997           // clean that up.
    998           Value *OldRet = RI->getOperand(0);
    999           // Start out building up our return value from undef
   1000           RetVal = UndefValue::get(NRetTy);
   1001           for (unsigned i = 0; i != RetCount; ++i)
   1002             if (NewRetIdxs[i] != -1) {
   1003               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
   1004                                                               "oldret", RI);
   1005               if (RetTypes.size() > 1) {
   1006                 // We're still returning a struct, so reinsert the value into
   1007                 // our new return value at the new index
   1008 
   1009                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
   1010                                                  "newret", RI);
   1011               } else {
   1012                 // We are now only returning a simple value, so just return the
   1013                 // extracted value.
   1014                 RetVal = EV;
   1015               }
   1016             }
   1017         }
   1018         // Replace the return instruction with one returning the new return
   1019         // value (possibly 0 if we became void).
   1020         ReturnInst::Create(F->getContext(), RetVal, RI);
   1021         BB->getInstList().erase(RI);
   1022       }
   1023 
   1024   // Patch the pointer to LLVM function in debug info descriptor.
   1025   FunctionDIMap::iterator DI = FunctionDIs.find(F);
   1026   if (DI != FunctionDIs.end())
   1027     DI->second.replaceFunction(NF);
   1028 
   1029   // Now that the old function is dead, delete it.
   1030   F->eraseFromParent();
   1031 
   1032   return true;
   1033 }
   1034 
   1035 bool DAE::runOnModule(Module &M) {
   1036   bool Changed = false;
   1037 
   1038   // Collect debug info descriptors for functions.
   1039   CollectFunctionDIs(M);
   1040 
   1041   // First pass: Do a simple check to see if any functions can have their "..."
   1042   // removed.  We can do this if they never call va_start.  This loop cannot be
   1043   // fused with the next loop, because deleting a function invalidates
   1044   // information computed while surveying other functions.
   1045   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
   1046   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1047     Function &F = *I++;
   1048     if (F.getFunctionType()->isVarArg())
   1049       Changed |= DeleteDeadVarargs(F);
   1050   }
   1051 
   1052   // Second phase:loop through the module, determining which arguments are live.
   1053   // We assume all arguments are dead unless proven otherwise (allowing us to
   1054   // determine that dead arguments passed into recursive functions are dead).
   1055   //
   1056   DEBUG(dbgs() << "DAE - Determining liveness\n");
   1057   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
   1058     SurveyFunction(*I);
   1059 
   1060   // Now, remove all dead arguments and return values from each function in
   1061   // turn.
   1062   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1063     // Increment now, because the function will probably get removed (ie.
   1064     // replaced by a new one).
   1065     Function *F = I++;
   1066     Changed |= RemoveDeadStuffFromFunction(F);
   1067   }
   1068 
   1069   // Finally, look for any unused parameters in functions with non-local
   1070   // linkage and replace the passed in parameters with undef.
   1071   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
   1072     Function& F = *I;
   1073 
   1074     Changed |= RemoveDeadArgumentsFromCallers(F);
   1075   }
   1076 
   1077   return Changed;
   1078 }
   1079