1 //===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a JITDwarfEmitter object that is used by the JIT to 11 // write dwarf tables to memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "JITDwarfEmitter.h" 16 #include "JIT.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/CodeGen/JITCodeEmitter.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineModuleInfo.h" 21 #include "llvm/ExecutionEngine/JITMemoryManager.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCSymbol.h" 26 #include "llvm/MC/MachineLocation.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {} 35 36 37 unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F, 38 JITCodeEmitter& jce, 39 unsigned char* StartFunction, 40 unsigned char* EndFunction, 41 unsigned char* &EHFramePtr) { 42 assert(MMI && "MachineModuleInfo not registered!"); 43 44 const TargetMachine& TM = F.getTarget(); 45 TD = TM.getDataLayout(); 46 stackGrowthDirection = TM.getFrameLowering()->getStackGrowthDirection(); 47 RI = TM.getRegisterInfo(); 48 MAI = TM.getMCAsmInfo(); 49 JCE = &jce; 50 51 unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction, 52 EndFunction); 53 54 unsigned char* Result = 0; 55 56 const std::vector<const Function *> Personalities = MMI->getPersonalities(); 57 EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]); 58 59 Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr, 60 StartFunction, EndFunction, ExceptionTable); 61 62 return Result; 63 } 64 65 66 void 67 JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr, 68 const std::vector<MachineMove> &Moves) const { 69 unsigned PointerSize = TD->getPointerSize(); 70 int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ? 71 PointerSize : -PointerSize; 72 MCSymbol *BaseLabel = 0; 73 74 for (unsigned i = 0, N = Moves.size(); i < N; ++i) { 75 const MachineMove &Move = Moves[i]; 76 MCSymbol *Label = Move.getLabel(); 77 78 // Throw out move if the label is invalid. 79 if (Label && (*JCE->getLabelLocations())[Label] == 0) 80 continue; 81 82 intptr_t LabelPtr = 0; 83 if (Label) LabelPtr = JCE->getLabelAddress(Label); 84 85 const MachineLocation &Dst = Move.getDestination(); 86 const MachineLocation &Src = Move.getSource(); 87 88 // Advance row if new location. 89 if (BaseLabelPtr && Label && BaseLabel != Label) { 90 JCE->emitByte(dwarf::DW_CFA_advance_loc4); 91 JCE->emitInt32(LabelPtr - BaseLabelPtr); 92 93 BaseLabel = Label; 94 BaseLabelPtr = LabelPtr; 95 } 96 97 // If advancing cfa. 98 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) { 99 if (!Src.isReg()) { 100 if (Src.getReg() == MachineLocation::VirtualFP) { 101 JCE->emitByte(dwarf::DW_CFA_def_cfa_offset); 102 } else { 103 JCE->emitByte(dwarf::DW_CFA_def_cfa); 104 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true)); 105 } 106 107 JCE->emitULEB128Bytes(-Src.getOffset()); 108 } else { 109 llvm_unreachable("Machine move not supported yet."); 110 } 111 } else if (Src.isReg() && 112 Src.getReg() == MachineLocation::VirtualFP) { 113 if (Dst.isReg()) { 114 JCE->emitByte(dwarf::DW_CFA_def_cfa_register); 115 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true)); 116 } else { 117 llvm_unreachable("Machine move not supported yet."); 118 } 119 } else { 120 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true); 121 int Offset = Dst.getOffset() / stackGrowth; 122 123 if (Offset < 0) { 124 JCE->emitByte(dwarf::DW_CFA_offset_extended_sf); 125 JCE->emitULEB128Bytes(Reg); 126 JCE->emitSLEB128Bytes(Offset); 127 } else if (Reg < 64) { 128 JCE->emitByte(dwarf::DW_CFA_offset + Reg); 129 JCE->emitULEB128Bytes(Offset); 130 } else { 131 JCE->emitByte(dwarf::DW_CFA_offset_extended); 132 JCE->emitULEB128Bytes(Reg); 133 JCE->emitULEB128Bytes(Offset); 134 } 135 } 136 } 137 } 138 139 /// SharedTypeIds - How many leading type ids two landing pads have in common. 140 static unsigned SharedTypeIds(const LandingPadInfo *L, 141 const LandingPadInfo *R) { 142 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 143 unsigned LSize = LIds.size(), RSize = RIds.size(); 144 unsigned MinSize = LSize < RSize ? LSize : RSize; 145 unsigned Count = 0; 146 147 for (; Count != MinSize; ++Count) 148 if (LIds[Count] != RIds[Count]) 149 return Count; 150 151 return Count; 152 } 153 154 155 /// PadLT - Order landing pads lexicographically by type id. 156 static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { 157 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 158 unsigned LSize = LIds.size(), RSize = RIds.size(); 159 unsigned MinSize = LSize < RSize ? LSize : RSize; 160 161 for (unsigned i = 0; i != MinSize; ++i) 162 if (LIds[i] != RIds[i]) 163 return LIds[i] < RIds[i]; 164 165 return LSize < RSize; 166 } 167 168 namespace { 169 170 /// ActionEntry - Structure describing an entry in the actions table. 171 struct ActionEntry { 172 int ValueForTypeID; // The value to write - may not be equal to the type id. 173 int NextAction; 174 struct ActionEntry *Previous; 175 }; 176 177 /// PadRange - Structure holding a try-range and the associated landing pad. 178 struct PadRange { 179 // The index of the landing pad. 180 unsigned PadIndex; 181 // The index of the begin and end labels in the landing pad's label lists. 182 unsigned RangeIndex; 183 }; 184 185 typedef DenseMap<MCSymbol*, PadRange> RangeMapType; 186 187 /// CallSiteEntry - Structure describing an entry in the call-site table. 188 struct CallSiteEntry { 189 MCSymbol *BeginLabel; // zero indicates the start of the function. 190 MCSymbol *EndLabel; // zero indicates the end of the function. 191 MCSymbol *PadLabel; // zero indicates that there is no landing pad. 192 unsigned Action; 193 }; 194 195 } 196 197 unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF, 198 unsigned char* StartFunction, 199 unsigned char* EndFunction) const { 200 assert(MMI && "MachineModuleInfo not registered!"); 201 202 // Map all labels and get rid of any dead landing pads. 203 MMI->TidyLandingPads(JCE->getLabelLocations()); 204 205 const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); 206 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 207 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); 208 if (PadInfos.empty()) return 0; 209 210 // Sort the landing pads in order of their type ids. This is used to fold 211 // duplicate actions. 212 SmallVector<const LandingPadInfo *, 64> LandingPads; 213 LandingPads.reserve(PadInfos.size()); 214 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 215 LandingPads.push_back(&PadInfos[i]); 216 std::sort(LandingPads.begin(), LandingPads.end(), PadLT); 217 218 // Negative type ids index into FilterIds, positive type ids index into 219 // TypeInfos. The value written for a positive type id is just the type 220 // id itself. For a negative type id, however, the value written is the 221 // (negative) byte offset of the corresponding FilterIds entry. The byte 222 // offset is usually equal to the type id, because the FilterIds entries 223 // are written using a variable width encoding which outputs one byte per 224 // entry as long as the value written is not too large, but can differ. 225 // This kind of complication does not occur for positive type ids because 226 // type infos are output using a fixed width encoding. 227 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. 228 SmallVector<int, 16> FilterOffsets; 229 FilterOffsets.reserve(FilterIds.size()); 230 int Offset = -1; 231 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(), 232 E = FilterIds.end(); I != E; ++I) { 233 FilterOffsets.push_back(Offset); 234 Offset -= MCAsmInfo::getULEB128Size(*I); 235 } 236 237 // Compute the actions table and gather the first action index for each 238 // landing pad site. 239 SmallVector<ActionEntry, 32> Actions; 240 SmallVector<unsigned, 64> FirstActions; 241 FirstActions.reserve(LandingPads.size()); 242 243 int FirstAction = 0; 244 unsigned SizeActions = 0; 245 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 246 const LandingPadInfo *LP = LandingPads[i]; 247 const std::vector<int> &TypeIds = LP->TypeIds; 248 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; 249 unsigned SizeSiteActions = 0; 250 251 if (NumShared < TypeIds.size()) { 252 unsigned SizeAction = 0; 253 ActionEntry *PrevAction = 0; 254 255 if (NumShared) { 256 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); 257 assert(Actions.size()); 258 PrevAction = &Actions.back(); 259 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + 260 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); 261 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 262 SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); 263 SizeAction += -PrevAction->NextAction; 264 PrevAction = PrevAction->Previous; 265 } 266 } 267 268 // Compute the actions. 269 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { 270 int TypeID = TypeIds[I]; 271 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 272 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; 273 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); 274 275 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; 276 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); 277 SizeSiteActions += SizeAction; 278 279 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; 280 Actions.push_back(Action); 281 282 PrevAction = &Actions.back(); 283 } 284 285 // Record the first action of the landing pad site. 286 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; 287 } // else identical - re-use previous FirstAction 288 289 FirstActions.push_back(FirstAction); 290 291 // Compute this sites contribution to size. 292 SizeActions += SizeSiteActions; 293 } 294 295 // Compute the call-site table. Entries must be ordered by address. 296 SmallVector<CallSiteEntry, 64> CallSites; 297 298 RangeMapType PadMap; 299 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 300 const LandingPadInfo *LandingPad = LandingPads[i]; 301 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 302 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 303 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 304 PadRange P = { i, j }; 305 PadMap[BeginLabel] = P; 306 } 307 } 308 309 bool MayThrow = false; 310 MCSymbol *LastLabel = 0; 311 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 312 I != E; ++I) { 313 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); 314 MI != E; ++MI) { 315 if (!MI->isLabel()) { 316 MayThrow |= MI->isCall(); 317 continue; 318 } 319 320 MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); 321 assert(BeginLabel && "Invalid label!"); 322 323 if (BeginLabel == LastLabel) 324 MayThrow = false; 325 326 RangeMapType::iterator L = PadMap.find(BeginLabel); 327 328 if (L == PadMap.end()) 329 continue; 330 331 PadRange P = L->second; 332 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 333 334 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 335 "Inconsistent landing pad map!"); 336 337 // If some instruction between the previous try-range and this one may 338 // throw, create a call-site entry with no landing pad for the region 339 // between the try-ranges. 340 if (MayThrow) { 341 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; 342 CallSites.push_back(Site); 343 } 344 345 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 346 CallSiteEntry Site = {BeginLabel, LastLabel, 347 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; 348 349 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && 350 "Invalid landing pad!"); 351 352 // Try to merge with the previous call-site. 353 if (CallSites.size()) { 354 CallSiteEntry &Prev = CallSites.back(); 355 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { 356 // Extend the range of the previous entry. 357 Prev.EndLabel = Site.EndLabel; 358 continue; 359 } 360 } 361 362 // Otherwise, create a new call-site. 363 CallSites.push_back(Site); 364 } 365 } 366 // If some instruction between the previous try-range and the end of the 367 // function may throw, create a call-site entry with no landing pad for the 368 // region following the try-range. 369 if (MayThrow) { 370 CallSiteEntry Site = {LastLabel, 0, 0, 0}; 371 CallSites.push_back(Site); 372 } 373 374 // Final tallies. 375 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. 376 sizeof(int32_t) + // Site length. 377 sizeof(int32_t)); // Landing pad. 378 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) 379 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); 380 381 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); 382 383 unsigned TypeOffset = sizeof(int8_t) + // Call site format 384 // Call-site table length 385 MCAsmInfo::getULEB128Size(SizeSites) + 386 SizeSites + SizeActions + SizeTypes; 387 388 // Begin the exception table. 389 JCE->emitAlignmentWithFill(4, 0); 390 // Asm->EOL("Padding"); 391 392 unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue(); 393 394 // Emit the header. 395 JCE->emitByte(dwarf::DW_EH_PE_omit); 396 // Asm->EOL("LPStart format (DW_EH_PE_omit)"); 397 JCE->emitByte(dwarf::DW_EH_PE_absptr); 398 // Asm->EOL("TType format (DW_EH_PE_absptr)"); 399 JCE->emitULEB128Bytes(TypeOffset); 400 // Asm->EOL("TType base offset"); 401 JCE->emitByte(dwarf::DW_EH_PE_udata4); 402 // Asm->EOL("Call site format (DW_EH_PE_udata4)"); 403 JCE->emitULEB128Bytes(SizeSites); 404 // Asm->EOL("Call-site table length"); 405 406 // Emit the landing pad site information. 407 for (unsigned i = 0; i < CallSites.size(); ++i) { 408 CallSiteEntry &S = CallSites[i]; 409 intptr_t BeginLabelPtr = 0; 410 intptr_t EndLabelPtr = 0; 411 412 if (!S.BeginLabel) { 413 BeginLabelPtr = (intptr_t)StartFunction; 414 JCE->emitInt32(0); 415 } else { 416 BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel); 417 JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction); 418 } 419 420 // Asm->EOL("Region start"); 421 422 if (!S.EndLabel) 423 EndLabelPtr = (intptr_t)EndFunction; 424 else 425 EndLabelPtr = JCE->getLabelAddress(S.EndLabel); 426 427 JCE->emitInt32(EndLabelPtr - BeginLabelPtr); 428 //Asm->EOL("Region length"); 429 430 if (!S.PadLabel) { 431 JCE->emitInt32(0); 432 } else { 433 unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel); 434 JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction); 435 } 436 // Asm->EOL("Landing pad"); 437 438 JCE->emitULEB128Bytes(S.Action); 439 // Asm->EOL("Action"); 440 } 441 442 // Emit the actions. 443 for (unsigned I = 0, N = Actions.size(); I != N; ++I) { 444 ActionEntry &Action = Actions[I]; 445 446 JCE->emitSLEB128Bytes(Action.ValueForTypeID); 447 //Asm->EOL("TypeInfo index"); 448 JCE->emitSLEB128Bytes(Action.NextAction); 449 //Asm->EOL("Next action"); 450 } 451 452 // Emit the type ids. 453 for (unsigned M = TypeInfos.size(); M; --M) { 454 const GlobalVariable *GV = TypeInfos[M - 1]; 455 456 if (GV) { 457 if (TD->getPointerSize() == sizeof(int32_t)) 458 JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV)); 459 else 460 JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV)); 461 } else { 462 if (TD->getPointerSize() == sizeof(int32_t)) 463 JCE->emitInt32(0); 464 else 465 JCE->emitInt64(0); 466 } 467 // Asm->EOL("TypeInfo"); 468 } 469 470 // Emit the filter typeids. 471 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { 472 unsigned TypeID = FilterIds[j]; 473 JCE->emitULEB128Bytes(TypeID); 474 //Asm->EOL("Filter TypeInfo index"); 475 } 476 477 JCE->emitAlignmentWithFill(4, 0); 478 479 return DwarfExceptionTable; 480 } 481 482 unsigned char* 483 JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const { 484 unsigned PointerSize = TD->getPointerSize(); 485 int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ? 486 PointerSize : -PointerSize; 487 488 unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue(); 489 // EH Common Frame header 490 JCE->allocateSpace(4, 0); 491 unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue(); 492 JCE->emitInt32((int)0); 493 JCE->emitByte(dwarf::DW_CIE_VERSION); 494 JCE->emitString(Personality ? "zPLR" : "zR"); 495 JCE->emitULEB128Bytes(1); 496 JCE->emitSLEB128Bytes(stackGrowth); 497 JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true)); 498 499 if (Personality) { 500 // Augmentation Size: 3 small ULEBs of one byte each, and the personality 501 // function which size is PointerSize. 502 JCE->emitULEB128Bytes(3 + PointerSize); 503 504 // We set the encoding of the personality as direct encoding because we use 505 // the function pointer. The encoding is not relative because the current 506 // PC value may be bigger than the personality function pointer. 507 if (PointerSize == 4) { 508 JCE->emitByte(dwarf::DW_EH_PE_sdata4); 509 JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality))); 510 } else { 511 JCE->emitByte(dwarf::DW_EH_PE_sdata8); 512 JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality))); 513 } 514 515 // LSDA encoding: This must match the encoding used in EmitEHFrame () 516 if (PointerSize == 4) 517 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); 518 else 519 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8); 520 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); 521 } else { 522 JCE->emitULEB128Bytes(1); 523 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); 524 } 525 526 EmitFrameMoves(0, MAI->getInitialFrameState()); 527 528 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop); 529 530 JCE->emitInt32At((uintptr_t*)StartCommonPtr, 531 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() - 532 FrameCommonBeginPtr)); 533 534 return StartCommonPtr; 535 } 536 537 538 unsigned char* 539 JITDwarfEmitter::EmitEHFrame(const Function* Personality, 540 unsigned char* StartCommonPtr, 541 unsigned char* StartFunction, 542 unsigned char* EndFunction, 543 unsigned char* ExceptionTable) const { 544 unsigned PointerSize = TD->getPointerSize(); 545 546 // EH frame header. 547 unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue(); 548 JCE->allocateSpace(4, 0); 549 unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue(); 550 // FDE CIE Offset 551 JCE->emitInt32(FrameBeginPtr - StartCommonPtr); 552 JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue()); 553 JCE->emitInt32(EndFunction - StartFunction); 554 555 // If there is a personality and landing pads then point to the language 556 // specific data area in the exception table. 557 if (Personality) { 558 JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8); 559 560 if (PointerSize == 4) { 561 if (!MMI->getLandingPads().empty()) 562 JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue()); 563 else 564 JCE->emitInt32((int)0); 565 } else { 566 if (!MMI->getLandingPads().empty()) 567 JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue()); 568 else 569 JCE->emitInt64((int)0); 570 } 571 } else { 572 JCE->emitULEB128Bytes(0); 573 } 574 575 // Indicate locations of function specific callee saved registers in 576 // frame. 577 EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves()); 578 579 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop); 580 581 // Indicate the size of the table 582 JCE->emitInt32At((uintptr_t*)StartEHPtr, 583 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() - 584 StartEHPtr)); 585 586 // Double zeroes for the unwind runtime 587 if (PointerSize == 8) { 588 JCE->emitInt64(0); 589 JCE->emitInt64(0); 590 } else { 591 JCE->emitInt32(0); 592 JCE->emitInt32(0); 593 } 594 595 return StartEHPtr; 596 } 597