1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.android.inputmethod.latin.makedict; 18 19 import com.android.inputmethod.annotations.UsedForTesting; 20 import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader; 21 import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions; 22 import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup; 23 import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions; 24 import com.android.inputmethod.latin.makedict.FusionDictionary.Node; 25 import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString; 26 27 import java.io.ByteArrayOutputStream; 28 import java.io.File; 29 import java.io.FileInputStream; 30 import java.io.FileNotFoundException; 31 import java.io.IOException; 32 import java.io.OutputStream; 33 import java.nio.ByteBuffer; 34 import java.nio.channels.FileChannel; 35 import java.util.ArrayList; 36 import java.util.Arrays; 37 import java.util.HashMap; 38 import java.util.Iterator; 39 import java.util.Map; 40 import java.util.TreeMap; 41 42 /** 43 * Reads and writes XML files for a FusionDictionary. 44 * 45 * All the methods in this class are static. 46 */ 47 public final class BinaryDictInputOutput { 48 49 private static final boolean DBG = MakedictLog.DBG; 50 51 // Arbitrary limit to how much passes we consider address size compression should 52 // terminate in. At the time of this writing, our largest dictionary completes 53 // compression in five passes. 54 // If the number of passes exceeds this number, makedict bails with an exception on 55 // suspicion that a bug might be causing an infinite loop. 56 private static final int MAX_PASSES = 24; 57 private static final int MAX_JUMPS = 12; 58 59 @UsedForTesting 60 public interface FusionDictionaryBufferInterface { 61 public int readUnsignedByte(); 62 public int readUnsignedShort(); 63 public int readUnsignedInt24(); 64 public int readInt(); 65 public int position(); 66 public void position(int newPosition); 67 public void put(final byte b); 68 public int limit(); 69 public int capacity(); 70 } 71 72 public static final class ByteBufferWrapper implements FusionDictionaryBufferInterface { 73 private ByteBuffer mBuffer; 74 75 public ByteBufferWrapper(final ByteBuffer buffer) { 76 mBuffer = buffer; 77 } 78 79 @Override 80 public int readUnsignedByte() { 81 return mBuffer.get() & 0xFF; 82 } 83 84 @Override 85 public int readUnsignedShort() { 86 return mBuffer.getShort() & 0xFFFF; 87 } 88 89 @Override 90 public int readUnsignedInt24() { 91 final int retval = readUnsignedByte(); 92 return (retval << 16) + readUnsignedShort(); 93 } 94 95 @Override 96 public int readInt() { 97 return mBuffer.getInt(); 98 } 99 100 @Override 101 public int position() { 102 return mBuffer.position(); 103 } 104 105 @Override 106 public void position(int newPos) { 107 mBuffer.position(newPos); 108 } 109 110 @Override 111 public void put(final byte b) { 112 mBuffer.put(b); 113 } 114 115 @Override 116 public int limit() { 117 return mBuffer.limit(); 118 } 119 120 @Override 121 public int capacity() { 122 return mBuffer.capacity(); 123 } 124 } 125 126 /** 127 * A class grouping utility function for our specific character encoding. 128 */ 129 static final class CharEncoding { 130 private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20; 131 private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF; 132 133 /** 134 * Helper method to find out whether this code fits on one byte 135 */ 136 private static boolean fitsOnOneByte(final int character) { 137 return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE 138 && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE; 139 } 140 141 /** 142 * Compute the size of a character given its character code. 143 * 144 * Char format is: 145 * 1 byte = bbbbbbbb match 146 * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte 147 * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because 148 * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with 149 * 00011111 would be outside unicode. 150 * else: iso-latin-1 code 151 * This allows for the whole unicode range to be encoded, including chars outside of 152 * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control 153 * characters which should never happen anyway (and still work, but take 3 bytes). 154 * 155 * @param character the character code. 156 * @return the size in binary encoded-form, either 1 or 3 bytes. 157 */ 158 static int getCharSize(final int character) { 159 // See char encoding in FusionDictionary.java 160 if (fitsOnOneByte(character)) return 1; 161 if (FormatSpec.INVALID_CHARACTER == character) return 1; 162 return 3; 163 } 164 165 /** 166 * Compute the byte size of a character array. 167 */ 168 private static int getCharArraySize(final int[] chars) { 169 int size = 0; 170 for (int character : chars) size += getCharSize(character); 171 return size; 172 } 173 174 /** 175 * Writes a char array to a byte buffer. 176 * 177 * @param codePoints the code point array to write. 178 * @param buffer the byte buffer to write to. 179 * @param index the index in buffer to write the character array to. 180 * @return the index after the last character. 181 */ 182 private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) { 183 for (int codePoint : codePoints) { 184 if (1 == getCharSize(codePoint)) { 185 buffer[index++] = (byte)codePoint; 186 } else { 187 buffer[index++] = (byte)(0xFF & (codePoint >> 16)); 188 buffer[index++] = (byte)(0xFF & (codePoint >> 8)); 189 buffer[index++] = (byte)(0xFF & codePoint); 190 } 191 } 192 return index; 193 } 194 195 /** 196 * Writes a string with our character format to a byte buffer. 197 * 198 * This will also write the terminator byte. 199 * 200 * @param buffer the byte buffer to write to. 201 * @param origin the offset to write from. 202 * @param word the string to write. 203 * @return the size written, in bytes. 204 */ 205 private static int writeString(final byte[] buffer, final int origin, 206 final String word) { 207 final int length = word.length(); 208 int index = origin; 209 for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { 210 final int codePoint = word.codePointAt(i); 211 if (1 == getCharSize(codePoint)) { 212 buffer[index++] = (byte)codePoint; 213 } else { 214 buffer[index++] = (byte)(0xFF & (codePoint >> 16)); 215 buffer[index++] = (byte)(0xFF & (codePoint >> 8)); 216 buffer[index++] = (byte)(0xFF & codePoint); 217 } 218 } 219 buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR; 220 return index - origin; 221 } 222 223 /** 224 * Writes a string with our character format to a ByteArrayOutputStream. 225 * 226 * This will also write the terminator byte. 227 * 228 * @param buffer the ByteArrayOutputStream to write to. 229 * @param word the string to write. 230 */ 231 private static void writeString(final ByteArrayOutputStream buffer, final String word) { 232 final int length = word.length(); 233 for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { 234 final int codePoint = word.codePointAt(i); 235 if (1 == getCharSize(codePoint)) { 236 buffer.write((byte) codePoint); 237 } else { 238 buffer.write((byte) (0xFF & (codePoint >> 16))); 239 buffer.write((byte) (0xFF & (codePoint >> 8))); 240 buffer.write((byte) (0xFF & codePoint)); 241 } 242 } 243 buffer.write(FormatSpec.GROUP_CHARACTERS_TERMINATOR); 244 } 245 246 /** 247 * Reads a string from a buffer. This is the converse of the above method. 248 */ 249 private static String readString(final FusionDictionaryBufferInterface buffer) { 250 final StringBuilder s = new StringBuilder(); 251 int character = readChar(buffer); 252 while (character != FormatSpec.INVALID_CHARACTER) { 253 s.appendCodePoint(character); 254 character = readChar(buffer); 255 } 256 return s.toString(); 257 } 258 259 /** 260 * Reads a character from the buffer. 261 * 262 * This follows the character format documented earlier in this source file. 263 * 264 * @param buffer the buffer, positioned over an encoded character. 265 * @return the character code. 266 */ 267 static int readChar(final FusionDictionaryBufferInterface buffer) { 268 int character = buffer.readUnsignedByte(); 269 if (!fitsOnOneByte(character)) { 270 if (FormatSpec.GROUP_CHARACTERS_TERMINATOR == character) { 271 return FormatSpec.INVALID_CHARACTER; 272 } 273 character <<= 16; 274 character += buffer.readUnsignedShort(); 275 } 276 return character; 277 } 278 } 279 280 /** 281 * Compute the binary size of the character array. 282 * 283 * If only one character, this is the size of this character. If many, it's the sum of their 284 * sizes + 1 byte for the terminator. 285 * 286 * @param characters the character array 287 * @return the size of the char array, including the terminator if any 288 */ 289 static int getGroupCharactersSize(final int[] characters) { 290 int size = CharEncoding.getCharArraySize(characters); 291 if (characters.length > 1) size += FormatSpec.GROUP_TERMINATOR_SIZE; 292 return size; 293 } 294 295 /** 296 * Compute the binary size of the character array in a group 297 * 298 * If only one character, this is the size of this character. If many, it's the sum of their 299 * sizes + 1 byte for the terminator. 300 * 301 * @param group the group 302 * @return the size of the char array, including the terminator if any 303 */ 304 private static int getGroupCharactersSize(final CharGroup group) { 305 return getGroupCharactersSize(group.mChars); 306 } 307 308 /** 309 * Compute the binary size of the group count 310 * @param count the group count 311 * @return the size of the group count, either 1 or 2 bytes. 312 */ 313 public static int getGroupCountSize(final int count) { 314 if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) { 315 return 1; 316 } else if (FormatSpec.MAX_CHARGROUPS_IN_A_NODE >= count) { 317 return 2; 318 } else { 319 throw new RuntimeException("Can't have more than " 320 + FormatSpec.MAX_CHARGROUPS_IN_A_NODE + " groups in a node (found " + count 321 + ")"); 322 } 323 } 324 325 /** 326 * Compute the binary size of the group count for a node 327 * @param node the node 328 * @return the size of the group count, either 1 or 2 bytes. 329 */ 330 private static int getGroupCountSize(final Node node) { 331 return getGroupCountSize(node.mData.size()); 332 } 333 334 /** 335 * Compute the size of a shortcut in bytes. 336 */ 337 private static int getShortcutSize(final WeightedString shortcut) { 338 int size = FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE; 339 final String word = shortcut.mWord; 340 final int length = word.length(); 341 for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { 342 final int codePoint = word.codePointAt(i); 343 size += CharEncoding.getCharSize(codePoint); 344 } 345 size += FormatSpec.GROUP_TERMINATOR_SIZE; 346 return size; 347 } 348 349 /** 350 * Compute the size of a shortcut list in bytes. 351 * 352 * This is known in advance and does not change according to position in the file 353 * like address lists do. 354 */ 355 static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) { 356 if (null == shortcutList) return 0; 357 int size = FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE; 358 for (final WeightedString shortcut : shortcutList) { 359 size += getShortcutSize(shortcut); 360 } 361 return size; 362 } 363 364 /** 365 * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything. 366 * 367 * @param group the CharGroup to compute the size of. 368 * @param options file format options. 369 * @return the maximum size of the group. 370 */ 371 private static int getCharGroupMaximumSize(final CharGroup group, final FormatOptions options) { 372 int size = getGroupHeaderSize(group, options); 373 // If terminal, one byte for the frequency 374 if (group.isTerminal()) size += FormatSpec.GROUP_FREQUENCY_SIZE; 375 size += FormatSpec.GROUP_MAX_ADDRESS_SIZE; // For children address 376 size += getShortcutListSize(group.mShortcutTargets); 377 if (null != group.mBigrams) { 378 size += (FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE 379 + FormatSpec.GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE) 380 * group.mBigrams.size(); 381 } 382 return size; 383 } 384 385 /** 386 * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches 387 * it in the 'actualSize' member of the node. 388 * 389 * @param node the node to compute the maximum size of. 390 * @param options file format options. 391 */ 392 private static void setNodeMaximumSize(final Node node, final FormatOptions options) { 393 int size = getGroupCountSize(node); 394 for (CharGroup g : node.mData) { 395 final int groupSize = getCharGroupMaximumSize(g, options); 396 g.mCachedSize = groupSize; 397 size += groupSize; 398 } 399 if (options.mSupportsDynamicUpdate) { 400 size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE; 401 } 402 node.mCachedSize = size; 403 } 404 405 /** 406 * Helper method to hide the actual value of the no children address. 407 */ 408 public static boolean hasChildrenAddress(final int address) { 409 return FormatSpec.NO_CHILDREN_ADDRESS != address; 410 } 411 412 /** 413 * Helper method to check whether the group is moved. 414 */ 415 public static boolean isMovedGroup(final int flags, final FormatOptions options) { 416 return options.mSupportsDynamicUpdate 417 && ((flags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) == FormatSpec.FLAG_IS_MOVED); 418 } 419 420 /** 421 * Helper method to check whether the group is deleted. 422 */ 423 public static boolean isDeletedGroup(final int flags, final FormatOptions formatOptions) { 424 return formatOptions.mSupportsDynamicUpdate 425 && ((flags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) == FormatSpec.FLAG_IS_DELETED); 426 } 427 428 /** 429 * Helper method to check whether the dictionary can be updated dynamically. 430 */ 431 public static boolean supportsDynamicUpdate(final FormatOptions options) { 432 return options.mVersion >= FormatSpec.FIRST_VERSION_WITH_DYNAMIC_UPDATE 433 && options.mSupportsDynamicUpdate; 434 } 435 436 /** 437 * Compute the size of the header (flag + [parent address] + characters size) of a CharGroup. 438 * 439 * @param group the group of which to compute the size of the header 440 * @param options file format options. 441 */ 442 private static int getGroupHeaderSize(final CharGroup group, final FormatOptions options) { 443 if (supportsDynamicUpdate(options)) { 444 return FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE 445 + getGroupCharactersSize(group); 446 } else { 447 return FormatSpec.GROUP_FLAGS_SIZE + getGroupCharactersSize(group); 448 } 449 } 450 451 private static final int UINT8_MAX = 0xFF; 452 private static final int UINT16_MAX = 0xFFFF; 453 private static final int UINT24_MAX = 0xFFFFFF; 454 455 /** 456 * Compute the size, in bytes, that an address will occupy. 457 * 458 * This can be used either for children addresses (which are always positive) or for 459 * attribute, which may be positive or negative but 460 * store their sign bit separately. 461 * 462 * @param address the address 463 * @return the byte size. 464 */ 465 static int getByteSize(final int address) { 466 assert(address <= UINT24_MAX); 467 if (!hasChildrenAddress(address)) { 468 return 0; 469 } else if (Math.abs(address) <= UINT8_MAX) { 470 return 1; 471 } else if (Math.abs(address) <= UINT16_MAX) { 472 return 2; 473 } else { 474 return 3; 475 } 476 } 477 478 private static final int SINT24_MAX = 0x7FFFFF; 479 private static final int MSB8 = 0x80; 480 private static final int MSB24 = 0x800000; 481 482 // End utility methods. 483 484 // This method is responsible for finding a nice ordering of the nodes that favors run-time 485 // cache performance and dictionary size. 486 /* package for tests */ static ArrayList<Node> flattenTree(final Node root) { 487 final int treeSize = FusionDictionary.countCharGroups(root); 488 MakedictLog.i("Counted nodes : " + treeSize); 489 final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize); 490 return flattenTreeInner(flatTree, root); 491 } 492 493 private static ArrayList<Node> flattenTreeInner(final ArrayList<Node> list, final Node node) { 494 // Removing the node is necessary if the tails are merged, because we would then 495 // add the same node several times when we only want it once. A number of places in 496 // the code also depends on any node being only once in the list. 497 // Merging tails can only be done if there are no attributes. Searching for attributes 498 // in LatinIME code depends on a total breadth-first ordering, which merging tails 499 // breaks. If there are no attributes, it should be fine (and reduce the file size) 500 // to merge tails, and removing the node from the list would be necessary. However, 501 // we don't merge tails because breaking the breadth-first ordering would result in 502 // extreme overhead at bigram lookup time (it would make the search function O(n) instead 503 // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty 504 // high). 505 // If no nodes are ever merged, we can't have the same node twice in the list, hence 506 // searching for duplicates in unnecessary. It is also very performance consuming, 507 // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making 508 // this simple list.remove operation O(n*n) overall. On Android this overhead is very 509 // high. 510 // For future reference, the code to remove duplicate is a simple : list.remove(node); 511 list.add(node); 512 final ArrayList<CharGroup> branches = node.mData; 513 final int nodeSize = branches.size(); 514 for (CharGroup group : branches) { 515 if (null != group.mChildren) flattenTreeInner(list, group.mChildren); 516 } 517 return list; 518 } 519 520 /** 521 * Finds the absolute address of a word in the dictionary. 522 * 523 * @param dict the dictionary in which to search. 524 * @param word the word we are searching for. 525 * @return the word address. If it is not found, an exception is thrown. 526 */ 527 private static int findAddressOfWord(final FusionDictionary dict, final String word) { 528 return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress; 529 } 530 531 /** 532 * Computes the actual node size, based on the cached addresses of the children nodes. 533 * 534 * Each node stores its tentative address. During dictionary address computing, these 535 * are not final, but they can be used to compute the node size (the node size depends 536 * on the address of the children because the number of bytes necessary to store an 537 * address depends on its numeric value. The return value indicates whether the node 538 * contents (as in, any of the addresses stored in the cache fields) have changed with 539 * respect to their previous value. 540 * 541 * @param node the node to compute the size of. 542 * @param dict the dictionary in which the word/attributes are to be found. 543 * @param formatOptions file format options. 544 * @return false if none of the cached addresses inside the node changed, true otherwise. 545 */ 546 private static boolean computeActualNodeSize(final Node node, final FusionDictionary dict, 547 final FormatOptions formatOptions) { 548 boolean changed = false; 549 int size = getGroupCountSize(node); 550 for (CharGroup group : node.mData) { 551 if (group.mCachedAddress != node.mCachedAddress + size) { 552 changed = true; 553 group.mCachedAddress = node.mCachedAddress + size; 554 } 555 int groupSize = getGroupHeaderSize(group, formatOptions); 556 if (group.isTerminal()) groupSize += FormatSpec.GROUP_FREQUENCY_SIZE; 557 if (null == group.mChildren && formatOptions.mSupportsDynamicUpdate) { 558 groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE; 559 } else if (null != group.mChildren) { 560 final int offsetBasePoint = groupSize + node.mCachedAddress + size; 561 final int offset = group.mChildren.mCachedAddress - offsetBasePoint; 562 // assign my address to children's parent address 563 group.mChildren.mCachedParentAddress = group.mCachedAddress 564 - group.mChildren.mCachedAddress; 565 if (formatOptions.mSupportsDynamicUpdate) { 566 groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE; 567 } else { 568 groupSize += getByteSize(offset); 569 } 570 } 571 groupSize += getShortcutListSize(group.mShortcutTargets); 572 if (null != group.mBigrams) { 573 for (WeightedString bigram : group.mBigrams) { 574 final int offsetBasePoint = groupSize + node.mCachedAddress + size 575 + FormatSpec.GROUP_FLAGS_SIZE; 576 final int addressOfBigram = findAddressOfWord(dict, bigram.mWord); 577 final int offset = addressOfBigram - offsetBasePoint; 578 groupSize += getByteSize(offset) + FormatSpec.GROUP_FLAGS_SIZE; 579 } 580 } 581 group.mCachedSize = groupSize; 582 size += groupSize; 583 } 584 if (formatOptions.mSupportsDynamicUpdate) { 585 size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE; 586 } 587 if (node.mCachedSize != size) { 588 node.mCachedSize = size; 589 changed = true; 590 } 591 return changed; 592 } 593 594 /** 595 * Computes the byte size of a list of nodes and updates each node cached position. 596 * 597 * @param flatNodes the array of nodes. 598 * @param formatOptions file format options. 599 * @return the byte size of the entire stack. 600 */ 601 private static int stackNodes(final ArrayList<Node> flatNodes, 602 final FormatOptions formatOptions) { 603 int nodeOffset = 0; 604 for (Node n : flatNodes) { 605 n.mCachedAddress = nodeOffset; 606 int groupCountSize = getGroupCountSize(n); 607 int groupOffset = 0; 608 for (CharGroup g : n.mData) { 609 g.mCachedAddress = groupCountSize + nodeOffset + groupOffset; 610 groupOffset += g.mCachedSize; 611 } 612 final int nodeSize = groupCountSize + groupOffset 613 + (formatOptions.mSupportsDynamicUpdate 614 ? FormatSpec.FORWARD_LINK_ADDRESS_SIZE : 0); 615 if (nodeSize != n.mCachedSize) { 616 throw new RuntimeException("Bug : Stored and computed node size differ"); 617 } 618 nodeOffset += n.mCachedSize; 619 } 620 return nodeOffset; 621 } 622 623 /** 624 * Compute the addresses and sizes of an ordered node array. 625 * 626 * This method takes a node array and will update its cached address and size values 627 * so that they can be written into a file. It determines the smallest size each of the 628 * nodes can be given the addresses of its children and attributes, and store that into 629 * each node. 630 * The order of the node is given by the order of the array. This method makes no effort 631 * to find a good order; it only mechanically computes the size this order results in. 632 * 633 * @param dict the dictionary 634 * @param flatNodes the ordered array of nodes 635 * @param formatOptions file format options. 636 * @return the same array it was passed. The nodes have been updated for address and size. 637 */ 638 private static ArrayList<Node> computeAddresses(final FusionDictionary dict, 639 final ArrayList<Node> flatNodes, final FormatOptions formatOptions) { 640 // First get the worst sizes and offsets 641 for (Node n : flatNodes) setNodeMaximumSize(n, formatOptions); 642 final int offset = stackNodes(flatNodes, formatOptions); 643 644 MakedictLog.i("Compressing the array addresses. Original size : " + offset); 645 MakedictLog.i("(Recursively seen size : " + offset + ")"); 646 647 int passes = 0; 648 boolean changesDone = false; 649 do { 650 changesDone = false; 651 for (Node n : flatNodes) { 652 final int oldNodeSize = n.mCachedSize; 653 final boolean changed = computeActualNodeSize(n, dict, formatOptions); 654 final int newNodeSize = n.mCachedSize; 655 if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!"); 656 changesDone |= changed; 657 } 658 stackNodes(flatNodes, formatOptions); 659 ++passes; 660 if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug"); 661 } while (changesDone); 662 663 final Node lastNode = flatNodes.get(flatNodes.size() - 1); 664 MakedictLog.i("Compression complete in " + passes + " passes."); 665 MakedictLog.i("After address compression : " 666 + (lastNode.mCachedAddress + lastNode.mCachedSize)); 667 668 return flatNodes; 669 } 670 671 /** 672 * Sanity-checking method. 673 * 674 * This method checks an array of node for juxtaposition, that is, it will do 675 * nothing if each node's cached address is actually the previous node's address 676 * plus the previous node's size. 677 * If this is not the case, it will throw an exception. 678 * 679 * @param array the array node to check 680 */ 681 private static void checkFlatNodeArray(final ArrayList<Node> array) { 682 int offset = 0; 683 int index = 0; 684 for (Node n : array) { 685 if (n.mCachedAddress != offset) { 686 throw new RuntimeException("Wrong address for node " + index 687 + " : expected " + offset + ", got " + n.mCachedAddress); 688 } 689 ++index; 690 offset += n.mCachedSize; 691 } 692 } 693 694 /** 695 * Helper method to write a variable-size address to a file. 696 * 697 * @param buffer the buffer to write to. 698 * @param index the index in the buffer to write the address to. 699 * @param address the address to write. 700 * @return the size in bytes the address actually took. 701 */ 702 private static int writeVariableAddress(final byte[] buffer, int index, final int address) { 703 switch (getByteSize(address)) { 704 case 1: 705 buffer[index++] = (byte)address; 706 return 1; 707 case 2: 708 buffer[index++] = (byte)(0xFF & (address >> 8)); 709 buffer[index++] = (byte)(0xFF & address); 710 return 2; 711 case 3: 712 buffer[index++] = (byte)(0xFF & (address >> 16)); 713 buffer[index++] = (byte)(0xFF & (address >> 8)); 714 buffer[index++] = (byte)(0xFF & address); 715 return 3; 716 case 0: 717 return 0; 718 default: 719 throw new RuntimeException("Address " + address + " has a strange size"); 720 } 721 } 722 723 /** 724 * Helper method to write a variable-size signed address to a file. 725 * 726 * @param buffer the buffer to write to. 727 * @param index the index in the buffer to write the address to. 728 * @param address the address to write. 729 * @return the size in bytes the address actually took. 730 */ 731 private static int writeVariableSignedAddress(final byte[] buffer, int index, 732 final int address) { 733 if (!hasChildrenAddress(address)) { 734 buffer[index] = buffer[index + 1] = buffer[index + 2] = 0; 735 } else { 736 final int absAddress = Math.abs(address); 737 buffer[index++] = (byte)((address < 0 ? MSB8 : 0) | (0xFF & (absAddress >> 16))); 738 buffer[index++] = (byte)(0xFF & (absAddress >> 8)); 739 buffer[index++] = (byte)(0xFF & absAddress); 740 } 741 return 3; 742 } 743 744 /** 745 * Makes the flag value for a char group. 746 * 747 * @param hasMultipleChars whether the group has multiple chars. 748 * @param isTerminal whether the group is terminal. 749 * @param childrenAddressSize the size of a children address. 750 * @param hasShortcuts whether the group has shortcuts. 751 * @param hasBigrams whether the group has bigrams. 752 * @param isNotAWord whether the group is not a word. 753 * @param isBlackListEntry whether the group is a blacklist entry. 754 * @param formatOptions file format options. 755 * @return the flags 756 */ 757 static int makeCharGroupFlags(final boolean hasMultipleChars, final boolean isTerminal, 758 final int childrenAddressSize, final boolean hasShortcuts, final boolean hasBigrams, 759 final boolean isNotAWord, final boolean isBlackListEntry, 760 final FormatOptions formatOptions) { 761 byte flags = 0; 762 if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS; 763 if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL; 764 if (formatOptions.mSupportsDynamicUpdate) { 765 flags |= FormatSpec.FLAG_IS_NOT_MOVED; 766 } else if (true) { 767 switch (childrenAddressSize) { 768 case 1: 769 flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE; 770 break; 771 case 2: 772 flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES; 773 break; 774 case 3: 775 flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES; 776 break; 777 case 0: 778 flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS; 779 break; 780 default: 781 throw new RuntimeException("Node with a strange address"); 782 } 783 } 784 if (hasShortcuts) flags |= FormatSpec.FLAG_HAS_SHORTCUT_TARGETS; 785 if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS; 786 if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD; 787 if (isBlackListEntry) flags |= FormatSpec.FLAG_IS_BLACKLISTED; 788 return flags; 789 } 790 791 private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress, 792 final int childrenOffset, final FormatOptions formatOptions) { 793 return (byte) makeCharGroupFlags(group.mChars.length > 1, group.mFrequency >= 0, 794 getByteSize(childrenOffset), group.mShortcutTargets != null, group.mBigrams != null, 795 group.mIsNotAWord, group.mIsBlacklistEntry, formatOptions); 796 } 797 798 /** 799 * Makes the flag value for a bigram. 800 * 801 * @param more whether there are more bigrams after this one. 802 * @param offset the offset of the bigram. 803 * @param bigramFrequency the frequency of the bigram, 0..255. 804 * @param unigramFrequency the unigram frequency of the same word, 0..255. 805 * @param word the second bigram, for debugging purposes 806 * @return the flags 807 */ 808 private static final int makeBigramFlags(final boolean more, final int offset, 809 int bigramFrequency, final int unigramFrequency, final String word) { 810 int bigramFlags = (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0) 811 + (offset < 0 ? FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0); 812 switch (getByteSize(offset)) { 813 case 1: 814 bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE; 815 break; 816 case 2: 817 bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES; 818 break; 819 case 3: 820 bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES; 821 break; 822 default: 823 throw new RuntimeException("Strange offset size"); 824 } 825 if (unigramFrequency > bigramFrequency) { 826 MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word 827 + "\". Bigram freq is " + bigramFrequency + ", unigram freq for " 828 + word + " is " + unigramFrequency); 829 bigramFrequency = unigramFrequency; 830 } 831 // We compute the difference between 255 (which means probability = 1) and the 832 // unigram score. We split this into a number of discrete steps. 833 // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15 834 // represents an increase of 16 steps: a value of 15 will be interpreted as the median 835 // value of the 16th step. In all justice, if the bigram frequency is low enough to be 836 // rounded below the first step (which means it is less than half a step higher than the 837 // unigram frequency) then the unigram frequency itself is the best approximation of the 838 // bigram freq that we could possibly supply, hence we should *not* include this bigram 839 // in the file at all. 840 // until this is done, we'll write 0 and slightly overestimate this case. 841 // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step 842 // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to 843 // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the 844 // step size. Then we compute the start of the first step (the one where value 0 starts) 845 // by adding half-a-step to the unigramFrequency. From there, we compute the integer 846 // number of steps to the bigramFrequency. One last thing: we want our steps to include 847 // their lower bound and exclude their higher bound so we need to have the first step 848 // start at exactly 1 unit higher than floor(unigramFreq + half a step). 849 // Note : to reconstruct the score, the dictionary reader will need to divide 850 // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step, 851 // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best 852 // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the 853 // step pointed by the discretized frequency. 854 final float stepSize = 855 (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency) 856 / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY); 857 final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f); 858 final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize); 859 // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1 860 // here. The best approximation would be the unigram freq itself, so we should not 861 // include this bigram in the dictionary. For now, register as 0, and live with the 862 // small over-estimation that we get in this case. TODO: actually remove this bigram 863 // if discretizedFrequency < 0. 864 final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0; 865 bigramFlags += finalBigramFrequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY; 866 return bigramFlags; 867 } 868 869 /** 870 * Makes the 2-byte value for options flags. 871 */ 872 private static final int makeOptionsValue(final FusionDictionary dictionary, 873 final FormatOptions formatOptions) { 874 final DictionaryOptions options = dictionary.mOptions; 875 final boolean hasBigrams = dictionary.hasBigrams(); 876 return (options.mFrenchLigatureProcessing ? FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG : 0) 877 + (options.mGermanUmlautProcessing ? FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG : 0) 878 + (hasBigrams ? FormatSpec.CONTAINS_BIGRAMS_FLAG : 0) 879 + (formatOptions.mSupportsDynamicUpdate ? FormatSpec.SUPPORTS_DYNAMIC_UPDATE : 0); 880 } 881 882 /** 883 * Makes the flag value for a shortcut. 884 * 885 * @param more whether there are more attributes after this one. 886 * @param frequency the frequency of the attribute, 0..15 887 * @return the flags 888 */ 889 static final int makeShortcutFlags(final boolean more, final int frequency) { 890 return (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0) 891 + (frequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY); 892 } 893 894 private static final int writeParentAddress(final byte[] buffer, final int index, 895 final int address, final FormatOptions formatOptions) { 896 if (supportsDynamicUpdate(formatOptions)) { 897 if (address == FormatSpec.NO_PARENT_ADDRESS) { 898 buffer[index] = buffer[index + 1] = buffer[index + 2] = 0; 899 } else { 900 final int absAddress = Math.abs(address); 901 assert(absAddress <= SINT24_MAX); 902 buffer[index] = (byte)((address < 0 ? MSB8 : 0) 903 | ((absAddress >> 16) & 0xFF)); 904 buffer[index + 1] = (byte)((absAddress >> 8) & 0xFF); 905 buffer[index + 2] = (byte)(absAddress & 0xFF); 906 } 907 return index + 3; 908 } else { 909 return index; 910 } 911 } 912 913 /** 914 * Write a node to memory. The node is expected to have its final position cached. 915 * 916 * This can be an empty map, but the more is inside the faster the lookups will be. It can 917 * be carried on as long as nodes do not move. 918 * 919 * @param dict the dictionary the node is a part of (for relative offsets). 920 * @param buffer the memory buffer to write to. 921 * @param node the node to write. 922 * @param formatOptions file format options. 923 * @return the address of the END of the node. 924 */ 925 @SuppressWarnings("unused") 926 private static int writePlacedNode(final FusionDictionary dict, byte[] buffer, 927 final Node node, final FormatOptions formatOptions) { 928 // TODO: Make the code in common with BinaryDictIOUtils#writeCharGroup 929 int index = node.mCachedAddress; 930 931 final int groupCount = node.mData.size(); 932 final int countSize = getGroupCountSize(node); 933 final int parentAddress = node.mCachedParentAddress; 934 if (1 == countSize) { 935 buffer[index++] = (byte)groupCount; 936 } else if (2 == countSize) { 937 // We need to signal 2-byte size by setting the top bit of the MSB to 1, so 938 // we | 0x80 to do this. 939 buffer[index++] = (byte)((groupCount >> 8) | 0x80); 940 buffer[index++] = (byte)(groupCount & 0xFF); 941 } else { 942 throw new RuntimeException("Strange size from getGroupCountSize : " + countSize); 943 } 944 int groupAddress = index; 945 for (int i = 0; i < groupCount; ++i) { 946 CharGroup group = node.mData.get(i); 947 if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not " 948 + "the same as the cached address of the group : " 949 + index + " <> " + group.mCachedAddress); 950 groupAddress += getGroupHeaderSize(group, formatOptions); 951 // Sanity checks. 952 if (DBG && group.mFrequency > FormatSpec.MAX_TERMINAL_FREQUENCY) { 953 throw new RuntimeException("A node has a frequency > " 954 + FormatSpec.MAX_TERMINAL_FREQUENCY 955 + " : " + group.mFrequency); 956 } 957 if (group.mFrequency >= 0) groupAddress += FormatSpec.GROUP_FREQUENCY_SIZE; 958 final int childrenOffset = null == group.mChildren 959 ? FormatSpec.NO_CHILDREN_ADDRESS 960 : group.mChildren.mCachedAddress - groupAddress; 961 byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset, formatOptions); 962 buffer[index++] = flags; 963 964 if (parentAddress == FormatSpec.NO_PARENT_ADDRESS) { 965 index = writeParentAddress(buffer, index, parentAddress, formatOptions); 966 } else { 967 index = writeParentAddress(buffer, index, 968 parentAddress + (node.mCachedAddress - group.mCachedAddress), 969 formatOptions); 970 } 971 972 index = CharEncoding.writeCharArray(group.mChars, buffer, index); 973 if (group.hasSeveralChars()) { 974 buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR; 975 } 976 if (group.mFrequency >= 0) { 977 buffer[index++] = (byte) group.mFrequency; 978 } 979 980 final int shift; 981 if (formatOptions.mSupportsDynamicUpdate) { 982 shift = writeVariableSignedAddress(buffer, index, childrenOffset); 983 } else { 984 shift = writeVariableAddress(buffer, index, childrenOffset); 985 } 986 index += shift; 987 groupAddress += shift; 988 989 // Write shortcuts 990 if (null != group.mShortcutTargets) { 991 final int indexOfShortcutByteSize = index; 992 index += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE; 993 groupAddress += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE; 994 final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator(); 995 while (shortcutIterator.hasNext()) { 996 final WeightedString target = shortcutIterator.next(); 997 ++groupAddress; 998 int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(), 999 target.mFrequency); 1000 buffer[index++] = (byte)shortcutFlags; 1001 final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord); 1002 index += shortcutShift; 1003 groupAddress += shortcutShift; 1004 } 1005 final int shortcutByteSize = index - indexOfShortcutByteSize; 1006 if (shortcutByteSize > 0xFFFF) { 1007 throw new RuntimeException("Shortcut list too large"); 1008 } 1009 buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8); 1010 buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF); 1011 } 1012 // Write bigrams 1013 if (null != group.mBigrams) { 1014 final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator(); 1015 while (bigramIterator.hasNext()) { 1016 final WeightedString bigram = bigramIterator.next(); 1017 final CharGroup target = 1018 FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord); 1019 final int addressOfBigram = target.mCachedAddress; 1020 final int unigramFrequencyForThisWord = target.mFrequency; 1021 ++groupAddress; 1022 final int offset = addressOfBigram - groupAddress; 1023 int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset, 1024 bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord); 1025 buffer[index++] = (byte)bigramFlags; 1026 final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset)); 1027 index += bigramShift; 1028 groupAddress += bigramShift; 1029 } 1030 } 1031 1032 } 1033 if (formatOptions.mSupportsDynamicUpdate) { 1034 buffer[index] = buffer[index + 1] = buffer[index + 2] 1035 = FormatSpec.NO_FORWARD_LINK_ADDRESS; 1036 index += FormatSpec.FORWARD_LINK_ADDRESS_SIZE; 1037 } 1038 if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException( 1039 "Not the same size : written " 1040 + (index - node.mCachedAddress) + " bytes out of a node that should have " 1041 + node.mCachedSize + " bytes"); 1042 return index; 1043 } 1044 1045 /** 1046 * Dumps a collection of useful statistics about a node array. 1047 * 1048 * This prints purely informative stuff, like the total estimated file size, the 1049 * number of nodes, of character groups, the repartition of each address size, etc 1050 * 1051 * @param nodes the node array. 1052 */ 1053 private static void showStatistics(ArrayList<Node> nodes) { 1054 int firstTerminalAddress = Integer.MAX_VALUE; 1055 int lastTerminalAddress = Integer.MIN_VALUE; 1056 int size = 0; 1057 int charGroups = 0; 1058 int maxGroups = 0; 1059 int maxRuns = 0; 1060 for (Node n : nodes) { 1061 if (maxGroups < n.mData.size()) maxGroups = n.mData.size(); 1062 for (CharGroup cg : n.mData) { 1063 ++charGroups; 1064 if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length; 1065 if (cg.mFrequency >= 0) { 1066 if (n.mCachedAddress < firstTerminalAddress) 1067 firstTerminalAddress = n.mCachedAddress; 1068 if (n.mCachedAddress > lastTerminalAddress) 1069 lastTerminalAddress = n.mCachedAddress; 1070 } 1071 } 1072 if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize; 1073 } 1074 final int[] groupCounts = new int[maxGroups + 1]; 1075 final int[] runCounts = new int[maxRuns + 1]; 1076 for (Node n : nodes) { 1077 ++groupCounts[n.mData.size()]; 1078 for (CharGroup cg : n.mData) { 1079 ++runCounts[cg.mChars.length]; 1080 } 1081 } 1082 1083 MakedictLog.i("Statistics:\n" 1084 + " total file size " + size + "\n" 1085 + " " + nodes.size() + " nodes\n" 1086 + " " + charGroups + " groups (" + ((float)charGroups / nodes.size()) 1087 + " groups per node)\n" 1088 + " first terminal at " + firstTerminalAddress + "\n" 1089 + " last terminal at " + lastTerminalAddress + "\n" 1090 + " Group stats : max = " + maxGroups); 1091 for (int i = 0; i < groupCounts.length; ++i) { 1092 MakedictLog.i(" " + i + " : " + groupCounts[i]); 1093 } 1094 MakedictLog.i(" Character run stats : max = " + maxRuns); 1095 for (int i = 0; i < runCounts.length; ++i) { 1096 MakedictLog.i(" " + i + " : " + runCounts[i]); 1097 } 1098 } 1099 1100 /** 1101 * Dumps a FusionDictionary to a file. 1102 * 1103 * This is the public entry point to write a dictionary to a file. 1104 * 1105 * @param destination the stream to write the binary data to. 1106 * @param dict the dictionary to write. 1107 * @param formatOptions file format options. 1108 */ 1109 public static void writeDictionaryBinary(final OutputStream destination, 1110 final FusionDictionary dict, final FormatOptions formatOptions) 1111 throws IOException, UnsupportedFormatException { 1112 1113 // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the 1114 // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order 1115 // of the nodes becomes a quite complicated problem, because though the dictionary itself 1116 // does not have a size limit, each node must still be within 16MB of all its children and 1117 // parents. As long as this is ensured, the dictionary file may grow to any size. 1118 1119 final int version = formatOptions.mVersion; 1120 if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION 1121 || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) { 1122 throw new UnsupportedFormatException("Requested file format version " + version 1123 + ", but this implementation only supports versions " 1124 + FormatSpec.MINIMUM_SUPPORTED_VERSION + " through " 1125 + FormatSpec.MAXIMUM_SUPPORTED_VERSION); 1126 } 1127 1128 ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256); 1129 1130 // The magic number in big-endian order. 1131 if (version >= FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) { 1132 // Magic number for version 2+. 1133 headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 24))); 1134 headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 16))); 1135 headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 8))); 1136 headerBuffer.write((byte) (0xFF & FormatSpec.VERSION_2_MAGIC_NUMBER)); 1137 // Dictionary version. 1138 headerBuffer.write((byte) (0xFF & (version >> 8))); 1139 headerBuffer.write((byte) (0xFF & version)); 1140 } else { 1141 // Magic number for version 1. 1142 headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_1_MAGIC_NUMBER >> 8))); 1143 headerBuffer.write((byte) (0xFF & FormatSpec.VERSION_1_MAGIC_NUMBER)); 1144 // Dictionary version. 1145 headerBuffer.write((byte) (0xFF & version)); 1146 } 1147 // Options flags 1148 final int options = makeOptionsValue(dict, formatOptions); 1149 headerBuffer.write((byte) (0xFF & (options >> 8))); 1150 headerBuffer.write((byte) (0xFF & options)); 1151 if (version >= FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) { 1152 final int headerSizeOffset = headerBuffer.size(); 1153 // Placeholder to be written later with header size. 1154 for (int i = 0; i < 4; ++i) { 1155 headerBuffer.write(0); 1156 } 1157 // Write out the options. 1158 for (final String key : dict.mOptions.mAttributes.keySet()) { 1159 final String value = dict.mOptions.mAttributes.get(key); 1160 CharEncoding.writeString(headerBuffer, key); 1161 CharEncoding.writeString(headerBuffer, value); 1162 } 1163 final int size = headerBuffer.size(); 1164 final byte[] bytes = headerBuffer.toByteArray(); 1165 // Write out the header size. 1166 bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24)); 1167 bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16)); 1168 bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8)); 1169 bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0)); 1170 destination.write(bytes); 1171 } else { 1172 headerBuffer.writeTo(destination); 1173 } 1174 1175 headerBuffer.close(); 1176 1177 // Leave the choice of the optimal node order to the flattenTree function. 1178 MakedictLog.i("Flattening the tree..."); 1179 ArrayList<Node> flatNodes = flattenTree(dict.mRoot); 1180 1181 MakedictLog.i("Computing addresses..."); 1182 computeAddresses(dict, flatNodes, formatOptions); 1183 MakedictLog.i("Checking array..."); 1184 if (DBG) checkFlatNodeArray(flatNodes); 1185 1186 // Create a buffer that matches the final dictionary size. 1187 final Node lastNode = flatNodes.get(flatNodes.size() - 1); 1188 final int bufferSize = lastNode.mCachedAddress + lastNode.mCachedSize; 1189 final byte[] buffer = new byte[bufferSize]; 1190 int index = 0; 1191 1192 MakedictLog.i("Writing file..."); 1193 int dataEndOffset = 0; 1194 for (Node n : flatNodes) { 1195 dataEndOffset = writePlacedNode(dict, buffer, n, formatOptions); 1196 } 1197 1198 if (DBG) showStatistics(flatNodes); 1199 1200 destination.write(buffer, 0, dataEndOffset); 1201 1202 destination.close(); 1203 MakedictLog.i("Done"); 1204 } 1205 1206 1207 // Input methods: Read a binary dictionary to memory. 1208 // readDictionaryBinary is the public entry point for them. 1209 1210 static int getChildrenAddressSize(final int optionFlags, 1211 final FormatOptions formatOptions) { 1212 if (formatOptions.mSupportsDynamicUpdate) return FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE; 1213 switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) { 1214 case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE: 1215 return 1; 1216 case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES: 1217 return 2; 1218 case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES: 1219 return 3; 1220 case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS: 1221 default: 1222 return 0; 1223 } 1224 } 1225 1226 static int readChildrenAddress(final FusionDictionaryBufferInterface buffer, 1227 final int optionFlags, final FormatOptions options) { 1228 if (options.mSupportsDynamicUpdate) { 1229 final int address = buffer.readUnsignedInt24(); 1230 if (address == 0) return FormatSpec.NO_CHILDREN_ADDRESS; 1231 if ((address & MSB24) != 0) { 1232 return -(address & SINT24_MAX); 1233 } else { 1234 return address; 1235 } 1236 } 1237 int address; 1238 switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) { 1239 case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE: 1240 return buffer.readUnsignedByte(); 1241 case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES: 1242 return buffer.readUnsignedShort(); 1243 case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES: 1244 return buffer.readUnsignedInt24(); 1245 case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS: 1246 default: 1247 return FormatSpec.NO_CHILDREN_ADDRESS; 1248 } 1249 } 1250 1251 static int readParentAddress(final FusionDictionaryBufferInterface buffer, 1252 final FormatOptions formatOptions) { 1253 if (supportsDynamicUpdate(formatOptions)) { 1254 final int parentAddress = buffer.readUnsignedInt24(); 1255 final int sign = ((parentAddress & MSB24) != 0) ? -1 : 1; 1256 return sign * (parentAddress & SINT24_MAX); 1257 } else { 1258 return FormatSpec.NO_PARENT_ADDRESS; 1259 } 1260 } 1261 1262 private static final int[] CHARACTER_BUFFER = new int[FormatSpec.MAX_WORD_LENGTH]; 1263 public static CharGroupInfo readCharGroup(final FusionDictionaryBufferInterface buffer, 1264 final int originalGroupAddress, final FormatOptions options) { 1265 int addressPointer = originalGroupAddress; 1266 final int flags = buffer.readUnsignedByte(); 1267 ++addressPointer; 1268 1269 final int parentAddress = readParentAddress(buffer, options); 1270 if (supportsDynamicUpdate(options)) { 1271 addressPointer += 3; 1272 } 1273 1274 final int characters[]; 1275 if (0 != (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS)) { 1276 int index = 0; 1277 int character = CharEncoding.readChar(buffer); 1278 addressPointer += CharEncoding.getCharSize(character); 1279 while (-1 != character) { 1280 // FusionDictionary is making sure that the length of the word is smaller than 1281 // MAX_WORD_LENGTH. 1282 // So we'll never write past the end of CHARACTER_BUFFER. 1283 CHARACTER_BUFFER[index++] = character; 1284 character = CharEncoding.readChar(buffer); 1285 addressPointer += CharEncoding.getCharSize(character); 1286 } 1287 characters = Arrays.copyOfRange(CHARACTER_BUFFER, 0, index); 1288 } else { 1289 final int character = CharEncoding.readChar(buffer); 1290 addressPointer += CharEncoding.getCharSize(character); 1291 characters = new int[] { character }; 1292 } 1293 final int frequency; 1294 if (0 != (FormatSpec.FLAG_IS_TERMINAL & flags)) { 1295 ++addressPointer; 1296 frequency = buffer.readUnsignedByte(); 1297 } else { 1298 frequency = CharGroup.NOT_A_TERMINAL; 1299 } 1300 int childrenAddress = readChildrenAddress(buffer, flags, options); 1301 if (childrenAddress != FormatSpec.NO_CHILDREN_ADDRESS) { 1302 childrenAddress += addressPointer; 1303 } 1304 addressPointer += getChildrenAddressSize(flags, options); 1305 ArrayList<WeightedString> shortcutTargets = null; 1306 if (0 != (flags & FormatSpec.FLAG_HAS_SHORTCUT_TARGETS)) { 1307 final int pointerBefore = buffer.position(); 1308 shortcutTargets = new ArrayList<WeightedString>(); 1309 buffer.readUnsignedShort(); // Skip the size 1310 while (true) { 1311 final int targetFlags = buffer.readUnsignedByte(); 1312 final String word = CharEncoding.readString(buffer); 1313 shortcutTargets.add(new WeightedString(word, 1314 targetFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY)); 1315 if (0 == (targetFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break; 1316 } 1317 addressPointer += buffer.position() - pointerBefore; 1318 } 1319 ArrayList<PendingAttribute> bigrams = null; 1320 if (0 != (flags & FormatSpec.FLAG_HAS_BIGRAMS)) { 1321 bigrams = new ArrayList<PendingAttribute>(); 1322 int bigramCount = 0; 1323 while (bigramCount++ < FormatSpec.MAX_BIGRAMS_IN_A_GROUP) { 1324 final int bigramFlags = buffer.readUnsignedByte(); 1325 ++addressPointer; 1326 final int sign = 0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE) 1327 ? 1 : -1; 1328 int bigramAddress = addressPointer; 1329 switch (bigramFlags & FormatSpec.MASK_ATTRIBUTE_ADDRESS_TYPE) { 1330 case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: 1331 bigramAddress += sign * buffer.readUnsignedByte(); 1332 addressPointer += 1; 1333 break; 1334 case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: 1335 bigramAddress += sign * buffer.readUnsignedShort(); 1336 addressPointer += 2; 1337 break; 1338 case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES: 1339 final int offset = (buffer.readUnsignedByte() << 16) 1340 + buffer.readUnsignedShort(); 1341 bigramAddress += sign * offset; 1342 addressPointer += 3; 1343 break; 1344 default: 1345 throw new RuntimeException("Has bigrams with no address"); 1346 } 1347 bigrams.add(new PendingAttribute(bigramFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY, 1348 bigramAddress)); 1349 if (0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break; 1350 } 1351 if (bigramCount >= FormatSpec.MAX_BIGRAMS_IN_A_GROUP) { 1352 MakedictLog.d("too many bigrams in a group."); 1353 } 1354 } 1355 return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency, 1356 parentAddress, childrenAddress, shortcutTargets, bigrams); 1357 } 1358 1359 /** 1360 * Reads and returns the char group count out of a buffer and forwards the pointer. 1361 */ 1362 public static int readCharGroupCount(final FusionDictionaryBufferInterface buffer) { 1363 final int msb = buffer.readUnsignedByte(); 1364 if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) { 1365 return msb; 1366 } else { 1367 return ((FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8) 1368 + buffer.readUnsignedByte(); 1369 } 1370 } 1371 1372 // The word cache here is a stopgap bandaid to help the catastrophic performance 1373 // of this method. Since it performs direct, unbuffered random access to the file and 1374 // may be called hundreds of thousands of times, the resulting performance is not 1375 // reasonable without some kind of cache. Thus: 1376 private static TreeMap<Integer, WeightedString> wordCache = 1377 new TreeMap<Integer, WeightedString>(); 1378 /** 1379 * Finds, as a string, the word at the address passed as an argument. 1380 * 1381 * @param buffer the buffer to read from. 1382 * @param headerSize the size of the header. 1383 * @param address the address to seek. 1384 * @param formatOptions file format options. 1385 * @return the word with its frequency, as a weighted string. 1386 */ 1387 /* package for tests */ static WeightedString getWordAtAddress( 1388 final FusionDictionaryBufferInterface buffer, final int headerSize, final int address, 1389 final FormatOptions formatOptions) { 1390 final WeightedString cachedString = wordCache.get(address); 1391 if (null != cachedString) return cachedString; 1392 1393 final WeightedString result; 1394 final int originalPointer = buffer.position(); 1395 buffer.position(address); 1396 1397 if (supportsDynamicUpdate(formatOptions)) { 1398 result = getWordAtAddressWithParentAddress(buffer, headerSize, address, formatOptions); 1399 } else { 1400 result = getWordAtAddressWithoutParentAddress(buffer, headerSize, address, 1401 formatOptions); 1402 } 1403 1404 wordCache.put(address, result); 1405 buffer.position(originalPointer); 1406 return result; 1407 } 1408 1409 // TODO: static!? This will behave erratically when used in multi-threaded code. 1410 // We need to fix this 1411 private static int[] sGetWordBuffer = new int[FormatSpec.MAX_WORD_LENGTH]; 1412 @SuppressWarnings("unused") 1413 private static WeightedString getWordAtAddressWithParentAddress( 1414 final FusionDictionaryBufferInterface buffer, final int headerSize, final int address, 1415 final FormatOptions options) { 1416 int currentAddress = address; 1417 int index = FormatSpec.MAX_WORD_LENGTH - 1; 1418 int frequency = Integer.MIN_VALUE; 1419 // the length of the path from the root to the leaf is limited by MAX_WORD_LENGTH 1420 for (int count = 0; count < FormatSpec.MAX_WORD_LENGTH; ++count) { 1421 CharGroupInfo currentInfo; 1422 int loopCounter = 0; 1423 do { 1424 buffer.position(currentAddress + headerSize); 1425 currentInfo = readCharGroup(buffer, currentAddress, options); 1426 if (isMovedGroup(currentInfo.mFlags, options)) { 1427 currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress; 1428 } 1429 if (DBG && loopCounter++ > MAX_JUMPS) { 1430 MakedictLog.d("Too many jumps - probably a bug"); 1431 } 1432 } while (isMovedGroup(currentInfo.mFlags, options)); 1433 if (Integer.MIN_VALUE == frequency) frequency = currentInfo.mFrequency; 1434 for (int i = 0; i < currentInfo.mCharacters.length; ++i) { 1435 sGetWordBuffer[index--] = 1436 currentInfo.mCharacters[currentInfo.mCharacters.length - i - 1]; 1437 } 1438 if (currentInfo.mParentAddress == FormatSpec.NO_PARENT_ADDRESS) break; 1439 currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress; 1440 } 1441 1442 return new WeightedString( 1443 new String(sGetWordBuffer, index + 1, FormatSpec.MAX_WORD_LENGTH - index - 1), 1444 frequency); 1445 } 1446 1447 private static WeightedString getWordAtAddressWithoutParentAddress( 1448 final FusionDictionaryBufferInterface buffer, final int headerSize, final int address, 1449 final FormatOptions options) { 1450 buffer.position(headerSize); 1451 final int count = readCharGroupCount(buffer); 1452 int groupOffset = getGroupCountSize(count); 1453 final StringBuilder builder = new StringBuilder(); 1454 WeightedString result = null; 1455 1456 CharGroupInfo last = null; 1457 for (int i = count - 1; i >= 0; --i) { 1458 CharGroupInfo info = readCharGroup(buffer, groupOffset, options); 1459 groupOffset = info.mEndAddress; 1460 if (info.mOriginalAddress == address) { 1461 builder.append(new String(info.mCharacters, 0, info.mCharacters.length)); 1462 result = new WeightedString(builder.toString(), info.mFrequency); 1463 break; // and return 1464 } 1465 if (hasChildrenAddress(info.mChildrenAddress)) { 1466 if (info.mChildrenAddress > address) { 1467 if (null == last) continue; 1468 builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); 1469 buffer.position(last.mChildrenAddress + headerSize); 1470 i = readCharGroupCount(buffer); 1471 groupOffset = last.mChildrenAddress + getGroupCountSize(i); 1472 last = null; 1473 continue; 1474 } 1475 last = info; 1476 } 1477 if (0 == i && hasChildrenAddress(last.mChildrenAddress)) { 1478 builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); 1479 buffer.position(last.mChildrenAddress + headerSize); 1480 i = readCharGroupCount(buffer); 1481 groupOffset = last.mChildrenAddress + getGroupCountSize(i); 1482 last = null; 1483 continue; 1484 } 1485 } 1486 return result; 1487 } 1488 1489 /** 1490 * Reads a single node from a buffer. 1491 * 1492 * This methods reads the file at the current position. A node is fully expected to start at 1493 * the current position. 1494 * This will recursively read other nodes into the structure, populating the reverse 1495 * maps on the fly and using them to keep track of already read nodes. 1496 * 1497 * @param buffer the buffer, correctly positioned at the start of a node. 1498 * @param headerSize the size, in bytes, of the file header. 1499 * @param reverseNodeMap a mapping from addresses to already read nodes. 1500 * @param reverseGroupMap a mapping from addresses to already read character groups. 1501 * @param options file format options. 1502 * @return the read node with all his children already read. 1503 */ 1504 private static Node readNode(final FusionDictionaryBufferInterface buffer, final int headerSize, 1505 final Map<Integer, Node> reverseNodeMap, final Map<Integer, CharGroup> reverseGroupMap, 1506 final FormatOptions options) 1507 throws IOException { 1508 final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>(); 1509 final int nodeOrigin = buffer.position() - headerSize; 1510 1511 do { // Scan the linked-list node. 1512 final int nodeHeadPosition = buffer.position() - headerSize; 1513 final int count = readCharGroupCount(buffer); 1514 int groupOffset = nodeHeadPosition + getGroupCountSize(count); 1515 for (int i = count; i > 0; --i) { // Scan the array of CharGroup. 1516 CharGroupInfo info = readCharGroup(buffer, groupOffset, options); 1517 if (isMovedGroup(info.mFlags, options)) continue; 1518 ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets; 1519 ArrayList<WeightedString> bigrams = null; 1520 if (null != info.mBigrams) { 1521 bigrams = new ArrayList<WeightedString>(); 1522 for (PendingAttribute bigram : info.mBigrams) { 1523 final WeightedString word = getWordAtAddress( 1524 buffer, headerSize, bigram.mAddress, options); 1525 final int reconstructedFrequency = 1526 reconstructBigramFrequency(word.mFrequency, bigram.mFrequency); 1527 bigrams.add(new WeightedString(word.mWord, reconstructedFrequency)); 1528 } 1529 } 1530 if (hasChildrenAddress(info.mChildrenAddress)) { 1531 Node children = reverseNodeMap.get(info.mChildrenAddress); 1532 if (null == children) { 1533 final int currentPosition = buffer.position(); 1534 buffer.position(info.mChildrenAddress + headerSize); 1535 children = readNode( 1536 buffer, headerSize, reverseNodeMap, reverseGroupMap, options); 1537 buffer.position(currentPosition); 1538 } 1539 nodeContents.add( 1540 new CharGroup(info.mCharacters, shortcutTargets, bigrams, 1541 info.mFrequency, 1542 0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD), 1543 0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED), children)); 1544 } else { 1545 nodeContents.add( 1546 new CharGroup(info.mCharacters, shortcutTargets, bigrams, 1547 info.mFrequency, 1548 0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD), 1549 0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED))); 1550 } 1551 groupOffset = info.mEndAddress; 1552 } 1553 1554 // reach the end of the array. 1555 if (options.mSupportsDynamicUpdate) { 1556 final int nextAddress = buffer.readUnsignedInt24(); 1557 if (nextAddress >= 0 && nextAddress < buffer.limit()) { 1558 buffer.position(nextAddress); 1559 } else { 1560 break; 1561 } 1562 } 1563 } while (options.mSupportsDynamicUpdate && 1564 buffer.position() != FormatSpec.NO_FORWARD_LINK_ADDRESS); 1565 1566 final Node node = new Node(nodeContents); 1567 node.mCachedAddress = nodeOrigin; 1568 reverseNodeMap.put(node.mCachedAddress, node); 1569 return node; 1570 } 1571 1572 /** 1573 * Helper function to get the binary format version from the header. 1574 * @throws IOException 1575 */ 1576 private static int getFormatVersion(final FusionDictionaryBufferInterface buffer) 1577 throws IOException { 1578 final int magic_v1 = buffer.readUnsignedShort(); 1579 if (FormatSpec.VERSION_1_MAGIC_NUMBER == magic_v1) return buffer.readUnsignedByte(); 1580 final int magic_v2 = (magic_v1 << 16) + buffer.readUnsignedShort(); 1581 if (FormatSpec.VERSION_2_MAGIC_NUMBER == magic_v2) return buffer.readUnsignedShort(); 1582 return FormatSpec.NOT_A_VERSION_NUMBER; 1583 } 1584 1585 /** 1586 * Helper function to get and validate the binary format version. 1587 * @throws UnsupportedFormatException 1588 * @throws IOException 1589 */ 1590 private static int checkFormatVersion(final FusionDictionaryBufferInterface buffer) 1591 throws IOException, UnsupportedFormatException { 1592 final int version = getFormatVersion(buffer); 1593 if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION 1594 || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) { 1595 throw new UnsupportedFormatException("This file has version " + version 1596 + ", but this implementation does not support versions above " 1597 + FormatSpec.MAXIMUM_SUPPORTED_VERSION); 1598 } 1599 return version; 1600 } 1601 1602 /** 1603 * Reads a header from a buffer. 1604 * @param buffer the buffer to read. 1605 * @throws IOException 1606 * @throws UnsupportedFormatException 1607 */ 1608 public static FileHeader readHeader(final FusionDictionaryBufferInterface buffer) 1609 throws IOException, UnsupportedFormatException { 1610 final int version = checkFormatVersion(buffer); 1611 final int optionsFlags = buffer.readUnsignedShort(); 1612 1613 final HashMap<String, String> attributes = new HashMap<String, String>(); 1614 final int headerSize; 1615 if (version < FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) { 1616 headerSize = buffer.position(); 1617 } else { 1618 headerSize = buffer.readInt(); 1619 populateOptions(buffer, headerSize, attributes); 1620 buffer.position(headerSize); 1621 } 1622 1623 if (headerSize < 0) { 1624 throw new UnsupportedFormatException("header size can't be negative."); 1625 } 1626 1627 final FileHeader header = new FileHeader(headerSize, 1628 new FusionDictionary.DictionaryOptions(attributes, 1629 0 != (optionsFlags & FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG), 1630 0 != (optionsFlags & FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG)), 1631 new FormatOptions(version, 1632 0 != (optionsFlags & FormatSpec.SUPPORTS_DYNAMIC_UPDATE))); 1633 return header; 1634 } 1635 1636 /** 1637 * Reads options from a buffer and populate a map with their contents. 1638 * 1639 * The buffer is read at the current position, so the caller must take care the pointer 1640 * is in the right place before calling this. 1641 */ 1642 public static void populateOptions(final FusionDictionaryBufferInterface buffer, 1643 final int headerSize, final HashMap<String, String> options) { 1644 while (buffer.position() < headerSize) { 1645 final String key = CharEncoding.readString(buffer); 1646 final String value = CharEncoding.readString(buffer); 1647 options.put(key, value); 1648 } 1649 } 1650 1651 /** 1652 * Reads a buffer and returns the memory representation of the dictionary. 1653 * 1654 * This high-level method takes a buffer and reads its contents, populating a 1655 * FusionDictionary structure. The optional dict argument is an existing dictionary to 1656 * which words from the buffer should be added. If it is null, a new dictionary is created. 1657 * 1658 * @param buffer the buffer to read. 1659 * @param dict an optional dictionary to add words to, or null. 1660 * @return the created (or merged) dictionary. 1661 */ 1662 @UsedForTesting 1663 public static FusionDictionary readDictionaryBinary( 1664 final FusionDictionaryBufferInterface buffer, final FusionDictionary dict) 1665 throws IOException, UnsupportedFormatException { 1666 // clear cache 1667 wordCache.clear(); 1668 1669 // Read header 1670 final FileHeader header = readHeader(buffer); 1671 1672 Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>(); 1673 Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>(); 1674 final Node root = readNode(buffer, header.mHeaderSize, reverseNodeMapping, 1675 reverseGroupMapping, header.mFormatOptions); 1676 1677 FusionDictionary newDict = new FusionDictionary(root, header.mDictionaryOptions); 1678 if (null != dict) { 1679 for (final Word w : dict) { 1680 if (w.mIsBlacklistEntry) { 1681 newDict.addBlacklistEntry(w.mWord, w.mShortcutTargets, w.mIsNotAWord); 1682 } else { 1683 newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mIsNotAWord); 1684 } 1685 } 1686 for (final Word w : dict) { 1687 // By construction a binary dictionary may not have bigrams pointing to 1688 // words that are not also registered as unigrams so we don't have to avoid 1689 // them explicitly here. 1690 for (final WeightedString bigram : w.mBigrams) { 1691 newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency); 1692 } 1693 } 1694 } 1695 1696 return newDict; 1697 } 1698 1699 /** 1700 * Helper method to pass a file name instead of a File object to isBinaryDictionary. 1701 */ 1702 public static boolean isBinaryDictionary(final String filename) { 1703 final File file = new File(filename); 1704 return isBinaryDictionary(file); 1705 } 1706 1707 /** 1708 * Basic test to find out whether the file is a binary dictionary or not. 1709 * 1710 * Concretely this only tests the magic number. 1711 * 1712 * @param file The file to test. 1713 * @return true if it's a binary dictionary, false otherwise 1714 */ 1715 public static boolean isBinaryDictionary(final File file) { 1716 FileInputStream inStream = null; 1717 try { 1718 inStream = new FileInputStream(file); 1719 final ByteBuffer buffer = inStream.getChannel().map( 1720 FileChannel.MapMode.READ_ONLY, 0, file.length()); 1721 final int version = getFormatVersion(new ByteBufferWrapper(buffer)); 1722 return (version >= FormatSpec.MINIMUM_SUPPORTED_VERSION 1723 && version <= FormatSpec.MAXIMUM_SUPPORTED_VERSION); 1724 } catch (FileNotFoundException e) { 1725 return false; 1726 } catch (IOException e) { 1727 return false; 1728 } finally { 1729 if (inStream != null) { 1730 try { 1731 inStream.close(); 1732 } catch (IOException e) { 1733 // do nothing 1734 } 1735 } 1736 } 1737 } 1738 1739 /** 1740 * Calculate bigram frequency from compressed value 1741 * 1742 * @see #makeBigramFlags 1743 * 1744 * @param unigramFrequency 1745 * @param bigramFrequency compressed frequency 1746 * @return approximate bigram frequency 1747 */ 1748 public static int reconstructBigramFrequency(final int unigramFrequency, 1749 final int bigramFrequency) { 1750 final float stepSize = (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency) 1751 / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY); 1752 final float resultFreqFloat = unigramFrequency + stepSize * (bigramFrequency + 1.0f); 1753 return (int)resultFreqFloat; 1754 } 1755 } 1756