Home | History | Annotate | Download | only in ObjCARC
      1 //===- ObjCARC.h - ObjC ARC Optimization --------------*- mode: c++ -*-----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file defines common definitions/declarations used by the ObjC ARC
     11 /// Optimizer. ARC stands for Automatic Reference Counting and is a system for
     12 /// managing reference counts for objects in Objective C.
     13 ///
     14 /// WARNING: This file knows about certain library functions. It recognizes them
     15 /// by name, and hardwires knowledge of their semantics.
     16 ///
     17 /// WARNING: This file knows about how certain Objective-C library functions are
     18 /// used. Naive LLVM IR transformations which would otherwise be
     19 /// behavior-preserving may break these assumptions.
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #ifndef LLVM_TRANSFORMS_SCALAR_OBJCARC_H
     24 #define LLVM_TRANSFORMS_SCALAR_OBJCARC_H
     25 
     26 #include "llvm/ADT/StringSwitch.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/Passes.h"
     29 #include "llvm/Analysis/ValueTracking.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/CallSite.h"
     33 #include "llvm/Support/InstIterator.h"
     34 #include "llvm/Transforms/ObjCARC.h"
     35 #include "llvm/Transforms/Utils/Local.h"
     36 
     37 namespace llvm {
     38 class raw_ostream;
     39 }
     40 
     41 namespace llvm {
     42 namespace objcarc {
     43 
     44 /// \brief A handy option to enable/disable all ARC Optimizations.
     45 extern bool EnableARCOpts;
     46 
     47 /// \brief Test if the given module looks interesting to run ARC optimization
     48 /// on.
     49 static inline bool ModuleHasARC(const Module &M) {
     50   return
     51     M.getNamedValue("objc_retain") ||
     52     M.getNamedValue("objc_release") ||
     53     M.getNamedValue("objc_autorelease") ||
     54     M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
     55     M.getNamedValue("objc_retainBlock") ||
     56     M.getNamedValue("objc_autoreleaseReturnValue") ||
     57     M.getNamedValue("objc_autoreleasePoolPush") ||
     58     M.getNamedValue("objc_loadWeakRetained") ||
     59     M.getNamedValue("objc_loadWeak") ||
     60     M.getNamedValue("objc_destroyWeak") ||
     61     M.getNamedValue("objc_storeWeak") ||
     62     M.getNamedValue("objc_initWeak") ||
     63     M.getNamedValue("objc_moveWeak") ||
     64     M.getNamedValue("objc_copyWeak") ||
     65     M.getNamedValue("objc_retainedObject") ||
     66     M.getNamedValue("objc_unretainedObject") ||
     67     M.getNamedValue("objc_unretainedPointer");
     68 }
     69 
     70 /// \enum InstructionClass
     71 /// \brief A simple classification for instructions.
     72 enum InstructionClass {
     73   IC_Retain,              ///< objc_retain
     74   IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
     75   IC_RetainBlock,         ///< objc_retainBlock
     76   IC_Release,             ///< objc_release
     77   IC_Autorelease,         ///< objc_autorelease
     78   IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
     79   IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
     80   IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
     81   IC_NoopCast,            ///< objc_retainedObject, etc.
     82   IC_FusedRetainAutorelease, ///< objc_retainAutorelease
     83   IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
     84   IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
     85   IC_StoreWeak,           ///< objc_storeWeak (primitive)
     86   IC_InitWeak,            ///< objc_initWeak (derived)
     87   IC_LoadWeak,            ///< objc_loadWeak (derived)
     88   IC_MoveWeak,            ///< objc_moveWeak (derived)
     89   IC_CopyWeak,            ///< objc_copyWeak (derived)
     90   IC_DestroyWeak,         ///< objc_destroyWeak (derived)
     91   IC_StoreStrong,         ///< objc_storeStrong (derived)
     92   IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
     93   IC_Call,                ///< could call objc_release
     94   IC_User,                ///< could "use" a pointer
     95   IC_None                 ///< anything else
     96 };
     97 
     98 raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class);
     99 
    100 /// \brief Test if the given class is objc_retain or equivalent.
    101 static inline bool IsRetain(InstructionClass Class) {
    102   return Class == IC_Retain ||
    103          Class == IC_RetainRV;
    104 }
    105 
    106 /// \brief Test if the given class is objc_autorelease or equivalent.
    107 static inline bool IsAutorelease(InstructionClass Class) {
    108   return Class == IC_Autorelease ||
    109          Class == IC_AutoreleaseRV;
    110 }
    111 
    112 /// \brief Test if the given class represents instructions which return their
    113 /// argument verbatim.
    114 static inline bool IsForwarding(InstructionClass Class) {
    115   // objc_retainBlock technically doesn't always return its argument
    116   // verbatim, but it doesn't matter for our purposes here.
    117   return Class == IC_Retain ||
    118          Class == IC_RetainRV ||
    119          Class == IC_Autorelease ||
    120          Class == IC_AutoreleaseRV ||
    121          Class == IC_RetainBlock ||
    122          Class == IC_NoopCast;
    123 }
    124 
    125 /// \brief Test if the given class represents instructions which do nothing if
    126 /// passed a null pointer.
    127 static inline bool IsNoopOnNull(InstructionClass Class) {
    128   return Class == IC_Retain ||
    129          Class == IC_RetainRV ||
    130          Class == IC_Release ||
    131          Class == IC_Autorelease ||
    132          Class == IC_AutoreleaseRV ||
    133          Class == IC_RetainBlock;
    134 }
    135 
    136 /// \brief Test if the given class represents instructions which are always safe
    137 /// to mark with the "tail" keyword.
    138 static inline bool IsAlwaysTail(InstructionClass Class) {
    139   // IC_RetainBlock may be given a stack argument.
    140   return Class == IC_Retain ||
    141          Class == IC_RetainRV ||
    142          Class == IC_AutoreleaseRV;
    143 }
    144 
    145 /// \brief Test if the given class represents instructions which are never safe
    146 /// to mark with the "tail" keyword.
    147 static inline bool IsNeverTail(InstructionClass Class) {
    148   /// It is never safe to tail call objc_autorelease since by tail calling
    149   /// objc_autorelease, we also tail call -[NSObject autorelease] which supports
    150   /// fast autoreleasing causing our object to be potentially reclaimed from the
    151   /// autorelease pool which violates the semantics of __autoreleasing types in
    152   /// ARC.
    153   return Class == IC_Autorelease;
    154 }
    155 
    156 /// \brief Test if the given class represents instructions which are always safe
    157 /// to mark with the nounwind attribute.
    158 static inline bool IsNoThrow(InstructionClass Class) {
    159   // objc_retainBlock is not nounwind because it calls user copy constructors
    160   // which could theoretically throw.
    161   return Class == IC_Retain ||
    162          Class == IC_RetainRV ||
    163          Class == IC_Release ||
    164          Class == IC_Autorelease ||
    165          Class == IC_AutoreleaseRV ||
    166          Class == IC_AutoreleasepoolPush ||
    167          Class == IC_AutoreleasepoolPop;
    168 }
    169 
    170 /// Test whether the given instruction can autorelease any pointer or cause an
    171 /// autoreleasepool pop.
    172 static inline bool
    173 CanInterruptRV(InstructionClass Class) {
    174   switch (Class) {
    175   case IC_AutoreleasepoolPop:
    176   case IC_CallOrUser:
    177   case IC_Call:
    178   case IC_Autorelease:
    179   case IC_AutoreleaseRV:
    180   case IC_FusedRetainAutorelease:
    181   case IC_FusedRetainAutoreleaseRV:
    182     return true;
    183   default:
    184     return false;
    185   }
    186 }
    187 
    188 /// \brief Determine if F is one of the special known Functions.  If it isn't,
    189 /// return IC_CallOrUser.
    190 InstructionClass GetFunctionClass(const Function *F);
    191 
    192 /// \brief Determine which objc runtime call instruction class V belongs to.
    193 ///
    194 /// This is similar to GetInstructionClass except that it only detects objc
    195 /// runtime calls. This allows it to be faster.
    196 ///
    197 static inline InstructionClass GetBasicInstructionClass(const Value *V) {
    198   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
    199     if (const Function *F = CI->getCalledFunction())
    200       return GetFunctionClass(F);
    201     // Otherwise, be conservative.
    202     return IC_CallOrUser;
    203   }
    204 
    205   // Otherwise, be conservative.
    206   return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
    207 }
    208 
    209 /// \brief Determine what kind of construct V is.
    210 InstructionClass GetInstructionClass(const Value *V);
    211 
    212 /// \brief This is a wrapper around getUnderlyingObject which also knows how to
    213 /// look through objc_retain and objc_autorelease calls, which we know to return
    214 /// their argument verbatim.
    215 static inline const Value *GetUnderlyingObjCPtr(const Value *V) {
    216   for (;;) {
    217     V = GetUnderlyingObject(V);
    218     if (!IsForwarding(GetBasicInstructionClass(V)))
    219       break;
    220     V = cast<CallInst>(V)->getArgOperand(0);
    221   }
    222 
    223   return V;
    224 }
    225 
    226 /// \brief This is a wrapper around Value::stripPointerCasts which also knows
    227 /// how to look through objc_retain and objc_autorelease calls, which we know to
    228 /// return their argument verbatim.
    229 static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) {
    230   for (;;) {
    231     V = V->stripPointerCasts();
    232     if (!IsForwarding(GetBasicInstructionClass(V)))
    233       break;
    234     V = cast<CallInst>(V)->getArgOperand(0);
    235   }
    236   return V;
    237 }
    238 
    239 /// \brief This is a wrapper around Value::stripPointerCasts which also knows
    240 /// how to look through objc_retain and objc_autorelease calls, which we know to
    241 /// return their argument verbatim.
    242 static inline Value *StripPointerCastsAndObjCCalls(Value *V) {
    243   for (;;) {
    244     V = V->stripPointerCasts();
    245     if (!IsForwarding(GetBasicInstructionClass(V)))
    246       break;
    247     V = cast<CallInst>(V)->getArgOperand(0);
    248   }
    249   return V;
    250 }
    251 
    252 /// \brief Assuming the given instruction is one of the special calls such as
    253 /// objc_retain or objc_release, return the argument value, stripped of no-op
    254 /// casts and forwarding calls.
    255 static inline Value *GetObjCArg(Value *Inst) {
    256   return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
    257 }
    258 
    259 static inline bool isNullOrUndef(const Value *V) {
    260   return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
    261 }
    262 
    263 static inline bool isNoopInstruction(const Instruction *I) {
    264   return isa<BitCastInst>(I) ||
    265     (isa<GetElementPtrInst>(I) &&
    266      cast<GetElementPtrInst>(I)->hasAllZeroIndices());
    267 }
    268 
    269 
    270 /// \brief Erase the given instruction.
    271 ///
    272 /// Many ObjC calls return their argument verbatim,
    273 /// so if it's such a call and the return value has users, replace them with the
    274 /// argument value.
    275 ///
    276 static inline void EraseInstruction(Instruction *CI) {
    277   Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
    278 
    279   bool Unused = CI->use_empty();
    280 
    281   if (!Unused) {
    282     // Replace the return value with the argument.
    283     assert(IsForwarding(GetBasicInstructionClass(CI)) &&
    284            "Can't delete non-forwarding instruction with users!");
    285     CI->replaceAllUsesWith(OldArg);
    286   }
    287 
    288   CI->eraseFromParent();
    289 
    290   if (Unused)
    291     RecursivelyDeleteTriviallyDeadInstructions(OldArg);
    292 }
    293 
    294 /// \brief Test whether the given value is possible a retainable object pointer.
    295 static inline bool IsPotentialRetainableObjPtr(const Value *Op) {
    296   // Pointers to static or stack storage are not valid retainable object
    297   // pointers.
    298   if (isa<Constant>(Op) || isa<AllocaInst>(Op))
    299     return false;
    300   // Special arguments can not be a valid retainable object pointer.
    301   if (const Argument *Arg = dyn_cast<Argument>(Op))
    302     if (Arg->hasByValAttr() ||
    303         Arg->hasNestAttr() ||
    304         Arg->hasStructRetAttr())
    305       return false;
    306   // Only consider values with pointer types.
    307   //
    308   // It seemes intuitive to exclude function pointer types as well, since
    309   // functions are never retainable object pointers, however clang occasionally
    310   // bitcasts retainable object pointers to function-pointer type temporarily.
    311   PointerType *Ty = dyn_cast<PointerType>(Op->getType());
    312   if (!Ty)
    313     return false;
    314   // Conservatively assume anything else is a potential retainable object
    315   // pointer.
    316   return true;
    317 }
    318 
    319 static inline bool IsPotentialRetainableObjPtr(const Value *Op,
    320                                                AliasAnalysis &AA) {
    321   // First make the rudimentary check.
    322   if (!IsPotentialRetainableObjPtr(Op))
    323     return false;
    324 
    325   // Objects in constant memory are not reference-counted.
    326   if (AA.pointsToConstantMemory(Op))
    327     return false;
    328 
    329   // Pointers in constant memory are not pointing to reference-counted objects.
    330   if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
    331     if (AA.pointsToConstantMemory(LI->getPointerOperand()))
    332       return false;
    333 
    334   // Otherwise assume the worst.
    335   return true;
    336 }
    337 
    338 /// \brief Helper for GetInstructionClass. Determines what kind of construct CS
    339 /// is.
    340 static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
    341   for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
    342        I != E; ++I)
    343     if (IsPotentialRetainableObjPtr(*I))
    344       return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
    345 
    346   return CS.onlyReadsMemory() ? IC_None : IC_Call;
    347 }
    348 
    349 /// \brief Return true if this value refers to a distinct and identifiable
    350 /// object.
    351 ///
    352 /// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses
    353 /// special knowledge of ObjC conventions.
    354 static inline bool IsObjCIdentifiedObject(const Value *V) {
    355   // Assume that call results and arguments have their own "provenance".
    356   // Constants (including GlobalVariables) and Allocas are never
    357   // reference-counted.
    358   if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
    359       isa<Argument>(V) || isa<Constant>(V) ||
    360       isa<AllocaInst>(V))
    361     return true;
    362 
    363   if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
    364     const Value *Pointer =
    365       StripPointerCastsAndObjCCalls(LI->getPointerOperand());
    366     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
    367       // A constant pointer can't be pointing to an object on the heap. It may
    368       // be reference-counted, but it won't be deleted.
    369       if (GV->isConstant())
    370         return true;
    371       StringRef Name = GV->getName();
    372       // These special variables are known to hold values which are not
    373       // reference-counted pointers.
    374       if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
    375           Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
    376           Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
    377           Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
    378           Name.startswith("\01l_objc_msgSend_fixup_"))
    379         return true;
    380     }
    381   }
    382 
    383   return false;
    384 }
    385 
    386 } // end namespace objcarc
    387 } // end namespace llvm
    388 
    389 #endif // LLVM_TRANSFORMS_SCALAR_OBJCARC_H
    390