Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_LITHIUM_ALLOCATOR_H_
     29 #define V8_LITHIUM_ALLOCATOR_H_
     30 
     31 #include "v8.h"
     32 
     33 #include "allocation.h"
     34 #include "lithium.h"
     35 #include "zone.h"
     36 
     37 namespace v8 {
     38 namespace internal {
     39 
     40 // Forward declarations.
     41 class HBasicBlock;
     42 class HGraph;
     43 class HInstruction;
     44 class HPhi;
     45 class HTracer;
     46 class HValue;
     47 class BitVector;
     48 class StringStream;
     49 
     50 class LArgument;
     51 class LChunk;
     52 class LOperand;
     53 class LUnallocated;
     54 class LConstantOperand;
     55 class LGap;
     56 class LParallelMove;
     57 class LPointerMap;
     58 class LStackSlot;
     59 class LRegister;
     60 
     61 
     62 // This class represents a single point of a LOperand's lifetime.
     63 // For each lithium instruction there are exactly two lifetime positions:
     64 // the beginning and the end of the instruction. Lifetime positions for
     65 // different lithium instructions are disjoint.
     66 class LifetimePosition {
     67  public:
     68   // Return the lifetime position that corresponds to the beginning of
     69   // the instruction with the given index.
     70   static LifetimePosition FromInstructionIndex(int index) {
     71     return LifetimePosition(index * kStep);
     72   }
     73 
     74   // Returns a numeric representation of this lifetime position.
     75   int Value() const {
     76     return value_;
     77   }
     78 
     79   // Returns the index of the instruction to which this lifetime position
     80   // corresponds.
     81   int InstructionIndex() const {
     82     ASSERT(IsValid());
     83     return value_ / kStep;
     84   }
     85 
     86   // Returns true if this lifetime position corresponds to the instruction
     87   // start.
     88   bool IsInstructionStart() const {
     89     return (value_ & (kStep - 1)) == 0;
     90   }
     91 
     92   // Returns the lifetime position for the start of the instruction which
     93   // corresponds to this lifetime position.
     94   LifetimePosition InstructionStart() const {
     95     ASSERT(IsValid());
     96     return LifetimePosition(value_ & ~(kStep - 1));
     97   }
     98 
     99   // Returns the lifetime position for the end of the instruction which
    100   // corresponds to this lifetime position.
    101   LifetimePosition InstructionEnd() const {
    102     ASSERT(IsValid());
    103     return LifetimePosition(InstructionStart().Value() + kStep/2);
    104   }
    105 
    106   // Returns the lifetime position for the beginning of the next instruction.
    107   LifetimePosition NextInstruction() const {
    108     ASSERT(IsValid());
    109     return LifetimePosition(InstructionStart().Value() + kStep);
    110   }
    111 
    112   // Returns the lifetime position for the beginning of the previous
    113   // instruction.
    114   LifetimePosition PrevInstruction() const {
    115     ASSERT(IsValid());
    116     ASSERT(value_ > 1);
    117     return LifetimePosition(InstructionStart().Value() - kStep);
    118   }
    119 
    120   // Constructs the lifetime position which does not correspond to any
    121   // instruction.
    122   LifetimePosition() : value_(-1) {}
    123 
    124   // Returns true if this lifetime positions corrensponds to some
    125   // instruction.
    126   bool IsValid() const { return value_ != -1; }
    127 
    128   static inline LifetimePosition Invalid() { return LifetimePosition(); }
    129 
    130   static inline LifetimePosition MaxPosition() {
    131     // We have to use this kind of getter instead of static member due to
    132     // crash bug in GDB.
    133     return LifetimePosition(kMaxInt);
    134   }
    135 
    136  private:
    137   static const int kStep = 2;
    138 
    139   // Code relies on kStep being a power of two.
    140   STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
    141 
    142   explicit LifetimePosition(int value) : value_(value) { }
    143 
    144   int value_;
    145 };
    146 
    147 
    148 enum RegisterKind {
    149   GENERAL_REGISTERS,
    150   DOUBLE_REGISTERS
    151 };
    152 
    153 
    154 // A register-allocator view of a Lithium instruction. It contains the id of
    155 // the output operand and a list of input operand uses.
    156 
    157 class LInstruction;
    158 class LEnvironment;
    159 
    160 // Iterator for non-null temp operands.
    161 class TempIterator BASE_EMBEDDED {
    162  public:
    163   inline explicit TempIterator(LInstruction* instr);
    164   inline bool Done();
    165   inline LOperand* Current();
    166   inline void Advance();
    167 
    168  private:
    169   inline void SkipUninteresting();
    170   LInstruction* instr_;
    171   int limit_;
    172   int current_;
    173 };
    174 
    175 
    176 // Iterator for non-constant input operands.
    177 class InputIterator BASE_EMBEDDED {
    178  public:
    179   inline explicit InputIterator(LInstruction* instr);
    180   inline bool Done();
    181   inline LOperand* Current();
    182   inline void Advance();
    183 
    184  private:
    185   inline void SkipUninteresting();
    186   LInstruction* instr_;
    187   int limit_;
    188   int current_;
    189 };
    190 
    191 
    192 class UseIterator BASE_EMBEDDED {
    193  public:
    194   inline explicit UseIterator(LInstruction* instr);
    195   inline bool Done();
    196   inline LOperand* Current();
    197   inline void Advance();
    198 
    199  private:
    200   InputIterator input_iterator_;
    201   DeepIterator env_iterator_;
    202 };
    203 
    204 
    205 // Representation of the non-empty interval [start,end[.
    206 class UseInterval: public ZoneObject {
    207  public:
    208   UseInterval(LifetimePosition start, LifetimePosition end)
    209       : start_(start), end_(end), next_(NULL) {
    210     ASSERT(start.Value() < end.Value());
    211   }
    212 
    213   LifetimePosition start() const { return start_; }
    214   LifetimePosition end() const { return end_; }
    215   UseInterval* next() const { return next_; }
    216 
    217   // Split this interval at the given position without effecting the
    218   // live range that owns it. The interval must contain the position.
    219   void SplitAt(LifetimePosition pos, Zone* zone);
    220 
    221   // If this interval intersects with other return smallest position
    222   // that belongs to both of them.
    223   LifetimePosition Intersect(const UseInterval* other) const {
    224     if (other->start().Value() < start_.Value()) return other->Intersect(this);
    225     if (other->start().Value() < end_.Value()) return other->start();
    226     return LifetimePosition::Invalid();
    227   }
    228 
    229   bool Contains(LifetimePosition point) const {
    230     return start_.Value() <= point.Value() && point.Value() < end_.Value();
    231   }
    232 
    233  private:
    234   void set_start(LifetimePosition start) { start_ = start; }
    235   void set_next(UseInterval* next) { next_ = next; }
    236 
    237   LifetimePosition start_;
    238   LifetimePosition end_;
    239   UseInterval* next_;
    240 
    241   friend class LiveRange;  // Assigns to start_.
    242 };
    243 
    244 // Representation of a use position.
    245 class UsePosition: public ZoneObject {
    246  public:
    247   UsePosition(LifetimePosition pos, LOperand* operand);
    248 
    249   LOperand* operand() const { return operand_; }
    250   bool HasOperand() const { return operand_ != NULL; }
    251 
    252   LOperand* hint() const { return hint_; }
    253   void set_hint(LOperand* hint) { hint_ = hint; }
    254   bool HasHint() const;
    255   bool RequiresRegister() const;
    256   bool RegisterIsBeneficial() const;
    257 
    258   LifetimePosition pos() const { return pos_; }
    259   UsePosition* next() const { return next_; }
    260 
    261  private:
    262   void set_next(UsePosition* next) { next_ = next; }
    263 
    264   LOperand* operand_;
    265   LOperand* hint_;
    266   LifetimePosition pos_;
    267   UsePosition* next_;
    268   bool requires_reg_;
    269   bool register_beneficial_;
    270 
    271   friend class LiveRange;
    272 };
    273 
    274 // Representation of SSA values' live ranges as a collection of (continuous)
    275 // intervals over the instruction ordering.
    276 class LiveRange: public ZoneObject {
    277  public:
    278   static const int kInvalidAssignment = 0x7fffffff;
    279 
    280   LiveRange(int id, Zone* zone);
    281 
    282   UseInterval* first_interval() const { return first_interval_; }
    283   UsePosition* first_pos() const { return first_pos_; }
    284   LiveRange* parent() const { return parent_; }
    285   LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
    286   LiveRange* next() const { return next_; }
    287   bool IsChild() const { return parent() != NULL; }
    288   int id() const { return id_; }
    289   bool IsFixed() const { return id_ < 0; }
    290   bool IsEmpty() const { return first_interval() == NULL; }
    291   LOperand* CreateAssignedOperand(Zone* zone);
    292   int assigned_register() const { return assigned_register_; }
    293   int spill_start_index() const { return spill_start_index_; }
    294   void set_assigned_register(int reg,
    295                              RegisterKind register_kind,
    296                              Zone* zone);
    297   void MakeSpilled(Zone* zone);
    298 
    299   // Returns use position in this live range that follows both start
    300   // and last processed use position.
    301   // Modifies internal state of live range!
    302   UsePosition* NextUsePosition(LifetimePosition start);
    303 
    304   // Returns use position for which register is required in this live
    305   // range and which follows both start and last processed use position
    306   // Modifies internal state of live range!
    307   UsePosition* NextRegisterPosition(LifetimePosition start);
    308 
    309   // Returns use position for which register is beneficial in this live
    310   // range and which follows both start and last processed use position
    311   // Modifies internal state of live range!
    312   UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
    313 
    314   // Can this live range be spilled at this position.
    315   bool CanBeSpilled(LifetimePosition pos);
    316 
    317   // Split this live range at the given position which must follow the start of
    318   // the range.
    319   // All uses following the given position will be moved from this
    320   // live range to the result live range.
    321   void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);
    322 
    323   bool IsDouble() const { return is_double_; }
    324   bool HasRegisterAssigned() const {
    325     return assigned_register_ != kInvalidAssignment;
    326   }
    327   bool IsSpilled() const { return spilled_; }
    328   UsePosition* FirstPosWithHint() const;
    329 
    330   LOperand* FirstHint() const {
    331     UsePosition* pos = FirstPosWithHint();
    332     if (pos != NULL) return pos->hint();
    333     return NULL;
    334   }
    335 
    336   LifetimePosition Start() const {
    337     ASSERT(!IsEmpty());
    338     return first_interval()->start();
    339   }
    340 
    341   LifetimePosition End() const {
    342     ASSERT(!IsEmpty());
    343     return last_interval_->end();
    344   }
    345 
    346   bool HasAllocatedSpillOperand() const;
    347   LOperand* GetSpillOperand() const { return spill_operand_; }
    348   void SetSpillOperand(LOperand* operand);
    349 
    350   void SetSpillStartIndex(int start) {
    351     spill_start_index_ = Min(start, spill_start_index_);
    352   }
    353 
    354   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
    355   bool CanCover(LifetimePosition position) const;
    356   bool Covers(LifetimePosition position);
    357   LifetimePosition FirstIntersection(LiveRange* other);
    358 
    359   // Add a new interval or a new use position to this live range.
    360   void EnsureInterval(LifetimePosition start,
    361                       LifetimePosition end,
    362                       Zone* zone);
    363   void AddUseInterval(LifetimePosition start,
    364                       LifetimePosition end,
    365                       Zone* zone);
    366   UsePosition* AddUsePosition(LifetimePosition pos,
    367                               LOperand* operand,
    368                               Zone* zone);
    369 
    370   // Shorten the most recently added interval by setting a new start.
    371   void ShortenTo(LifetimePosition start);
    372 
    373 #ifdef DEBUG
    374   // True if target overlaps an existing interval.
    375   bool HasOverlap(UseInterval* target) const;
    376   void Verify() const;
    377 #endif
    378 
    379  private:
    380   void ConvertOperands(Zone* zone);
    381   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
    382   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
    383                                   LifetimePosition but_not_past) const;
    384 
    385   int id_;
    386   bool spilled_;
    387   bool is_double_;
    388   int assigned_register_;
    389   UseInterval* last_interval_;
    390   UseInterval* first_interval_;
    391   UsePosition* first_pos_;
    392   LiveRange* parent_;
    393   LiveRange* next_;
    394   // This is used as a cache, it doesn't affect correctness.
    395   mutable UseInterval* current_interval_;
    396   UsePosition* last_processed_use_;
    397   LOperand* spill_operand_;
    398   int spill_start_index_;
    399 };
    400 
    401 
    402 class GrowableBitVector BASE_EMBEDDED {
    403  public:
    404   GrowableBitVector() : bits_(NULL) { }
    405 
    406   bool Contains(int value) const {
    407     if (!InBitsRange(value)) return false;
    408     return bits_->Contains(value);
    409   }
    410 
    411   void Add(int value, Zone* zone) {
    412     EnsureCapacity(value, zone);
    413     bits_->Add(value);
    414   }
    415 
    416  private:
    417   static const int kInitialLength = 1024;
    418 
    419   bool InBitsRange(int value) const {
    420     return bits_ != NULL && bits_->length() > value;
    421   }
    422 
    423   void EnsureCapacity(int value, Zone* zone) {
    424     if (InBitsRange(value)) return;
    425     int new_length = bits_ == NULL ? kInitialLength : bits_->length();
    426     while (new_length <= value) new_length *= 2;
    427     BitVector* new_bits = new(zone) BitVector(new_length, zone);
    428     if (bits_ != NULL) new_bits->CopyFrom(*bits_);
    429     bits_ = new_bits;
    430   }
    431 
    432   BitVector* bits_;
    433 };
    434 
    435 
    436 class LAllocator BASE_EMBEDDED {
    437  public:
    438   LAllocator(int first_virtual_register, HGraph* graph);
    439 
    440   static void TraceAlloc(const char* msg, ...);
    441 
    442   // Checks whether the value of a given virtual register is tagged.
    443   bool HasTaggedValue(int virtual_register) const;
    444 
    445   // Returns the register kind required by the given virtual register.
    446   RegisterKind RequiredRegisterKind(int virtual_register) const;
    447 
    448   bool Allocate(LChunk* chunk);
    449 
    450   const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
    451   const Vector<LiveRange*>* fixed_live_ranges() const {
    452     return &fixed_live_ranges_;
    453   }
    454   const Vector<LiveRange*>* fixed_double_live_ranges() const {
    455     return &fixed_double_live_ranges_;
    456   }
    457 
    458   LChunk* chunk() const { return chunk_; }
    459   HGraph* graph() const { return graph_; }
    460 
    461   int GetVirtualRegister() {
    462     if (next_virtual_register_ > LUnallocated::kMaxVirtualRegisters) {
    463       allocation_ok_ = false;
    464     }
    465     return next_virtual_register_++;
    466   }
    467 
    468   bool AllocationOk() { return allocation_ok_; }
    469 
    470   void MarkAsOsrEntry() {
    471     // There can be only one.
    472     ASSERT(!has_osr_entry_);
    473     // Simply set a flag to find and process instruction later.
    474     has_osr_entry_ = true;
    475   }
    476 
    477 #ifdef DEBUG
    478   void Verify() const;
    479 #endif
    480 
    481  private:
    482   void MeetRegisterConstraints();
    483   void ResolvePhis();
    484   void BuildLiveRanges();
    485   void AllocateGeneralRegisters();
    486   void AllocateDoubleRegisters();
    487   void ConnectRanges();
    488   void ResolveControlFlow();
    489   void PopulatePointerMaps();
    490   void ProcessOsrEntry();
    491   void AllocateRegisters();
    492   bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
    493   inline bool SafePointsAreInOrder() const;
    494 
    495   // Liveness analysis support.
    496   void InitializeLivenessAnalysis();
    497   BitVector* ComputeLiveOut(HBasicBlock* block);
    498   void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
    499   void ProcessInstructions(HBasicBlock* block, BitVector* live);
    500   void MeetRegisterConstraints(HBasicBlock* block);
    501   void MeetConstraintsBetween(LInstruction* first,
    502                               LInstruction* second,
    503                               int gap_index);
    504   void ResolvePhis(HBasicBlock* block);
    505 
    506   // Helper methods for building intervals.
    507   LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
    508   LiveRange* LiveRangeFor(LOperand* operand);
    509   void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
    510   void Use(LifetimePosition block_start,
    511            LifetimePosition position,
    512            LOperand* operand,
    513            LOperand* hint);
    514   void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
    515 
    516   // Helper methods for updating the life range lists.
    517   void AddToActive(LiveRange* range);
    518   void AddToInactive(LiveRange* range);
    519   void AddToUnhandledSorted(LiveRange* range);
    520   void AddToUnhandledUnsorted(LiveRange* range);
    521   void SortUnhandled();
    522   bool UnhandledIsSorted();
    523   void ActiveToHandled(LiveRange* range);
    524   void ActiveToInactive(LiveRange* range);
    525   void InactiveToHandled(LiveRange* range);
    526   void InactiveToActive(LiveRange* range);
    527   void FreeSpillSlot(LiveRange* range);
    528   LOperand* TryReuseSpillSlot(LiveRange* range);
    529 
    530   // Helper methods for allocating registers.
    531   bool TryAllocateFreeReg(LiveRange* range);
    532   void AllocateBlockedReg(LiveRange* range);
    533 
    534   // Live range splitting helpers.
    535 
    536   // Split the given range at the given position.
    537   // If range starts at or after the given position then the
    538   // original range is returned.
    539   // Otherwise returns the live range that starts at pos and contains
    540   // all uses from the original range that follow pos. Uses at pos will
    541   // still be owned by the original range after splitting.
    542   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
    543 
    544   // Split the given range in a position from the interval [start, end].
    545   LiveRange* SplitBetween(LiveRange* range,
    546                           LifetimePosition start,
    547                           LifetimePosition end);
    548 
    549   // Find a lifetime position in the interval [start, end] which
    550   // is optimal for splitting: it is either header of the outermost
    551   // loop covered by this interval or the latest possible position.
    552   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
    553                                        LifetimePosition end);
    554 
    555   // Spill the given life range after position pos.
    556   void SpillAfter(LiveRange* range, LifetimePosition pos);
    557 
    558   // Spill the given life range after position start and up to position end.
    559   void SpillBetween(LiveRange* range,
    560                     LifetimePosition start,
    561                     LifetimePosition end);
    562 
    563   void SplitAndSpillIntersecting(LiveRange* range);
    564 
    565   void Spill(LiveRange* range);
    566   bool IsBlockBoundary(LifetimePosition pos);
    567 
    568   // Helper methods for resolving control flow.
    569   void ResolveControlFlow(LiveRange* range,
    570                           HBasicBlock* block,
    571                           HBasicBlock* pred);
    572 
    573   // Return parallel move that should be used to connect ranges split at the
    574   // given position.
    575   LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
    576 
    577   // Return the block which contains give lifetime position.
    578   HBasicBlock* GetBlock(LifetimePosition pos);
    579 
    580   // Helper methods for the fixed registers.
    581   int RegisterCount() const;
    582   static int FixedLiveRangeID(int index) { return -index - 1; }
    583   static int FixedDoubleLiveRangeID(int index);
    584   LiveRange* FixedLiveRangeFor(int index);
    585   LiveRange* FixedDoubleLiveRangeFor(int index);
    586   LiveRange* LiveRangeFor(int index);
    587   HPhi* LookupPhi(LOperand* operand) const;
    588   LGap* GetLastGap(HBasicBlock* block);
    589 
    590   const char* RegisterName(int allocation_index);
    591 
    592   inline bool IsGapAt(int index);
    593 
    594   inline LInstruction* InstructionAt(int index);
    595 
    596   inline LGap* GapAt(int index);
    597 
    598   Zone* zone_;
    599 
    600   LChunk* chunk_;
    601 
    602   // During liveness analysis keep a mapping from block id to live_in sets
    603   // for blocks already analyzed.
    604   ZoneList<BitVector*> live_in_sets_;
    605 
    606   // Liveness analysis results.
    607   ZoneList<LiveRange*> live_ranges_;
    608 
    609   // Lists of live ranges
    610   EmbeddedVector<LiveRange*, Register::kNumAllocatableRegisters>
    611       fixed_live_ranges_;
    612   EmbeddedVector<LiveRange*, DoubleRegister::kNumAllocatableRegisters>
    613       fixed_double_live_ranges_;
    614   ZoneList<LiveRange*> unhandled_live_ranges_;
    615   ZoneList<LiveRange*> active_live_ranges_;
    616   ZoneList<LiveRange*> inactive_live_ranges_;
    617   ZoneList<LiveRange*> reusable_slots_;
    618 
    619   // Next virtual register number to be assigned to temporaries.
    620   int next_virtual_register_;
    621   int first_artificial_register_;
    622   GrowableBitVector double_artificial_registers_;
    623 
    624   RegisterKind mode_;
    625   int num_registers_;
    626 
    627   HGraph* graph_;
    628 
    629   bool has_osr_entry_;
    630 
    631   // Indicates success or failure during register allocation.
    632   bool allocation_ok_;
    633 
    634   DISALLOW_COPY_AND_ASSIGN(LAllocator);
    635 };
    636 
    637 
    638 } }  // namespace v8::internal
    639 
    640 #endif  // V8_LITHIUM_ALLOCATOR_H_
    641