Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "CGRecordLayout.h"
     20 #include "CodeGenModule.h"
     21 #include "TargetInfo.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "llvm/ADT/Hashing.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/MDBuilder.h"
     30 #include "llvm/Support/ConvertUTF.h"
     31 
     32 using namespace clang;
     33 using namespace CodeGen;
     34 
     35 //===--------------------------------------------------------------------===//
     36 //                        Miscellaneous Helper Methods
     37 //===--------------------------------------------------------------------===//
     38 
     39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
     40   unsigned addressSpace =
     41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
     42 
     43   llvm::PointerType *destType = Int8PtrTy;
     44   if (addressSpace)
     45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
     46 
     47   if (value->getType() == destType) return value;
     48   return Builder.CreateBitCast(value, destType);
     49 }
     50 
     51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     52 /// block.
     53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
     54                                                     const Twine &Name) {
     55   if (!Builder.isNamePreserving())
     56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
     57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
     58 }
     59 
     60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
     61                                      llvm::Value *Init) {
     62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
     63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
     64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
     65 }
     66 
     67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
     68                                                 const Twine &Name) {
     69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
     70   // FIXME: Should we prefer the preferred type alignment here?
     71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     72   Alloc->setAlignment(Align.getQuantity());
     73   return Alloc;
     74 }
     75 
     76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
     77                                                  const Twine &Name) {
     78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
     79   // FIXME: Should we prefer the preferred type alignment here?
     80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     81   Alloc->setAlignment(Align.getQuantity());
     82   return Alloc;
     83 }
     84 
     85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
     86 /// expression and compare the result against zero, returning an Int1Ty value.
     87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
     88   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
     89     llvm::Value *MemPtr = EmitScalarExpr(E);
     90     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
     91   }
     92 
     93   QualType BoolTy = getContext().BoolTy;
     94   if (!E->getType()->isAnyComplexType())
     95     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
     96 
     97   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
     98 }
     99 
    100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
    101 /// ignoring the result.
    102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
    103   if (E->isRValue())
    104     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
    105 
    106   // Just emit it as an l-value and drop the result.
    107   EmitLValue(E);
    108 }
    109 
    110 /// EmitAnyExpr - Emit code to compute the specified expression which
    111 /// can have any type.  The result is returned as an RValue struct.
    112 /// If this is an aggregate expression, AggSlot indicates where the
    113 /// result should be returned.
    114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
    115                                     AggValueSlot aggSlot,
    116                                     bool ignoreResult) {
    117   switch (getEvaluationKind(E->getType())) {
    118   case TEK_Scalar:
    119     return RValue::get(EmitScalarExpr(E, ignoreResult));
    120   case TEK_Complex:
    121     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
    122   case TEK_Aggregate:
    123     if (!ignoreResult && aggSlot.isIgnored())
    124       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
    125     EmitAggExpr(E, aggSlot);
    126     return aggSlot.asRValue();
    127   }
    128   llvm_unreachable("bad evaluation kind");
    129 }
    130 
    131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
    132 /// always be accessible even if no aggregate location is provided.
    133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
    134   AggValueSlot AggSlot = AggValueSlot::ignored();
    135 
    136   if (hasAggregateEvaluationKind(E->getType()))
    137     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
    138   return EmitAnyExpr(E, AggSlot);
    139 }
    140 
    141 /// EmitAnyExprToMem - Evaluate an expression into a given memory
    142 /// location.
    143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
    144                                        llvm::Value *Location,
    145                                        Qualifiers Quals,
    146                                        bool IsInit) {
    147   // FIXME: This function should take an LValue as an argument.
    148   switch (getEvaluationKind(E->getType())) {
    149   case TEK_Complex:
    150     EmitComplexExprIntoLValue(E,
    151                          MakeNaturalAlignAddrLValue(Location, E->getType()),
    152                               /*isInit*/ false);
    153     return;
    154 
    155   case TEK_Aggregate: {
    156     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
    157     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
    158                                          AggValueSlot::IsDestructed_t(IsInit),
    159                                          AggValueSlot::DoesNotNeedGCBarriers,
    160                                          AggValueSlot::IsAliased_t(!IsInit)));
    161     return;
    162   }
    163 
    164   case TEK_Scalar: {
    165     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
    166     LValue LV = MakeAddrLValue(Location, E->getType());
    167     EmitStoreThroughLValue(RV, LV);
    168     return;
    169   }
    170   }
    171   llvm_unreachable("bad evaluation kind");
    172 }
    173 
    174 static llvm::Value *
    175 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
    176                          const NamedDecl *InitializedDecl) {
    177   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
    178     if (VD->hasGlobalStorage()) {
    179       SmallString<256> Name;
    180       llvm::raw_svector_ostream Out(Name);
    181       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
    182       Out.flush();
    183 
    184       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
    185 
    186       // Create the reference temporary.
    187       llvm::GlobalValue *RefTemp =
    188         new llvm::GlobalVariable(CGF.CGM.getModule(),
    189                                  RefTempTy, /*isConstant=*/false,
    190                                  llvm::GlobalValue::InternalLinkage,
    191                                  llvm::Constant::getNullValue(RefTempTy),
    192                                  Name.str());
    193       return RefTemp;
    194     }
    195   }
    196 
    197   return CGF.CreateMemTemp(Type, "ref.tmp");
    198 }
    199 
    200 static llvm::Value *
    201 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
    202                             llvm::Value *&ReferenceTemporary,
    203                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
    204                             QualType &ObjCARCReferenceLifetimeType,
    205                             const NamedDecl *InitializedDecl) {
    206   const MaterializeTemporaryExpr *M = NULL;
    207   E = E->findMaterializedTemporary(M);
    208   // Objective-C++ ARC:
    209   //   If we are binding a reference to a temporary that has ownership, we
    210   //   need to perform retain/release operations on the temporary.
    211   if (M && CGF.getLangOpts().ObjCAutoRefCount &&
    212       M->getType()->isObjCLifetimeType() &&
    213       (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
    214        M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
    215        M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
    216     ObjCARCReferenceLifetimeType = M->getType();
    217 
    218   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
    219     CGF.enterFullExpression(EWC);
    220     CodeGenFunction::RunCleanupsScope Scope(CGF);
    221 
    222     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
    223                                        ReferenceTemporary,
    224                                        ReferenceTemporaryDtor,
    225                                        ObjCARCReferenceLifetimeType,
    226                                        InitializedDecl);
    227   }
    228 
    229   RValue RV;
    230   if (E->isGLValue()) {
    231     // Emit the expression as an lvalue.
    232     LValue LV = CGF.EmitLValue(E);
    233 
    234     if (LV.isSimple())
    235       return LV.getAddress();
    236 
    237     // We have to load the lvalue.
    238     RV = CGF.EmitLoadOfLValue(LV);
    239   } else {
    240     if (!ObjCARCReferenceLifetimeType.isNull()) {
    241       ReferenceTemporary = CreateReferenceTemporary(CGF,
    242                                                   ObjCARCReferenceLifetimeType,
    243                                                     InitializedDecl);
    244 
    245 
    246       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
    247                                              ObjCARCReferenceLifetimeType);
    248 
    249       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
    250                          RefTempDst, false);
    251 
    252       bool ExtendsLifeOfTemporary = false;
    253       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
    254         if (Var->extendsLifetimeOfTemporary())
    255           ExtendsLifeOfTemporary = true;
    256       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
    257         ExtendsLifeOfTemporary = true;
    258       }
    259 
    260       if (!ExtendsLifeOfTemporary) {
    261         // Since the lifetime of this temporary isn't going to be extended,
    262         // we need to clean it up ourselves at the end of the full expression.
    263         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
    264         case Qualifiers::OCL_None:
    265         case Qualifiers::OCL_ExplicitNone:
    266         case Qualifiers::OCL_Autoreleasing:
    267           break;
    268 
    269         case Qualifiers::OCL_Strong: {
    270           assert(!ObjCARCReferenceLifetimeType->isArrayType());
    271           CleanupKind cleanupKind = CGF.getARCCleanupKind();
    272           CGF.pushDestroy(cleanupKind,
    273                           ReferenceTemporary,
    274                           ObjCARCReferenceLifetimeType,
    275                           CodeGenFunction::destroyARCStrongImprecise,
    276                           cleanupKind & EHCleanup);
    277           break;
    278         }
    279 
    280         case Qualifiers::OCL_Weak:
    281           assert(!ObjCARCReferenceLifetimeType->isArrayType());
    282           CGF.pushDestroy(NormalAndEHCleanup,
    283                           ReferenceTemporary,
    284                           ObjCARCReferenceLifetimeType,
    285                           CodeGenFunction::destroyARCWeak,
    286                           /*useEHCleanupForArray*/ true);
    287           break;
    288         }
    289 
    290         ObjCARCReferenceLifetimeType = QualType();
    291       }
    292 
    293       return ReferenceTemporary;
    294     }
    295 
    296     SmallVector<SubobjectAdjustment, 2> Adjustments;
    297     E = E->skipRValueSubobjectAdjustments(Adjustments);
    298     if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
    299       if (opaque->getType()->isRecordType())
    300         return CGF.EmitOpaqueValueLValue(opaque).getAddress();
    301 
    302     // Create a reference temporary if necessary.
    303     AggValueSlot AggSlot = AggValueSlot::ignored();
    304     if (CGF.hasAggregateEvaluationKind(E->getType())) {
    305       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
    306                                                     InitializedDecl);
    307       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
    308       AggValueSlot::IsDestructed_t isDestructed
    309         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
    310       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
    311                                       Qualifiers(), isDestructed,
    312                                       AggValueSlot::DoesNotNeedGCBarriers,
    313                                       AggValueSlot::IsNotAliased);
    314     }
    315 
    316     if (InitializedDecl) {
    317       // Get the destructor for the reference temporary.
    318       if (const RecordType *RT =
    319             E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
    320         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    321         if (!ClassDecl->hasTrivialDestructor())
    322           ReferenceTemporaryDtor = ClassDecl->getDestructor();
    323       }
    324     }
    325 
    326     RV = CGF.EmitAnyExpr(E, AggSlot);
    327 
    328     // Check if need to perform derived-to-base casts and/or field accesses, to
    329     // get from the temporary object we created (and, potentially, for which we
    330     // extended the lifetime) to the subobject we're binding the reference to.
    331     if (!Adjustments.empty()) {
    332       llvm::Value *Object = RV.getAggregateAddr();
    333       for (unsigned I = Adjustments.size(); I != 0; --I) {
    334         SubobjectAdjustment &Adjustment = Adjustments[I-1];
    335         switch (Adjustment.Kind) {
    336         case SubobjectAdjustment::DerivedToBaseAdjustment:
    337           Object =
    338               CGF.GetAddressOfBaseClass(Object,
    339                                         Adjustment.DerivedToBase.DerivedClass,
    340                               Adjustment.DerivedToBase.BasePath->path_begin(),
    341                               Adjustment.DerivedToBase.BasePath->path_end(),
    342                                         /*NullCheckValue=*/false);
    343           break;
    344 
    345         case SubobjectAdjustment::FieldAdjustment: {
    346           LValue LV = CGF.MakeAddrLValue(Object, E->getType());
    347           LV = CGF.EmitLValueForField(LV, Adjustment.Field);
    348           if (LV.isSimple()) {
    349             Object = LV.getAddress();
    350             break;
    351           }
    352 
    353           // For non-simple lvalues, we actually have to create a copy of
    354           // the object we're binding to.
    355           QualType T = Adjustment.Field->getType().getNonReferenceType()
    356                                                   .getUnqualifiedType();
    357           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
    358           LValue TempLV = CGF.MakeAddrLValue(Object,
    359                                              Adjustment.Field->getType());
    360           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
    361           break;
    362         }
    363 
    364         case SubobjectAdjustment::MemberPointerAdjustment: {
    365           llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
    366           Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
    367                         CGF, Object, Ptr, Adjustment.Ptr.MPT);
    368           break;
    369         }
    370         }
    371       }
    372 
    373       return Object;
    374     }
    375   }
    376 
    377   if (RV.isAggregate())
    378     return RV.getAggregateAddr();
    379 
    380   // Create a temporary variable that we can bind the reference to.
    381   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
    382                                                 InitializedDecl);
    383 
    384 
    385   LValue tempLV = CGF.MakeNaturalAlignAddrLValue(ReferenceTemporary,
    386                                                  E->getType());
    387   if (RV.isScalar())
    388     CGF.EmitStoreOfScalar(RV.getScalarVal(), tempLV, /*init*/ true);
    389   else
    390     CGF.EmitStoreOfComplex(RV.getComplexVal(), tempLV, /*init*/ true);
    391   return ReferenceTemporary;
    392 }
    393 
    394 RValue
    395 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
    396                                             const NamedDecl *InitializedDecl) {
    397   llvm::Value *ReferenceTemporary = 0;
    398   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
    399   QualType ObjCARCReferenceLifetimeType;
    400   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
    401                                                    ReferenceTemporaryDtor,
    402                                                    ObjCARCReferenceLifetimeType,
    403                                                    InitializedDecl);
    404   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
    405     // C++11 [dcl.ref]p5 (as amended by core issue 453):
    406     //   If a glvalue to which a reference is directly bound designates neither
    407     //   an existing object or function of an appropriate type nor a region of
    408     //   storage of suitable size and alignment to contain an object of the
    409     //   reference's type, the behavior is undefined.
    410     QualType Ty = E->getType();
    411     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
    412   }
    413   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
    414     return RValue::get(Value);
    415 
    416   // Make sure to call the destructor for the reference temporary.
    417   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
    418   if (VD && VD->hasGlobalStorage()) {
    419     if (ReferenceTemporaryDtor) {
    420       llvm::Constant *CleanupFn;
    421       llvm::Constant *CleanupArg;
    422       if (E->getType()->isArrayType()) {
    423         CleanupFn = CodeGenFunction(CGM).generateDestroyHelper(
    424             cast<llvm::Constant>(ReferenceTemporary), E->getType(),
    425             destroyCXXObject, getLangOpts().Exceptions);
    426         CleanupArg = llvm::Constant::getNullValue(Int8PtrTy);
    427       } else {
    428         CleanupFn =
    429           CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
    430         CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
    431       }
    432       CGM.getCXXABI().registerGlobalDtor(*this, CleanupFn, CleanupArg);
    433     } else {
    434       assert(!ObjCARCReferenceLifetimeType.isNull());
    435       // Note: We intentionally do not register a global "destructor" to
    436       // release the object.
    437     }
    438 
    439     return RValue::get(Value);
    440   }
    441 
    442   if (ReferenceTemporaryDtor) {
    443     if (E->getType()->isArrayType())
    444       pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
    445                   destroyCXXObject, getLangOpts().Exceptions);
    446     else
    447       PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
    448   } else {
    449     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
    450     case Qualifiers::OCL_None:
    451       llvm_unreachable(
    452                       "Not a reference temporary that needs to be deallocated");
    453     case Qualifiers::OCL_ExplicitNone:
    454     case Qualifiers::OCL_Autoreleasing:
    455       // Nothing to do.
    456       break;
    457 
    458     case Qualifiers::OCL_Strong: {
    459       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
    460       CleanupKind cleanupKind = getARCCleanupKind();
    461       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
    462                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
    463                   cleanupKind & EHCleanup);
    464       break;
    465     }
    466 
    467     case Qualifiers::OCL_Weak: {
    468       // __weak objects always get EH cleanups; otherwise, exceptions
    469       // could cause really nasty crashes instead of mere leaks.
    470       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
    471                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
    472       break;
    473     }
    474     }
    475   }
    476 
    477   return RValue::get(Value);
    478 }
    479 
    480 
    481 /// getAccessedFieldNo - Given an encoded value and a result number, return the
    482 /// input field number being accessed.
    483 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
    484                                              const llvm::Constant *Elts) {
    485   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
    486       ->getZExtValue();
    487 }
    488 
    489 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
    490 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
    491                                     llvm::Value *High) {
    492   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
    493   llvm::Value *K47 = Builder.getInt64(47);
    494   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
    495   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
    496   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
    497   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
    498   return Builder.CreateMul(B1, KMul);
    499 }
    500 
    501 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
    502                                     llvm::Value *Address,
    503                                     QualType Ty, CharUnits Alignment) {
    504   if (!SanitizePerformTypeCheck)
    505     return;
    506 
    507   // Don't check pointers outside the default address space. The null check
    508   // isn't correct, the object-size check isn't supported by LLVM, and we can't
    509   // communicate the addresses to the runtime handler for the vptr check.
    510   if (Address->getType()->getPointerAddressSpace())
    511     return;
    512 
    513   llvm::Value *Cond = 0;
    514   llvm::BasicBlock *Done = 0;
    515 
    516   if (SanOpts->Null) {
    517     // The glvalue must not be an empty glvalue.
    518     Cond = Builder.CreateICmpNE(
    519         Address, llvm::Constant::getNullValue(Address->getType()));
    520 
    521     if (TCK == TCK_DowncastPointer) {
    522       // When performing a pointer downcast, it's OK if the value is null.
    523       // Skip the remaining checks in that case.
    524       Done = createBasicBlock("null");
    525       llvm::BasicBlock *Rest = createBasicBlock("not.null");
    526       Builder.CreateCondBr(Cond, Rest, Done);
    527       EmitBlock(Rest);
    528       Cond = 0;
    529     }
    530   }
    531 
    532   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
    533     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
    534 
    535     // The glvalue must refer to a large enough storage region.
    536     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
    537     //        to check this.
    538     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
    539     llvm::Value *Min = Builder.getFalse();
    540     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
    541     llvm::Value *LargeEnough =
    542         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
    543                               llvm::ConstantInt::get(IntPtrTy, Size));
    544     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
    545   }
    546 
    547   uint64_t AlignVal = 0;
    548 
    549   if (SanOpts->Alignment) {
    550     AlignVal = Alignment.getQuantity();
    551     if (!Ty->isIncompleteType() && !AlignVal)
    552       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
    553 
    554     // The glvalue must be suitably aligned.
    555     if (AlignVal) {
    556       llvm::Value *Align =
    557           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
    558                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
    559       llvm::Value *Aligned =
    560         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
    561       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
    562     }
    563   }
    564 
    565   if (Cond) {
    566     llvm::Constant *StaticData[] = {
    567       EmitCheckSourceLocation(Loc),
    568       EmitCheckTypeDescriptor(Ty),
    569       llvm::ConstantInt::get(SizeTy, AlignVal),
    570       llvm::ConstantInt::get(Int8Ty, TCK)
    571     };
    572     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
    573   }
    574 
    575   // If possible, check that the vptr indicates that there is a subobject of
    576   // type Ty at offset zero within this object.
    577   //
    578   // C++11 [basic.life]p5,6:
    579   //   [For storage which does not refer to an object within its lifetime]
    580   //   The program has undefined behavior if:
    581   //    -- the [pointer or glvalue] is used to access a non-static data member
    582   //       or call a non-static member function
    583   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    584   if (SanOpts->Vptr &&
    585       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
    586        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
    587       RD && RD->hasDefinition() && RD->isDynamicClass()) {
    588     // Compute a hash of the mangled name of the type.
    589     //
    590     // FIXME: This is not guaranteed to be deterministic! Move to a
    591     //        fingerprinting mechanism once LLVM provides one. For the time
    592     //        being the implementation happens to be deterministic.
    593     SmallString<64> MangledName;
    594     llvm::raw_svector_ostream Out(MangledName);
    595     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
    596                                                      Out);
    597     llvm::hash_code TypeHash = hash_value(Out.str());
    598 
    599     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
    600     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
    601     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
    602     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
    603     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
    604     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
    605 
    606     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
    607     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
    608 
    609     // Look the hash up in our cache.
    610     const int CacheSize = 128;
    611     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
    612     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
    613                                                    "__ubsan_vptr_type_cache");
    614     llvm::Value *Slot = Builder.CreateAnd(Hash,
    615                                           llvm::ConstantInt::get(IntPtrTy,
    616                                                                  CacheSize-1));
    617     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
    618     llvm::Value *CacheVal =
    619       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
    620 
    621     // If the hash isn't in the cache, call a runtime handler to perform the
    622     // hard work of checking whether the vptr is for an object of the right
    623     // type. This will either fill in the cache and return, or produce a
    624     // diagnostic.
    625     llvm::Constant *StaticData[] = {
    626       EmitCheckSourceLocation(Loc),
    627       EmitCheckTypeDescriptor(Ty),
    628       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
    629       llvm::ConstantInt::get(Int8Ty, TCK)
    630     };
    631     llvm::Value *DynamicData[] = { Address, Hash };
    632     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
    633               "dynamic_type_cache_miss", StaticData, DynamicData,
    634               CRK_AlwaysRecoverable);
    635   }
    636 
    637   if (Done) {
    638     Builder.CreateBr(Done);
    639     EmitBlock(Done);
    640   }
    641 }
    642 
    643 /// Determine whether this expression refers to a flexible array member in a
    644 /// struct. We disable array bounds checks for such members.
    645 static bool isFlexibleArrayMemberExpr(const Expr *E) {
    646   // For compatibility with existing code, we treat arrays of length 0 or
    647   // 1 as flexible array members.
    648   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
    649   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
    650     if (CAT->getSize().ugt(1))
    651       return false;
    652   } else if (!isa<IncompleteArrayType>(AT))
    653     return false;
    654 
    655   E = E->IgnoreParens();
    656 
    657   // A flexible array member must be the last member in the class.
    658   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
    659     // FIXME: If the base type of the member expr is not FD->getParent(),
    660     // this should not be treated as a flexible array member access.
    661     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
    662       RecordDecl::field_iterator FI(
    663           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
    664       return ++FI == FD->getParent()->field_end();
    665     }
    666   }
    667 
    668   return false;
    669 }
    670 
    671 /// If Base is known to point to the start of an array, return the length of
    672 /// that array. Return 0 if the length cannot be determined.
    673 static llvm::Value *getArrayIndexingBound(
    674     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
    675   // For the vector indexing extension, the bound is the number of elements.
    676   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
    677     IndexedType = Base->getType();
    678     return CGF.Builder.getInt32(VT->getNumElements());
    679   }
    680 
    681   Base = Base->IgnoreParens();
    682 
    683   if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
    684     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
    685         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
    686       IndexedType = CE->getSubExpr()->getType();
    687       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
    688       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
    689         return CGF.Builder.getInt(CAT->getSize());
    690       else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
    691         return CGF.getVLASize(VAT).first;
    692     }
    693   }
    694 
    695   return 0;
    696 }
    697 
    698 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
    699                                       llvm::Value *Index, QualType IndexType,
    700                                       bool Accessed) {
    701   assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
    702 
    703   QualType IndexedType;
    704   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
    705   if (!Bound)
    706     return;
    707 
    708   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
    709   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
    710   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
    711 
    712   llvm::Constant *StaticData[] = {
    713     EmitCheckSourceLocation(E->getExprLoc()),
    714     EmitCheckTypeDescriptor(IndexedType),
    715     EmitCheckTypeDescriptor(IndexType)
    716   };
    717   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
    718                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
    719   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
    720 }
    721 
    722 
    723 CodeGenFunction::ComplexPairTy CodeGenFunction::
    724 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
    725                          bool isInc, bool isPre) {
    726   ComplexPairTy InVal = EmitLoadOfComplex(LV);
    727 
    728   llvm::Value *NextVal;
    729   if (isa<llvm::IntegerType>(InVal.first->getType())) {
    730     uint64_t AmountVal = isInc ? 1 : -1;
    731     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
    732 
    733     // Add the inc/dec to the real part.
    734     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    735   } else {
    736     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
    737     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
    738     if (!isInc)
    739       FVal.changeSign();
    740     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
    741 
    742     // Add the inc/dec to the real part.
    743     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    744   }
    745 
    746   ComplexPairTy IncVal(NextVal, InVal.second);
    747 
    748   // Store the updated result through the lvalue.
    749   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
    750 
    751   // If this is a postinc, return the value read from memory, otherwise use the
    752   // updated value.
    753   return isPre ? IncVal : InVal;
    754 }
    755 
    756 
    757 //===----------------------------------------------------------------------===//
    758 //                         LValue Expression Emission
    759 //===----------------------------------------------------------------------===//
    760 
    761 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
    762   if (Ty->isVoidType())
    763     return RValue::get(0);
    764 
    765   switch (getEvaluationKind(Ty)) {
    766   case TEK_Complex: {
    767     llvm::Type *EltTy =
    768       ConvertType(Ty->castAs<ComplexType>()->getElementType());
    769     llvm::Value *U = llvm::UndefValue::get(EltTy);
    770     return RValue::getComplex(std::make_pair(U, U));
    771   }
    772 
    773   // If this is a use of an undefined aggregate type, the aggregate must have an
    774   // identifiable address.  Just because the contents of the value are undefined
    775   // doesn't mean that the address can't be taken and compared.
    776   case TEK_Aggregate: {
    777     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
    778     return RValue::getAggregate(DestPtr);
    779   }
    780 
    781   case TEK_Scalar:
    782     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
    783   }
    784   llvm_unreachable("bad evaluation kind");
    785 }
    786 
    787 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
    788                                               const char *Name) {
    789   ErrorUnsupported(E, Name);
    790   return GetUndefRValue(E->getType());
    791 }
    792 
    793 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
    794                                               const char *Name) {
    795   ErrorUnsupported(E, Name);
    796   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
    797   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
    798 }
    799 
    800 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
    801   LValue LV;
    802   if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
    803     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
    804   else
    805     LV = EmitLValue(E);
    806   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
    807     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
    808                   E->getType(), LV.getAlignment());
    809   return LV;
    810 }
    811 
    812 /// EmitLValue - Emit code to compute a designator that specifies the location
    813 /// of the expression.
    814 ///
    815 /// This can return one of two things: a simple address or a bitfield reference.
    816 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
    817 /// an LLVM pointer type.
    818 ///
    819 /// If this returns a bitfield reference, nothing about the pointee type of the
    820 /// LLVM value is known: For example, it may not be a pointer to an integer.
    821 ///
    822 /// If this returns a normal address, and if the lvalue's C type is fixed size,
    823 /// this method guarantees that the returned pointer type will point to an LLVM
    824 /// type of the same size of the lvalue's type.  If the lvalue has a variable
    825 /// length type, this is not possible.
    826 ///
    827 LValue CodeGenFunction::EmitLValue(const Expr *E) {
    828   switch (E->getStmtClass()) {
    829   default: return EmitUnsupportedLValue(E, "l-value expression");
    830 
    831   case Expr::ObjCPropertyRefExprClass:
    832     llvm_unreachable("cannot emit a property reference directly");
    833 
    834   case Expr::ObjCSelectorExprClass:
    835     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
    836   case Expr::ObjCIsaExprClass:
    837     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
    838   case Expr::BinaryOperatorClass:
    839     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
    840   case Expr::CompoundAssignOperatorClass:
    841     if (!E->getType()->isAnyComplexType())
    842       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    843     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    844   case Expr::CallExprClass:
    845   case Expr::CXXMemberCallExprClass:
    846   case Expr::CXXOperatorCallExprClass:
    847   case Expr::UserDefinedLiteralClass:
    848     return EmitCallExprLValue(cast<CallExpr>(E));
    849   case Expr::VAArgExprClass:
    850     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
    851   case Expr::DeclRefExprClass:
    852     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
    853   case Expr::ParenExprClass:
    854     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
    855   case Expr::GenericSelectionExprClass:
    856     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
    857   case Expr::PredefinedExprClass:
    858     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
    859   case Expr::StringLiteralClass:
    860     return EmitStringLiteralLValue(cast<StringLiteral>(E));
    861   case Expr::ObjCEncodeExprClass:
    862     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
    863   case Expr::PseudoObjectExprClass:
    864     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
    865   case Expr::InitListExprClass:
    866     return EmitInitListLValue(cast<InitListExpr>(E));
    867   case Expr::CXXTemporaryObjectExprClass:
    868   case Expr::CXXConstructExprClass:
    869     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
    870   case Expr::CXXBindTemporaryExprClass:
    871     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
    872   case Expr::CXXUuidofExprClass:
    873     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
    874   case Expr::LambdaExprClass:
    875     return EmitLambdaLValue(cast<LambdaExpr>(E));
    876 
    877   case Expr::ExprWithCleanupsClass: {
    878     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
    879     enterFullExpression(cleanups);
    880     RunCleanupsScope Scope(*this);
    881     return EmitLValue(cleanups->getSubExpr());
    882   }
    883 
    884   case Expr::CXXScalarValueInitExprClass:
    885     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
    886   case Expr::CXXDefaultArgExprClass:
    887     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
    888   case Expr::CXXTypeidExprClass:
    889     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
    890 
    891   case Expr::ObjCMessageExprClass:
    892     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
    893   case Expr::ObjCIvarRefExprClass:
    894     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
    895   case Expr::StmtExprClass:
    896     return EmitStmtExprLValue(cast<StmtExpr>(E));
    897   case Expr::UnaryOperatorClass:
    898     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
    899   case Expr::ArraySubscriptExprClass:
    900     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
    901   case Expr::ExtVectorElementExprClass:
    902     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
    903   case Expr::MemberExprClass:
    904     return EmitMemberExpr(cast<MemberExpr>(E));
    905   case Expr::CompoundLiteralExprClass:
    906     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
    907   case Expr::ConditionalOperatorClass:
    908     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
    909   case Expr::BinaryConditionalOperatorClass:
    910     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
    911   case Expr::ChooseExprClass:
    912     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
    913   case Expr::OpaqueValueExprClass:
    914     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
    915   case Expr::SubstNonTypeTemplateParmExprClass:
    916     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
    917   case Expr::ImplicitCastExprClass:
    918   case Expr::CStyleCastExprClass:
    919   case Expr::CXXFunctionalCastExprClass:
    920   case Expr::CXXStaticCastExprClass:
    921   case Expr::CXXDynamicCastExprClass:
    922   case Expr::CXXReinterpretCastExprClass:
    923   case Expr::CXXConstCastExprClass:
    924   case Expr::ObjCBridgedCastExprClass:
    925     return EmitCastLValue(cast<CastExpr>(E));
    926 
    927   case Expr::MaterializeTemporaryExprClass:
    928     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
    929   }
    930 }
    931 
    932 /// Given an object of the given canonical type, can we safely copy a
    933 /// value out of it based on its initializer?
    934 static bool isConstantEmittableObjectType(QualType type) {
    935   assert(type.isCanonical());
    936   assert(!type->isReferenceType());
    937 
    938   // Must be const-qualified but non-volatile.
    939   Qualifiers qs = type.getLocalQualifiers();
    940   if (!qs.hasConst() || qs.hasVolatile()) return false;
    941 
    942   // Otherwise, all object types satisfy this except C++ classes with
    943   // mutable subobjects or non-trivial copy/destroy behavior.
    944   if (const RecordType *RT = dyn_cast<RecordType>(type))
    945     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
    946       if (RD->hasMutableFields() || !RD->isTrivial())
    947         return false;
    948 
    949   return true;
    950 }
    951 
    952 /// Can we constant-emit a load of a reference to a variable of the
    953 /// given type?  This is different from predicates like
    954 /// Decl::isUsableInConstantExpressions because we do want it to apply
    955 /// in situations that don't necessarily satisfy the language's rules
    956 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
    957 /// to do this with const float variables even if those variables
    958 /// aren't marked 'constexpr'.
    959 enum ConstantEmissionKind {
    960   CEK_None,
    961   CEK_AsReferenceOnly,
    962   CEK_AsValueOrReference,
    963   CEK_AsValueOnly
    964 };
    965 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
    966   type = type.getCanonicalType();
    967   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
    968     if (isConstantEmittableObjectType(ref->getPointeeType()))
    969       return CEK_AsValueOrReference;
    970     return CEK_AsReferenceOnly;
    971   }
    972   if (isConstantEmittableObjectType(type))
    973     return CEK_AsValueOnly;
    974   return CEK_None;
    975 }
    976 
    977 /// Try to emit a reference to the given value without producing it as
    978 /// an l-value.  This is actually more than an optimization: we can't
    979 /// produce an l-value for variables that we never actually captured
    980 /// in a block or lambda, which means const int variables or constexpr
    981 /// literals or similar.
    982 CodeGenFunction::ConstantEmission
    983 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
    984   ValueDecl *value = refExpr->getDecl();
    985 
    986   // The value needs to be an enum constant or a constant variable.
    987   ConstantEmissionKind CEK;
    988   if (isa<ParmVarDecl>(value)) {
    989     CEK = CEK_None;
    990   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
    991     CEK = checkVarTypeForConstantEmission(var->getType());
    992   } else if (isa<EnumConstantDecl>(value)) {
    993     CEK = CEK_AsValueOnly;
    994   } else {
    995     CEK = CEK_None;
    996   }
    997   if (CEK == CEK_None) return ConstantEmission();
    998 
    999   Expr::EvalResult result;
   1000   bool resultIsReference;
   1001   QualType resultType;
   1002 
   1003   // It's best to evaluate all the way as an r-value if that's permitted.
   1004   if (CEK != CEK_AsReferenceOnly &&
   1005       refExpr->EvaluateAsRValue(result, getContext())) {
   1006     resultIsReference = false;
   1007     resultType = refExpr->getType();
   1008 
   1009   // Otherwise, try to evaluate as an l-value.
   1010   } else if (CEK != CEK_AsValueOnly &&
   1011              refExpr->EvaluateAsLValue(result, getContext())) {
   1012     resultIsReference = true;
   1013     resultType = value->getType();
   1014 
   1015   // Failure.
   1016   } else {
   1017     return ConstantEmission();
   1018   }
   1019 
   1020   // In any case, if the initializer has side-effects, abandon ship.
   1021   if (result.HasSideEffects)
   1022     return ConstantEmission();
   1023 
   1024   // Emit as a constant.
   1025   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
   1026 
   1027   // Make sure we emit a debug reference to the global variable.
   1028   // This should probably fire even for
   1029   if (isa<VarDecl>(value)) {
   1030     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
   1031       EmitDeclRefExprDbgValue(refExpr, C);
   1032   } else {
   1033     assert(isa<EnumConstantDecl>(value));
   1034     EmitDeclRefExprDbgValue(refExpr, C);
   1035   }
   1036 
   1037   // If we emitted a reference constant, we need to dereference that.
   1038   if (resultIsReference)
   1039     return ConstantEmission::forReference(C);
   1040 
   1041   return ConstantEmission::forValue(C);
   1042 }
   1043 
   1044 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
   1045   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
   1046                           lvalue.getAlignment().getQuantity(),
   1047                           lvalue.getType(), lvalue.getTBAAInfo());
   1048 }
   1049 
   1050 static bool hasBooleanRepresentation(QualType Ty) {
   1051   if (Ty->isBooleanType())
   1052     return true;
   1053 
   1054   if (const EnumType *ET = Ty->getAs<EnumType>())
   1055     return ET->getDecl()->getIntegerType()->isBooleanType();
   1056 
   1057   if (const AtomicType *AT = Ty->getAs<AtomicType>())
   1058     return hasBooleanRepresentation(AT->getValueType());
   1059 
   1060   return false;
   1061 }
   1062 
   1063 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
   1064                             llvm::APInt &Min, llvm::APInt &End,
   1065                             bool StrictEnums) {
   1066   const EnumType *ET = Ty->getAs<EnumType>();
   1067   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
   1068                                 ET && !ET->getDecl()->isFixed();
   1069   bool IsBool = hasBooleanRepresentation(Ty);
   1070   if (!IsBool && !IsRegularCPlusPlusEnum)
   1071     return false;
   1072 
   1073   if (IsBool) {
   1074     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
   1075     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
   1076   } else {
   1077     const EnumDecl *ED = ET->getDecl();
   1078     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
   1079     unsigned Bitwidth = LTy->getScalarSizeInBits();
   1080     unsigned NumNegativeBits = ED->getNumNegativeBits();
   1081     unsigned NumPositiveBits = ED->getNumPositiveBits();
   1082 
   1083     if (NumNegativeBits) {
   1084       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
   1085       assert(NumBits <= Bitwidth);
   1086       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
   1087       Min = -End;
   1088     } else {
   1089       assert(NumPositiveBits <= Bitwidth);
   1090       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
   1091       Min = llvm::APInt(Bitwidth, 0);
   1092     }
   1093   }
   1094   return true;
   1095 }
   1096 
   1097 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
   1098   llvm::APInt Min, End;
   1099   if (!getRangeForType(*this, Ty, Min, End,
   1100                        CGM.getCodeGenOpts().StrictEnums))
   1101     return 0;
   1102 
   1103   llvm::MDBuilder MDHelper(getLLVMContext());
   1104   return MDHelper.createRange(Min, End);
   1105 }
   1106 
   1107 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   1108                                               unsigned Alignment, QualType Ty,
   1109                                               llvm::MDNode *TBAAInfo) {
   1110   // For better performance, handle vector loads differently.
   1111   if (Ty->isVectorType()) {
   1112     llvm::Value *V;
   1113     const llvm::Type *EltTy =
   1114     cast<llvm::PointerType>(Addr->getType())->getElementType();
   1115 
   1116     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
   1117 
   1118     // Handle vectors of size 3, like size 4 for better performance.
   1119     if (VTy->getNumElements() == 3) {
   1120 
   1121       // Bitcast to vec4 type.
   1122       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
   1123                                                          4);
   1124       llvm::PointerType *ptVec4Ty =
   1125       llvm::PointerType::get(vec4Ty,
   1126                              (cast<llvm::PointerType>(
   1127                                       Addr->getType()))->getAddressSpace());
   1128       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
   1129                                                 "castToVec4");
   1130       // Now load value.
   1131       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
   1132 
   1133       // Shuffle vector to get vec3.
   1134       llvm::Constant *Mask[] = {
   1135         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
   1136         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
   1137         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
   1138       };
   1139 
   1140       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1141       V = Builder.CreateShuffleVector(LoadVal,
   1142                                       llvm::UndefValue::get(vec4Ty),
   1143                                       MaskV, "extractVec");
   1144       return EmitFromMemory(V, Ty);
   1145     }
   1146   }
   1147 
   1148   // Atomic operations have to be done on integral types.
   1149   if (Ty->isAtomicType()) {
   1150     LValue lvalue = LValue::MakeAddr(Addr, Ty,
   1151                                      CharUnits::fromQuantity(Alignment),
   1152                                      getContext(), TBAAInfo);
   1153     return EmitAtomicLoad(lvalue).getScalarVal();
   1154   }
   1155 
   1156   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
   1157   if (Volatile)
   1158     Load->setVolatile(true);
   1159   if (Alignment)
   1160     Load->setAlignment(Alignment);
   1161   if (TBAAInfo)
   1162     CGM.DecorateInstruction(Load, TBAAInfo);
   1163 
   1164   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
   1165       (SanOpts->Enum && Ty->getAs<EnumType>())) {
   1166     llvm::APInt Min, End;
   1167     if (getRangeForType(*this, Ty, Min, End, true)) {
   1168       --End;
   1169       llvm::Value *Check;
   1170       if (!Min)
   1171         Check = Builder.CreateICmpULE(
   1172           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1173       else {
   1174         llvm::Value *Upper = Builder.CreateICmpSLE(
   1175           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1176         llvm::Value *Lower = Builder.CreateICmpSGE(
   1177           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
   1178         Check = Builder.CreateAnd(Upper, Lower);
   1179       }
   1180       // FIXME: Provide a SourceLocation.
   1181       EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
   1182                 EmitCheckValue(Load), CRK_Recoverable);
   1183     }
   1184   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
   1185     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
   1186       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
   1187 
   1188   return EmitFromMemory(Load, Ty);
   1189 }
   1190 
   1191 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
   1192   // Bool has a different representation in memory than in registers.
   1193   if (hasBooleanRepresentation(Ty)) {
   1194     // This should really always be an i1, but sometimes it's already
   1195     // an i8, and it's awkward to track those cases down.
   1196     if (Value->getType()->isIntegerTy(1))
   1197       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
   1198     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1199            "wrong value rep of bool");
   1200   }
   1201 
   1202   return Value;
   1203 }
   1204 
   1205 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
   1206   // Bool has a different representation in memory than in registers.
   1207   if (hasBooleanRepresentation(Ty)) {
   1208     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1209            "wrong value rep of bool");
   1210     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
   1211   }
   1212 
   1213   return Value;
   1214 }
   1215 
   1216 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   1217                                         bool Volatile, unsigned Alignment,
   1218                                         QualType Ty,
   1219                                         llvm::MDNode *TBAAInfo,
   1220                                         bool isInit) {
   1221 
   1222   // Handle vectors differently to get better performance.
   1223   if (Ty->isVectorType()) {
   1224     llvm::Type *SrcTy = Value->getType();
   1225     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
   1226     // Handle vec3 special.
   1227     if (VecTy->getNumElements() == 3) {
   1228       llvm::LLVMContext &VMContext = getLLVMContext();
   1229 
   1230       // Our source is a vec3, do a shuffle vector to make it a vec4.
   1231       SmallVector<llvm::Constant*, 4> Mask;
   1232       Mask.push_back(llvm::ConstantInt::get(
   1233                                             llvm::Type::getInt32Ty(VMContext),
   1234                                             0));
   1235       Mask.push_back(llvm::ConstantInt::get(
   1236                                             llvm::Type::getInt32Ty(VMContext),
   1237                                             1));
   1238       Mask.push_back(llvm::ConstantInt::get(
   1239                                             llvm::Type::getInt32Ty(VMContext),
   1240                                             2));
   1241       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
   1242 
   1243       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1244       Value = Builder.CreateShuffleVector(Value,
   1245                                           llvm::UndefValue::get(VecTy),
   1246                                           MaskV, "extractVec");
   1247       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
   1248     }
   1249     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
   1250     if (DstPtr->getElementType() != SrcTy) {
   1251       llvm::Type *MemTy =
   1252       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
   1253       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
   1254     }
   1255   }
   1256 
   1257   Value = EmitToMemory(Value, Ty);
   1258 
   1259   if (Ty->isAtomicType()) {
   1260     EmitAtomicStore(RValue::get(Value),
   1261                     LValue::MakeAddr(Addr, Ty,
   1262                                      CharUnits::fromQuantity(Alignment),
   1263                                      getContext(), TBAAInfo),
   1264                     isInit);
   1265     return;
   1266   }
   1267 
   1268   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
   1269   if (Alignment)
   1270     Store->setAlignment(Alignment);
   1271   if (TBAAInfo)
   1272     CGM.DecorateInstruction(Store, TBAAInfo);
   1273 }
   1274 
   1275 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
   1276                                         bool isInit) {
   1277   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
   1278                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
   1279                     lvalue.getTBAAInfo(), isInit);
   1280 }
   1281 
   1282 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
   1283 /// method emits the address of the lvalue, then loads the result as an rvalue,
   1284 /// returning the rvalue.
   1285 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
   1286   if (LV.isObjCWeak()) {
   1287     // load of a __weak object.
   1288     llvm::Value *AddrWeakObj = LV.getAddress();
   1289     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
   1290                                                              AddrWeakObj));
   1291   }
   1292   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1293     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
   1294     Object = EmitObjCConsumeObject(LV.getType(), Object);
   1295     return RValue::get(Object);
   1296   }
   1297 
   1298   if (LV.isSimple()) {
   1299     assert(!LV.getType()->isFunctionType());
   1300 
   1301     // Everything needs a load.
   1302     return RValue::get(EmitLoadOfScalar(LV));
   1303   }
   1304 
   1305   if (LV.isVectorElt()) {
   1306     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
   1307                                               LV.isVolatileQualified());
   1308     Load->setAlignment(LV.getAlignment().getQuantity());
   1309     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
   1310                                                     "vecext"));
   1311   }
   1312 
   1313   // If this is a reference to a subset of the elements of a vector, either
   1314   // shuffle the input or extract/insert them as appropriate.
   1315   if (LV.isExtVectorElt())
   1316     return EmitLoadOfExtVectorElementLValue(LV);
   1317 
   1318   assert(LV.isBitField() && "Unknown LValue type!");
   1319   return EmitLoadOfBitfieldLValue(LV);
   1320 }
   1321 
   1322 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
   1323   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
   1324 
   1325   // Get the output type.
   1326   llvm::Type *ResLTy = ConvertType(LV.getType());
   1327 
   1328   llvm::Value *Ptr = LV.getBitFieldAddr();
   1329   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
   1330                                         "bf.load");
   1331   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
   1332 
   1333   if (Info.IsSigned) {
   1334     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
   1335     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
   1336     if (HighBits)
   1337       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
   1338     if (Info.Offset + HighBits)
   1339       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
   1340   } else {
   1341     if (Info.Offset)
   1342       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
   1343     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
   1344       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
   1345                                                               Info.Size),
   1346                               "bf.clear");
   1347   }
   1348   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
   1349 
   1350   return RValue::get(Val);
   1351 }
   1352 
   1353 // If this is a reference to a subset of the elements of a vector, create an
   1354 // appropriate shufflevector.
   1355 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
   1356   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
   1357                                             LV.isVolatileQualified());
   1358   Load->setAlignment(LV.getAlignment().getQuantity());
   1359   llvm::Value *Vec = Load;
   1360 
   1361   const llvm::Constant *Elts = LV.getExtVectorElts();
   1362 
   1363   // If the result of the expression is a non-vector type, we must be extracting
   1364   // a single element.  Just codegen as an extractelement.
   1365   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1366   if (!ExprVT) {
   1367     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1368     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
   1369     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
   1370   }
   1371 
   1372   // Always use shuffle vector to try to retain the original program structure
   1373   unsigned NumResultElts = ExprVT->getNumElements();
   1374 
   1375   SmallVector<llvm::Constant*, 4> Mask;
   1376   for (unsigned i = 0; i != NumResultElts; ++i)
   1377     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
   1378 
   1379   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1380   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
   1381                                     MaskV);
   1382   return RValue::get(Vec);
   1383 }
   1384 
   1385 
   1386 
   1387 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   1388 /// lvalue, where both are guaranteed to the have the same type, and that type
   1389 /// is 'Ty'.
   1390 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
   1391   if (!Dst.isSimple()) {
   1392     if (Dst.isVectorElt()) {
   1393       // Read/modify/write the vector, inserting the new element.
   1394       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
   1395                                                 Dst.isVolatileQualified());
   1396       Load->setAlignment(Dst.getAlignment().getQuantity());
   1397       llvm::Value *Vec = Load;
   1398       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
   1399                                         Dst.getVectorIdx(), "vecins");
   1400       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
   1401                                                    Dst.isVolatileQualified());
   1402       Store->setAlignment(Dst.getAlignment().getQuantity());
   1403       return;
   1404     }
   1405 
   1406     // If this is an update of extended vector elements, insert them as
   1407     // appropriate.
   1408     if (Dst.isExtVectorElt())
   1409       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
   1410 
   1411     assert(Dst.isBitField() && "Unknown LValue type");
   1412     return EmitStoreThroughBitfieldLValue(Src, Dst);
   1413   }
   1414 
   1415   // There's special magic for assigning into an ARC-qualified l-value.
   1416   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
   1417     switch (Lifetime) {
   1418     case Qualifiers::OCL_None:
   1419       llvm_unreachable("present but none");
   1420 
   1421     case Qualifiers::OCL_ExplicitNone:
   1422       // nothing special
   1423       break;
   1424 
   1425     case Qualifiers::OCL_Strong:
   1426       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
   1427       return;
   1428 
   1429     case Qualifiers::OCL_Weak:
   1430       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
   1431       return;
   1432 
   1433     case Qualifiers::OCL_Autoreleasing:
   1434       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
   1435                                                      Src.getScalarVal()));
   1436       // fall into the normal path
   1437       break;
   1438     }
   1439   }
   1440 
   1441   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
   1442     // load of a __weak object.
   1443     llvm::Value *LvalueDst = Dst.getAddress();
   1444     llvm::Value *src = Src.getScalarVal();
   1445      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
   1446     return;
   1447   }
   1448 
   1449   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
   1450     // load of a __strong object.
   1451     llvm::Value *LvalueDst = Dst.getAddress();
   1452     llvm::Value *src = Src.getScalarVal();
   1453     if (Dst.isObjCIvar()) {
   1454       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
   1455       llvm::Type *ResultType = ConvertType(getContext().LongTy);
   1456       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
   1457       llvm::Value *dst = RHS;
   1458       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
   1459       llvm::Value *LHS =
   1460         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
   1461       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
   1462       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
   1463                                               BytesBetween);
   1464     } else if (Dst.isGlobalObjCRef()) {
   1465       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
   1466                                                 Dst.isThreadLocalRef());
   1467     }
   1468     else
   1469       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
   1470     return;
   1471   }
   1472 
   1473   assert(Src.isScalar() && "Can't emit an agg store with this method");
   1474   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
   1475 }
   1476 
   1477 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1478                                                      llvm::Value **Result) {
   1479   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
   1480   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
   1481   llvm::Value *Ptr = Dst.getBitFieldAddr();
   1482 
   1483   // Get the source value, truncated to the width of the bit-field.
   1484   llvm::Value *SrcVal = Src.getScalarVal();
   1485 
   1486   // Cast the source to the storage type and shift it into place.
   1487   SrcVal = Builder.CreateIntCast(SrcVal,
   1488                                  Ptr->getType()->getPointerElementType(),
   1489                                  /*IsSigned=*/false);
   1490   llvm::Value *MaskedVal = SrcVal;
   1491 
   1492   // See if there are other bits in the bitfield's storage we'll need to load
   1493   // and mask together with source before storing.
   1494   if (Info.StorageSize != Info.Size) {
   1495     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
   1496     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
   1497                                           "bf.load");
   1498     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
   1499 
   1500     // Mask the source value as needed.
   1501     if (!hasBooleanRepresentation(Dst.getType()))
   1502       SrcVal = Builder.CreateAnd(SrcVal,
   1503                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
   1504                                                             Info.Size),
   1505                                  "bf.value");
   1506     MaskedVal = SrcVal;
   1507     if (Info.Offset)
   1508       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
   1509 
   1510     // Mask out the original value.
   1511     Val = Builder.CreateAnd(Val,
   1512                             ~llvm::APInt::getBitsSet(Info.StorageSize,
   1513                                                      Info.Offset,
   1514                                                      Info.Offset + Info.Size),
   1515                             "bf.clear");
   1516 
   1517     // Or together the unchanged values and the source value.
   1518     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
   1519   } else {
   1520     assert(Info.Offset == 0);
   1521   }
   1522 
   1523   // Write the new value back out.
   1524   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
   1525                                                Dst.isVolatileQualified());
   1526   Store->setAlignment(Info.StorageAlignment);
   1527 
   1528   // Return the new value of the bit-field, if requested.
   1529   if (Result) {
   1530     llvm::Value *ResultVal = MaskedVal;
   1531 
   1532     // Sign extend the value if needed.
   1533     if (Info.IsSigned) {
   1534       assert(Info.Size <= Info.StorageSize);
   1535       unsigned HighBits = Info.StorageSize - Info.Size;
   1536       if (HighBits) {
   1537         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
   1538         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
   1539       }
   1540     }
   1541 
   1542     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
   1543                                       "bf.result.cast");
   1544     *Result = EmitFromMemory(ResultVal, Dst.getType());
   1545   }
   1546 }
   1547 
   1548 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
   1549                                                                LValue Dst) {
   1550   // This access turns into a read/modify/write of the vector.  Load the input
   1551   // value now.
   1552   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
   1553                                             Dst.isVolatileQualified());
   1554   Load->setAlignment(Dst.getAlignment().getQuantity());
   1555   llvm::Value *Vec = Load;
   1556   const llvm::Constant *Elts = Dst.getExtVectorElts();
   1557 
   1558   llvm::Value *SrcVal = Src.getScalarVal();
   1559 
   1560   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
   1561     unsigned NumSrcElts = VTy->getNumElements();
   1562     unsigned NumDstElts =
   1563        cast<llvm::VectorType>(Vec->getType())->getNumElements();
   1564     if (NumDstElts == NumSrcElts) {
   1565       // Use shuffle vector is the src and destination are the same number of
   1566       // elements and restore the vector mask since it is on the side it will be
   1567       // stored.
   1568       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
   1569       for (unsigned i = 0; i != NumSrcElts; ++i)
   1570         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
   1571 
   1572       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1573       Vec = Builder.CreateShuffleVector(SrcVal,
   1574                                         llvm::UndefValue::get(Vec->getType()),
   1575                                         MaskV);
   1576     } else if (NumDstElts > NumSrcElts) {
   1577       // Extended the source vector to the same length and then shuffle it
   1578       // into the destination.
   1579       // FIXME: since we're shuffling with undef, can we just use the indices
   1580       //        into that?  This could be simpler.
   1581       SmallVector<llvm::Constant*, 4> ExtMask;
   1582       for (unsigned i = 0; i != NumSrcElts; ++i)
   1583         ExtMask.push_back(Builder.getInt32(i));
   1584       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
   1585       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
   1586       llvm::Value *ExtSrcVal =
   1587         Builder.CreateShuffleVector(SrcVal,
   1588                                     llvm::UndefValue::get(SrcVal->getType()),
   1589                                     ExtMaskV);
   1590       // build identity
   1591       SmallVector<llvm::Constant*, 4> Mask;
   1592       for (unsigned i = 0; i != NumDstElts; ++i)
   1593         Mask.push_back(Builder.getInt32(i));
   1594 
   1595       // modify when what gets shuffled in
   1596       for (unsigned i = 0; i != NumSrcElts; ++i)
   1597         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
   1598       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1599       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
   1600     } else {
   1601       // We should never shorten the vector
   1602       llvm_unreachable("unexpected shorten vector length");
   1603     }
   1604   } else {
   1605     // If the Src is a scalar (not a vector) it must be updating one element.
   1606     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1607     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
   1608     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
   1609   }
   1610 
   1611   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
   1612                                                Dst.isVolatileQualified());
   1613   Store->setAlignment(Dst.getAlignment().getQuantity());
   1614 }
   1615 
   1616 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
   1617 // generating write-barries API. It is currently a global, ivar,
   1618 // or neither.
   1619 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
   1620                                  LValue &LV,
   1621                                  bool IsMemberAccess=false) {
   1622   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
   1623     return;
   1624 
   1625   if (isa<ObjCIvarRefExpr>(E)) {
   1626     QualType ExpTy = E->getType();
   1627     if (IsMemberAccess && ExpTy->isPointerType()) {
   1628       // If ivar is a structure pointer, assigning to field of
   1629       // this struct follows gcc's behavior and makes it a non-ivar
   1630       // writer-barrier conservatively.
   1631       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1632       if (ExpTy->isRecordType()) {
   1633         LV.setObjCIvar(false);
   1634         return;
   1635       }
   1636     }
   1637     LV.setObjCIvar(true);
   1638     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
   1639     LV.setBaseIvarExp(Exp->getBase());
   1640     LV.setObjCArray(E->getType()->isArrayType());
   1641     return;
   1642   }
   1643 
   1644   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
   1645     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
   1646       if (VD->hasGlobalStorage()) {
   1647         LV.setGlobalObjCRef(true);
   1648         LV.setThreadLocalRef(VD->isThreadSpecified());
   1649       }
   1650     }
   1651     LV.setObjCArray(E->getType()->isArrayType());
   1652     return;
   1653   }
   1654 
   1655   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
   1656     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1657     return;
   1658   }
   1659 
   1660   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
   1661     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1662     if (LV.isObjCIvar()) {
   1663       // If cast is to a structure pointer, follow gcc's behavior and make it
   1664       // a non-ivar write-barrier.
   1665       QualType ExpTy = E->getType();
   1666       if (ExpTy->isPointerType())
   1667         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1668       if (ExpTy->isRecordType())
   1669         LV.setObjCIvar(false);
   1670     }
   1671     return;
   1672   }
   1673 
   1674   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
   1675     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
   1676     return;
   1677   }
   1678 
   1679   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
   1680     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1681     return;
   1682   }
   1683 
   1684   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
   1685     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1686     return;
   1687   }
   1688 
   1689   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
   1690     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1691     return;
   1692   }
   1693 
   1694   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
   1695     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
   1696     if (LV.isObjCIvar() && !LV.isObjCArray())
   1697       // Using array syntax to assigning to what an ivar points to is not
   1698       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
   1699       LV.setObjCIvar(false);
   1700     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
   1701       // Using array syntax to assigning to what global points to is not
   1702       // same as assigning to the global itself. {id *G;} G[i] = 0;
   1703       LV.setGlobalObjCRef(false);
   1704     return;
   1705   }
   1706 
   1707   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
   1708     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
   1709     // We don't know if member is an 'ivar', but this flag is looked at
   1710     // only in the context of LV.isObjCIvar().
   1711     LV.setObjCArray(E->getType()->isArrayType());
   1712     return;
   1713   }
   1714 }
   1715 
   1716 static llvm::Value *
   1717 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
   1718                                 llvm::Value *V, llvm::Type *IRType,
   1719                                 StringRef Name = StringRef()) {
   1720   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
   1721   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
   1722 }
   1723 
   1724 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
   1725                                       const Expr *E, const VarDecl *VD) {
   1726   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
   1727   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
   1728   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
   1729   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
   1730   QualType T = E->getType();
   1731   LValue LV;
   1732   if (VD->getType()->isReferenceType()) {
   1733     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
   1734     LI->setAlignment(Alignment.getQuantity());
   1735     V = LI;
   1736     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
   1737   } else {
   1738     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
   1739   }
   1740   setObjCGCLValueClass(CGF.getContext(), E, LV);
   1741   return LV;
   1742 }
   1743 
   1744 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
   1745                                      const Expr *E, const FunctionDecl *FD) {
   1746   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
   1747   if (!FD->hasPrototype()) {
   1748     if (const FunctionProtoType *Proto =
   1749             FD->getType()->getAs<FunctionProtoType>()) {
   1750       // Ugly case: for a K&R-style definition, the type of the definition
   1751       // isn't the same as the type of a use.  Correct for this with a
   1752       // bitcast.
   1753       QualType NoProtoType =
   1754           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
   1755       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
   1756       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
   1757     }
   1758   }
   1759   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
   1760   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
   1761 }
   1762 
   1763 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
   1764   const NamedDecl *ND = E->getDecl();
   1765   CharUnits Alignment = getContext().getDeclAlign(ND);
   1766   QualType T = E->getType();
   1767 
   1768   // A DeclRefExpr for a reference initialized by a constant expression can
   1769   // appear without being odr-used. Directly emit the constant initializer.
   1770   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   1771     const Expr *Init = VD->getAnyInitializer(VD);
   1772     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
   1773         VD->isUsableInConstantExpressions(getContext()) &&
   1774         VD->checkInitIsICE()) {
   1775       llvm::Constant *Val =
   1776         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
   1777       assert(Val && "failed to emit reference constant expression");
   1778       // FIXME: Eventually we will want to emit vector element references.
   1779       return MakeAddrLValue(Val, T, Alignment);
   1780     }
   1781   }
   1782 
   1783   // FIXME: We should be able to assert this for FunctionDecls as well!
   1784   // FIXME: We should be able to assert this for all DeclRefExprs, not just
   1785   // those with a valid source location.
   1786   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
   1787           !E->getLocation().isValid()) &&
   1788          "Should not use decl without marking it used!");
   1789 
   1790   if (ND->hasAttr<WeakRefAttr>()) {
   1791     const ValueDecl *VD = cast<ValueDecl>(ND);
   1792     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
   1793     return MakeAddrLValue(Aliasee, T, Alignment);
   1794   }
   1795 
   1796   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   1797     // Check if this is a global variable.
   1798     if (VD->hasLinkage() || VD->isStaticDataMember())
   1799       return EmitGlobalVarDeclLValue(*this, E, VD);
   1800 
   1801     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
   1802 
   1803     llvm::Value *V = LocalDeclMap.lookup(VD);
   1804     if (!V && VD->isStaticLocal())
   1805       V = CGM.getStaticLocalDeclAddress(VD);
   1806 
   1807     // Use special handling for lambdas.
   1808     if (!V) {
   1809       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
   1810         QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
   1811         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
   1812                                                      LambdaTagType);
   1813         return EmitLValueForField(LambdaLV, FD);
   1814       }
   1815 
   1816       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
   1817       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
   1818                             T, Alignment);
   1819     }
   1820 
   1821     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
   1822 
   1823     if (isBlockVariable)
   1824       V = BuildBlockByrefAddress(V, VD);
   1825 
   1826     LValue LV;
   1827     if (VD->getType()->isReferenceType()) {
   1828       llvm::LoadInst *LI = Builder.CreateLoad(V);
   1829       LI->setAlignment(Alignment.getQuantity());
   1830       V = LI;
   1831       LV = MakeNaturalAlignAddrLValue(V, T);
   1832     } else {
   1833       LV = MakeAddrLValue(V, T, Alignment);
   1834     }
   1835 
   1836     bool isLocalStorage = VD->hasLocalStorage();
   1837 
   1838     bool NonGCable = isLocalStorage &&
   1839                      !VD->getType()->isReferenceType() &&
   1840                      !isBlockVariable;
   1841     if (NonGCable) {
   1842       LV.getQuals().removeObjCGCAttr();
   1843       LV.setNonGC(true);
   1844     }
   1845 
   1846     bool isImpreciseLifetime =
   1847       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
   1848     if (isImpreciseLifetime)
   1849       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
   1850     setObjCGCLValueClass(getContext(), E, LV);
   1851     return LV;
   1852   }
   1853 
   1854   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
   1855     return EmitFunctionDeclLValue(*this, E, fn);
   1856 
   1857   llvm_unreachable("Unhandled DeclRefExpr");
   1858 }
   1859 
   1860 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
   1861   // __extension__ doesn't affect lvalue-ness.
   1862   if (E->getOpcode() == UO_Extension)
   1863     return EmitLValue(E->getSubExpr());
   1864 
   1865   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
   1866   switch (E->getOpcode()) {
   1867   default: llvm_unreachable("Unknown unary operator lvalue!");
   1868   case UO_Deref: {
   1869     QualType T = E->getSubExpr()->getType()->getPointeeType();
   1870     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
   1871 
   1872     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
   1873     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
   1874 
   1875     // We should not generate __weak write barrier on indirect reference
   1876     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
   1877     // But, we continue to generate __strong write barrier on indirect write
   1878     // into a pointer to object.
   1879     if (getLangOpts().ObjC1 &&
   1880         getLangOpts().getGC() != LangOptions::NonGC &&
   1881         LV.isObjCWeak())
   1882       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   1883     return LV;
   1884   }
   1885   case UO_Real:
   1886   case UO_Imag: {
   1887     LValue LV = EmitLValue(E->getSubExpr());
   1888     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
   1889     llvm::Value *Addr = LV.getAddress();
   1890 
   1891     // __real is valid on scalars.  This is a faster way of testing that.
   1892     // __imag can only produce an rvalue on scalars.
   1893     if (E->getOpcode() == UO_Real &&
   1894         !cast<llvm::PointerType>(Addr->getType())
   1895            ->getElementType()->isStructTy()) {
   1896       assert(E->getSubExpr()->getType()->isArithmeticType());
   1897       return LV;
   1898     }
   1899 
   1900     assert(E->getSubExpr()->getType()->isAnyComplexType());
   1901 
   1902     unsigned Idx = E->getOpcode() == UO_Imag;
   1903     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
   1904                                                   Idx, "idx"),
   1905                           ExprTy);
   1906   }
   1907   case UO_PreInc:
   1908   case UO_PreDec: {
   1909     LValue LV = EmitLValue(E->getSubExpr());
   1910     bool isInc = E->getOpcode() == UO_PreInc;
   1911 
   1912     if (E->getType()->isAnyComplexType())
   1913       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
   1914     else
   1915       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
   1916     return LV;
   1917   }
   1918   }
   1919 }
   1920 
   1921 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
   1922   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
   1923                         E->getType());
   1924 }
   1925 
   1926 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
   1927   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
   1928                         E->getType());
   1929 }
   1930 
   1931 static llvm::Constant*
   1932 GetAddrOfConstantWideString(StringRef Str,
   1933                             const char *GlobalName,
   1934                             ASTContext &Context,
   1935                             QualType Ty, SourceLocation Loc,
   1936                             CodeGenModule &CGM) {
   1937 
   1938   StringLiteral *SL = StringLiteral::Create(Context,
   1939                                             Str,
   1940                                             StringLiteral::Wide,
   1941                                             /*Pascal = */false,
   1942                                             Ty, Loc);
   1943   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
   1944   llvm::GlobalVariable *GV =
   1945     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
   1946                              !CGM.getLangOpts().WritableStrings,
   1947                              llvm::GlobalValue::PrivateLinkage,
   1948                              C, GlobalName);
   1949   const unsigned WideAlignment =
   1950     Context.getTypeAlignInChars(Ty).getQuantity();
   1951   GV->setAlignment(WideAlignment);
   1952   return GV;
   1953 }
   1954 
   1955 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
   1956                                     SmallString<32>& Target) {
   1957   Target.resize(CharByteWidth * (Source.size() + 1));
   1958   char *ResultPtr = &Target[0];
   1959   const UTF8 *ErrorPtr;
   1960   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
   1961   (void)success;
   1962   assert(success);
   1963   Target.resize(ResultPtr - &Target[0]);
   1964 }
   1965 
   1966 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
   1967   switch (E->getIdentType()) {
   1968   default:
   1969     return EmitUnsupportedLValue(E, "predefined expression");
   1970 
   1971   case PredefinedExpr::Func:
   1972   case PredefinedExpr::Function:
   1973   case PredefinedExpr::LFunction:
   1974   case PredefinedExpr::PrettyFunction: {
   1975     unsigned IdentType = E->getIdentType();
   1976     std::string GlobalVarName;
   1977 
   1978     switch (IdentType) {
   1979     default: llvm_unreachable("Invalid type");
   1980     case PredefinedExpr::Func:
   1981       GlobalVarName = "__func__.";
   1982       break;
   1983     case PredefinedExpr::Function:
   1984       GlobalVarName = "__FUNCTION__.";
   1985       break;
   1986     case PredefinedExpr::LFunction:
   1987       GlobalVarName = "L__FUNCTION__.";
   1988       break;
   1989     case PredefinedExpr::PrettyFunction:
   1990       GlobalVarName = "__PRETTY_FUNCTION__.";
   1991       break;
   1992     }
   1993 
   1994     StringRef FnName = CurFn->getName();
   1995     if (FnName.startswith("\01"))
   1996       FnName = FnName.substr(1);
   1997     GlobalVarName += FnName;
   1998 
   1999     const Decl *CurDecl = CurCodeDecl;
   2000     if (CurDecl == 0)
   2001       CurDecl = getContext().getTranslationUnitDecl();
   2002 
   2003     std::string FunctionName =
   2004         (isa<BlockDecl>(CurDecl)
   2005          ? FnName.str()
   2006          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
   2007                                        CurDecl));
   2008 
   2009     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
   2010     llvm::Constant *C;
   2011     if (ElemType->isWideCharType()) {
   2012       SmallString<32> RawChars;
   2013       ConvertUTF8ToWideString(
   2014           getContext().getTypeSizeInChars(ElemType).getQuantity(),
   2015           FunctionName, RawChars);
   2016       C = GetAddrOfConstantWideString(RawChars,
   2017                                       GlobalVarName.c_str(),
   2018                                       getContext(),
   2019                                       E->getType(),
   2020                                       E->getLocation(),
   2021                                       CGM);
   2022     } else {
   2023       C = CGM.GetAddrOfConstantCString(FunctionName,
   2024                                        GlobalVarName.c_str(),
   2025                                        1);
   2026     }
   2027     return MakeAddrLValue(C, E->getType());
   2028   }
   2029   }
   2030 }
   2031 
   2032 /// Emit a type description suitable for use by a runtime sanitizer library. The
   2033 /// format of a type descriptor is
   2034 ///
   2035 /// \code
   2036 ///   { i16 TypeKind, i16 TypeInfo }
   2037 /// \endcode
   2038 ///
   2039 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
   2040 /// integer, 1 for a floating point value, and -1 for anything else.
   2041 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
   2042   // FIXME: Only emit each type's descriptor once.
   2043   uint16_t TypeKind = -1;
   2044   uint16_t TypeInfo = 0;
   2045 
   2046   if (T->isIntegerType()) {
   2047     TypeKind = 0;
   2048     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
   2049                (T->isSignedIntegerType() ? 1 : 0);
   2050   } else if (T->isFloatingType()) {
   2051     TypeKind = 1;
   2052     TypeInfo = getContext().getTypeSize(T);
   2053   }
   2054 
   2055   // Format the type name as if for a diagnostic, including quotes and
   2056   // optionally an 'aka'.
   2057   SmallString<32> Buffer;
   2058   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
   2059                                     (intptr_t)T.getAsOpaquePtr(),
   2060                                     0, 0, 0, 0, 0, 0, Buffer,
   2061                                     ArrayRef<intptr_t>());
   2062 
   2063   llvm::Constant *Components[] = {
   2064     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
   2065     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
   2066   };
   2067   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
   2068 
   2069   llvm::GlobalVariable *GV =
   2070     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
   2071                              /*isConstant=*/true,
   2072                              llvm::GlobalVariable::PrivateLinkage,
   2073                              Descriptor);
   2074   GV->setUnnamedAddr(true);
   2075   return GV;
   2076 }
   2077 
   2078 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
   2079   llvm::Type *TargetTy = IntPtrTy;
   2080 
   2081   // Integers which fit in intptr_t are zero-extended and passed directly.
   2082   if (V->getType()->isIntegerTy() &&
   2083       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
   2084     return Builder.CreateZExt(V, TargetTy);
   2085 
   2086   // Pointers are passed directly, everything else is passed by address.
   2087   if (!V->getType()->isPointerTy()) {
   2088     llvm::Value *Ptr = Builder.CreateAlloca(V->getType());
   2089     Builder.CreateStore(V, Ptr);
   2090     V = Ptr;
   2091   }
   2092   return Builder.CreatePtrToInt(V, TargetTy);
   2093 }
   2094 
   2095 /// \brief Emit a representation of a SourceLocation for passing to a handler
   2096 /// in a sanitizer runtime library. The format for this data is:
   2097 /// \code
   2098 ///   struct SourceLocation {
   2099 ///     const char *Filename;
   2100 ///     int32_t Line, Column;
   2101 ///   };
   2102 /// \endcode
   2103 /// For an invalid SourceLocation, the Filename pointer is null.
   2104 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
   2105   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
   2106 
   2107   llvm::Constant *Data[] = {
   2108     // FIXME: Only emit each file name once.
   2109     PLoc.isValid() ? cast<llvm::Constant>(
   2110                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
   2111                    : llvm::Constant::getNullValue(Int8PtrTy),
   2112     Builder.getInt32(PLoc.getLine()),
   2113     Builder.getInt32(PLoc.getColumn())
   2114   };
   2115 
   2116   return llvm::ConstantStruct::getAnon(Data);
   2117 }
   2118 
   2119 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
   2120                                 ArrayRef<llvm::Constant *> StaticArgs,
   2121                                 ArrayRef<llvm::Value *> DynamicArgs,
   2122                                 CheckRecoverableKind RecoverKind) {
   2123   assert(SanOpts != &SanitizerOptions::Disabled);
   2124 
   2125   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
   2126     assert (RecoverKind != CRK_AlwaysRecoverable &&
   2127             "Runtime call required for AlwaysRecoverable kind!");
   2128     return EmitTrapCheck(Checked);
   2129   }
   2130 
   2131   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2132 
   2133   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
   2134 
   2135   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
   2136 
   2137   // Give hint that we very much don't expect to execute the handler
   2138   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
   2139   llvm::MDBuilder MDHelper(getLLVMContext());
   2140   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
   2141   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
   2142 
   2143   EmitBlock(Handler);
   2144 
   2145   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
   2146   llvm::GlobalValue *InfoPtr =
   2147       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
   2148                                llvm::GlobalVariable::PrivateLinkage, Info);
   2149   InfoPtr->setUnnamedAddr(true);
   2150 
   2151   SmallVector<llvm::Value *, 4> Args;
   2152   SmallVector<llvm::Type *, 4> ArgTypes;
   2153   Args.reserve(DynamicArgs.size() + 1);
   2154   ArgTypes.reserve(DynamicArgs.size() + 1);
   2155 
   2156   // Handler functions take an i8* pointing to the (handler-specific) static
   2157   // information block, followed by a sequence of intptr_t arguments
   2158   // representing operand values.
   2159   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
   2160   ArgTypes.push_back(Int8PtrTy);
   2161   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
   2162     Args.push_back(EmitCheckValue(DynamicArgs[i]));
   2163     ArgTypes.push_back(IntPtrTy);
   2164   }
   2165 
   2166   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
   2167                  ((RecoverKind == CRK_Recoverable) &&
   2168                    CGM.getCodeGenOpts().SanitizeRecover);
   2169 
   2170   llvm::FunctionType *FnType =
   2171     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
   2172   llvm::AttrBuilder B;
   2173   if (!Recover) {
   2174     B.addAttribute(llvm::Attribute::NoReturn)
   2175      .addAttribute(llvm::Attribute::NoUnwind);
   2176   }
   2177   B.addAttribute(llvm::Attribute::UWTable);
   2178 
   2179   // Checks that have two variants use a suffix to differentiate them
   2180   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
   2181                            !CGM.getCodeGenOpts().SanitizeRecover;
   2182   std::string FunctionName = ("__ubsan_handle_" + CheckName +
   2183                               (NeedsAbortSuffix? "_abort" : "")).str();
   2184   llvm::Value *Fn =
   2185     CGM.CreateRuntimeFunction(FnType, FunctionName,
   2186                               llvm::AttributeSet::get(getLLVMContext(),
   2187                                               llvm::AttributeSet::FunctionIndex,
   2188                                                       B));
   2189   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
   2190   if (Recover) {
   2191     Builder.CreateBr(Cont);
   2192   } else {
   2193     HandlerCall->setDoesNotReturn();
   2194     Builder.CreateUnreachable();
   2195   }
   2196 
   2197   EmitBlock(Cont);
   2198 }
   2199 
   2200 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
   2201   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2202 
   2203   // If we're optimizing, collapse all calls to trap down to just one per
   2204   // function to save on code size.
   2205   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
   2206     TrapBB = createBasicBlock("trap");
   2207     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2208     EmitBlock(TrapBB);
   2209     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
   2210     llvm::CallInst *TrapCall = Builder.CreateCall(F);
   2211     TrapCall->setDoesNotReturn();
   2212     TrapCall->setDoesNotThrow();
   2213     Builder.CreateUnreachable();
   2214   } else {
   2215     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2216   }
   2217 
   2218   EmitBlock(Cont);
   2219 }
   2220 
   2221 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
   2222 /// array to pointer, return the array subexpression.
   2223 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
   2224   // If this isn't just an array->pointer decay, bail out.
   2225   const CastExpr *CE = dyn_cast<CastExpr>(E);
   2226   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
   2227     return 0;
   2228 
   2229   // If this is a decay from variable width array, bail out.
   2230   const Expr *SubExpr = CE->getSubExpr();
   2231   if (SubExpr->getType()->isVariableArrayType())
   2232     return 0;
   2233 
   2234   return SubExpr;
   2235 }
   2236 
   2237 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2238                                                bool Accessed) {
   2239   // The index must always be an integer, which is not an aggregate.  Emit it.
   2240   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
   2241   QualType IdxTy  = E->getIdx()->getType();
   2242   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
   2243 
   2244   if (SanOpts->Bounds)
   2245     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
   2246 
   2247   // If the base is a vector type, then we are forming a vector element lvalue
   2248   // with this subscript.
   2249   if (E->getBase()->getType()->isVectorType()) {
   2250     // Emit the vector as an lvalue to get its address.
   2251     LValue LHS = EmitLValue(E->getBase());
   2252     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
   2253     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
   2254     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
   2255                                  E->getBase()->getType(), LHS.getAlignment());
   2256   }
   2257 
   2258   // Extend or truncate the index type to 32 or 64-bits.
   2259   if (Idx->getType() != IntPtrTy)
   2260     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
   2261 
   2262   // We know that the pointer points to a type of the correct size, unless the
   2263   // size is a VLA or Objective-C interface.
   2264   llvm::Value *Address = 0;
   2265   CharUnits ArrayAlignment;
   2266   if (const VariableArrayType *vla =
   2267         getContext().getAsVariableArrayType(E->getType())) {
   2268     // The base must be a pointer, which is not an aggregate.  Emit
   2269     // it.  It needs to be emitted first in case it's what captures
   2270     // the VLA bounds.
   2271     Address = EmitScalarExpr(E->getBase());
   2272 
   2273     // The element count here is the total number of non-VLA elements.
   2274     llvm::Value *numElements = getVLASize(vla).first;
   2275 
   2276     // Effectively, the multiply by the VLA size is part of the GEP.
   2277     // GEP indexes are signed, and scaling an index isn't permitted to
   2278     // signed-overflow, so we use the same semantics for our explicit
   2279     // multiply.  We suppress this if overflow is not undefined behavior.
   2280     if (getLangOpts().isSignedOverflowDefined()) {
   2281       Idx = Builder.CreateMul(Idx, numElements);
   2282       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   2283     } else {
   2284       Idx = Builder.CreateNSWMul(Idx, numElements);
   2285       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
   2286     }
   2287   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
   2288     // Indexing over an interface, as in "NSString *P; P[4];"
   2289     llvm::Value *InterfaceSize =
   2290       llvm::ConstantInt::get(Idx->getType(),
   2291           getContext().getTypeSizeInChars(OIT).getQuantity());
   2292 
   2293     Idx = Builder.CreateMul(Idx, InterfaceSize);
   2294 
   2295     // The base must be a pointer, which is not an aggregate.  Emit it.
   2296     llvm::Value *Base = EmitScalarExpr(E->getBase());
   2297     Address = EmitCastToVoidPtr(Base);
   2298     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   2299     Address = Builder.CreateBitCast(Address, Base->getType());
   2300   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
   2301     // If this is A[i] where A is an array, the frontend will have decayed the
   2302     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
   2303     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
   2304     // "gep x, i" here.  Emit one "gep A, 0, i".
   2305     assert(Array->getType()->isArrayType() &&
   2306            "Array to pointer decay must have array source type!");
   2307     LValue ArrayLV;
   2308     // For simple multidimensional array indexing, set the 'accessed' flag for
   2309     // better bounds-checking of the base expression.
   2310     if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
   2311       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
   2312     else
   2313       ArrayLV = EmitLValue(Array);
   2314     llvm::Value *ArrayPtr = ArrayLV.getAddress();
   2315     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
   2316     llvm::Value *Args[] = { Zero, Idx };
   2317 
   2318     // Propagate the alignment from the array itself to the result.
   2319     ArrayAlignment = ArrayLV.getAlignment();
   2320 
   2321     if (getLangOpts().isSignedOverflowDefined())
   2322       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
   2323     else
   2324       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
   2325   } else {
   2326     // The base must be a pointer, which is not an aggregate.  Emit it.
   2327     llvm::Value *Base = EmitScalarExpr(E->getBase());
   2328     if (getLangOpts().isSignedOverflowDefined())
   2329       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
   2330     else
   2331       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
   2332   }
   2333 
   2334   QualType T = E->getBase()->getType()->getPointeeType();
   2335   assert(!T.isNull() &&
   2336          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
   2337 
   2338 
   2339   // Limit the alignment to that of the result type.
   2340   LValue LV;
   2341   if (!ArrayAlignment.isZero()) {
   2342     CharUnits Align = getContext().getTypeAlignInChars(T);
   2343     ArrayAlignment = std::min(Align, ArrayAlignment);
   2344     LV = MakeAddrLValue(Address, T, ArrayAlignment);
   2345   } else {
   2346     LV = MakeNaturalAlignAddrLValue(Address, T);
   2347   }
   2348 
   2349   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
   2350 
   2351   if (getLangOpts().ObjC1 &&
   2352       getLangOpts().getGC() != LangOptions::NonGC) {
   2353     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2354     setObjCGCLValueClass(getContext(), E, LV);
   2355   }
   2356   return LV;
   2357 }
   2358 
   2359 static
   2360 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
   2361                                        SmallVector<unsigned, 4> &Elts) {
   2362   SmallVector<llvm::Constant*, 4> CElts;
   2363   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
   2364     CElts.push_back(Builder.getInt32(Elts[i]));
   2365 
   2366   return llvm::ConstantVector::get(CElts);
   2367 }
   2368 
   2369 LValue CodeGenFunction::
   2370 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
   2371   // Emit the base vector as an l-value.
   2372   LValue Base;
   2373 
   2374   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
   2375   if (E->isArrow()) {
   2376     // If it is a pointer to a vector, emit the address and form an lvalue with
   2377     // it.
   2378     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
   2379     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
   2380     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
   2381     Base.getQuals().removeObjCGCAttr();
   2382   } else if (E->getBase()->isGLValue()) {
   2383     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
   2384     // emit the base as an lvalue.
   2385     assert(E->getBase()->getType()->isVectorType());
   2386     Base = EmitLValue(E->getBase());
   2387   } else {
   2388     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
   2389     assert(E->getBase()->getType()->isVectorType() &&
   2390            "Result must be a vector");
   2391     llvm::Value *Vec = EmitScalarExpr(E->getBase());
   2392 
   2393     // Store the vector to memory (because LValue wants an address).
   2394     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
   2395     Builder.CreateStore(Vec, VecMem);
   2396     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
   2397   }
   2398 
   2399   QualType type =
   2400     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
   2401 
   2402   // Encode the element access list into a vector of unsigned indices.
   2403   SmallVector<unsigned, 4> Indices;
   2404   E->getEncodedElementAccess(Indices);
   2405 
   2406   if (Base.isSimple()) {
   2407     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
   2408     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
   2409                                     Base.getAlignment());
   2410   }
   2411   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
   2412 
   2413   llvm::Constant *BaseElts = Base.getExtVectorElts();
   2414   SmallVector<llvm::Constant *, 4> CElts;
   2415 
   2416   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   2417     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
   2418   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
   2419   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
   2420                                   Base.getAlignment());
   2421 }
   2422 
   2423 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
   2424   Expr *BaseExpr = E->getBase();
   2425 
   2426   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
   2427   LValue BaseLV;
   2428   if (E->isArrow()) {
   2429     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
   2430     QualType PtrTy = BaseExpr->getType()->getPointeeType();
   2431     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
   2432     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
   2433   } else
   2434     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
   2435 
   2436   NamedDecl *ND = E->getMemberDecl();
   2437   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
   2438     LValue LV = EmitLValueForField(BaseLV, Field);
   2439     setObjCGCLValueClass(getContext(), E, LV);
   2440     return LV;
   2441   }
   2442 
   2443   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
   2444     return EmitGlobalVarDeclLValue(*this, E, VD);
   2445 
   2446   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
   2447     return EmitFunctionDeclLValue(*this, E, FD);
   2448 
   2449   llvm_unreachable("Unhandled member declaration!");
   2450 }
   2451 
   2452 LValue CodeGenFunction::EmitLValueForField(LValue base,
   2453                                            const FieldDecl *field) {
   2454   if (field->isBitField()) {
   2455     const CGRecordLayout &RL =
   2456       CGM.getTypes().getCGRecordLayout(field->getParent());
   2457     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
   2458     llvm::Value *Addr = base.getAddress();
   2459     unsigned Idx = RL.getLLVMFieldNo(field);
   2460     if (Idx != 0)
   2461       // For structs, we GEP to the field that the record layout suggests.
   2462       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
   2463     // Get the access type.
   2464     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
   2465       getLLVMContext(), Info.StorageSize,
   2466       CGM.getContext().getTargetAddressSpace(base.getType()));
   2467     if (Addr->getType() != PtrTy)
   2468       Addr = Builder.CreateBitCast(Addr, PtrTy);
   2469 
   2470     QualType fieldType =
   2471       field->getType().withCVRQualifiers(base.getVRQualifiers());
   2472     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
   2473   }
   2474 
   2475   const RecordDecl *rec = field->getParent();
   2476   QualType type = field->getType();
   2477   CharUnits alignment = getContext().getDeclAlign(field);
   2478 
   2479   // FIXME: It should be impossible to have an LValue without alignment for a
   2480   // complete type.
   2481   if (!base.getAlignment().isZero())
   2482     alignment = std::min(alignment, base.getAlignment());
   2483 
   2484   bool mayAlias = rec->hasAttr<MayAliasAttr>();
   2485 
   2486   llvm::Value *addr = base.getAddress();
   2487   unsigned cvr = base.getVRQualifiers();
   2488   if (rec->isUnion()) {
   2489     // For unions, there is no pointer adjustment.
   2490     assert(!type->isReferenceType() && "union has reference member");
   2491   } else {
   2492     // For structs, we GEP to the field that the record layout suggests.
   2493     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
   2494     addr = Builder.CreateStructGEP(addr, idx, field->getName());
   2495 
   2496     // If this is a reference field, load the reference right now.
   2497     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
   2498       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
   2499       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
   2500       load->setAlignment(alignment.getQuantity());
   2501 
   2502       if (CGM.shouldUseTBAA()) {
   2503         llvm::MDNode *tbaa;
   2504         if (mayAlias)
   2505           tbaa = CGM.getTBAAInfo(getContext().CharTy);
   2506         else
   2507           tbaa = CGM.getTBAAInfo(type);
   2508         CGM.DecorateInstruction(load, tbaa);
   2509       }
   2510 
   2511       addr = load;
   2512       mayAlias = false;
   2513       type = refType->getPointeeType();
   2514       if (type->isIncompleteType())
   2515         alignment = CharUnits();
   2516       else
   2517         alignment = getContext().getTypeAlignInChars(type);
   2518       cvr = 0; // qualifiers don't recursively apply to referencee
   2519     }
   2520   }
   2521 
   2522   // Make sure that the address is pointing to the right type.  This is critical
   2523   // for both unions and structs.  A union needs a bitcast, a struct element
   2524   // will need a bitcast if the LLVM type laid out doesn't match the desired
   2525   // type.
   2526   addr = EmitBitCastOfLValueToProperType(*this, addr,
   2527                                          CGM.getTypes().ConvertTypeForMem(type),
   2528                                          field->getName());
   2529 
   2530   if (field->hasAttr<AnnotateAttr>())
   2531     addr = EmitFieldAnnotations(field, addr);
   2532 
   2533   LValue LV = MakeAddrLValue(addr, type, alignment);
   2534   LV.getQuals().addCVRQualifiers(cvr);
   2535 
   2536   // __weak attribute on a field is ignored.
   2537   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
   2538     LV.getQuals().removeObjCGCAttr();
   2539 
   2540   // Fields of may_alias structs act like 'char' for TBAA purposes.
   2541   // FIXME: this should get propagated down through anonymous structs
   2542   // and unions.
   2543   if (mayAlias && LV.getTBAAInfo())
   2544     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
   2545 
   2546   return LV;
   2547 }
   2548 
   2549 LValue
   2550 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
   2551                                                   const FieldDecl *Field) {
   2552   QualType FieldType = Field->getType();
   2553 
   2554   if (!FieldType->isReferenceType())
   2555     return EmitLValueForField(Base, Field);
   2556 
   2557   const CGRecordLayout &RL =
   2558     CGM.getTypes().getCGRecordLayout(Field->getParent());
   2559   unsigned idx = RL.getLLVMFieldNo(Field);
   2560   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
   2561   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
   2562 
   2563   // Make sure that the address is pointing to the right type.  This is critical
   2564   // for both unions and structs.  A union needs a bitcast, a struct element
   2565   // will need a bitcast if the LLVM type laid out doesn't match the desired
   2566   // type.
   2567   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
   2568   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
   2569 
   2570   CharUnits Alignment = getContext().getDeclAlign(Field);
   2571 
   2572   // FIXME: It should be impossible to have an LValue without alignment for a
   2573   // complete type.
   2574   if (!Base.getAlignment().isZero())
   2575     Alignment = std::min(Alignment, Base.getAlignment());
   2576 
   2577   return MakeAddrLValue(V, FieldType, Alignment);
   2578 }
   2579 
   2580 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
   2581   if (E->isFileScope()) {
   2582     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
   2583     return MakeAddrLValue(GlobalPtr, E->getType());
   2584   }
   2585   if (E->getType()->isVariablyModifiedType())
   2586     // make sure to emit the VLA size.
   2587     EmitVariablyModifiedType(E->getType());
   2588 
   2589   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
   2590   const Expr *InitExpr = E->getInitializer();
   2591   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
   2592 
   2593   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
   2594                    /*Init*/ true);
   2595 
   2596   return Result;
   2597 }
   2598 
   2599 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
   2600   if (!E->isGLValue())
   2601     // Initializing an aggregate temporary in C++11: T{...}.
   2602     return EmitAggExprToLValue(E);
   2603 
   2604   // An lvalue initializer list must be initializing a reference.
   2605   assert(E->getNumInits() == 1 && "reference init with multiple values");
   2606   return EmitLValue(E->getInit(0));
   2607 }
   2608 
   2609 LValue CodeGenFunction::
   2610 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
   2611   if (!expr->isGLValue()) {
   2612     // ?: here should be an aggregate.
   2613     assert(hasAggregateEvaluationKind(expr->getType()) &&
   2614            "Unexpected conditional operator!");
   2615     return EmitAggExprToLValue(expr);
   2616   }
   2617 
   2618   OpaqueValueMapping binding(*this, expr);
   2619 
   2620   const Expr *condExpr = expr->getCond();
   2621   bool CondExprBool;
   2622   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   2623     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
   2624     if (!CondExprBool) std::swap(live, dead);
   2625 
   2626     if (!ContainsLabel(dead))
   2627       return EmitLValue(live);
   2628   }
   2629 
   2630   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
   2631   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
   2632   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
   2633 
   2634   ConditionalEvaluation eval(*this);
   2635   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
   2636 
   2637   // Any temporaries created here are conditional.
   2638   EmitBlock(lhsBlock);
   2639   eval.begin(*this);
   2640   LValue lhs = EmitLValue(expr->getTrueExpr());
   2641   eval.end(*this);
   2642 
   2643   if (!lhs.isSimple())
   2644     return EmitUnsupportedLValue(expr, "conditional operator");
   2645 
   2646   lhsBlock = Builder.GetInsertBlock();
   2647   Builder.CreateBr(contBlock);
   2648 
   2649   // Any temporaries created here are conditional.
   2650   EmitBlock(rhsBlock);
   2651   eval.begin(*this);
   2652   LValue rhs = EmitLValue(expr->getFalseExpr());
   2653   eval.end(*this);
   2654   if (!rhs.isSimple())
   2655     return EmitUnsupportedLValue(expr, "conditional operator");
   2656   rhsBlock = Builder.GetInsertBlock();
   2657 
   2658   EmitBlock(contBlock);
   2659 
   2660   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
   2661                                          "cond-lvalue");
   2662   phi->addIncoming(lhs.getAddress(), lhsBlock);
   2663   phi->addIncoming(rhs.getAddress(), rhsBlock);
   2664   return MakeAddrLValue(phi, expr->getType());
   2665 }
   2666 
   2667 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
   2668 /// type. If the cast is to a reference, we can have the usual lvalue result,
   2669 /// otherwise if a cast is needed by the code generator in an lvalue context,
   2670 /// then it must mean that we need the address of an aggregate in order to
   2671 /// access one of its members.  This can happen for all the reasons that casts
   2672 /// are permitted with aggregate result, including noop aggregate casts, and
   2673 /// cast from scalar to union.
   2674 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
   2675   switch (E->getCastKind()) {
   2676   case CK_ToVoid:
   2677     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
   2678 
   2679   case CK_Dependent:
   2680     llvm_unreachable("dependent cast kind in IR gen!");
   2681 
   2682   case CK_BuiltinFnToFnPtr:
   2683     llvm_unreachable("builtin functions are handled elsewhere");
   2684 
   2685   // These two casts are currently treated as no-ops, although they could
   2686   // potentially be real operations depending on the target's ABI.
   2687   case CK_NonAtomicToAtomic:
   2688   case CK_AtomicToNonAtomic:
   2689 
   2690   case CK_NoOp:
   2691   case CK_LValueToRValue:
   2692     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
   2693         || E->getType()->isRecordType())
   2694       return EmitLValue(E->getSubExpr());
   2695     // Fall through to synthesize a temporary.
   2696 
   2697   case CK_BitCast:
   2698   case CK_ArrayToPointerDecay:
   2699   case CK_FunctionToPointerDecay:
   2700   case CK_NullToMemberPointer:
   2701   case CK_NullToPointer:
   2702   case CK_IntegralToPointer:
   2703   case CK_PointerToIntegral:
   2704   case CK_PointerToBoolean:
   2705   case CK_VectorSplat:
   2706   case CK_IntegralCast:
   2707   case CK_IntegralToBoolean:
   2708   case CK_IntegralToFloating:
   2709   case CK_FloatingToIntegral:
   2710   case CK_FloatingToBoolean:
   2711   case CK_FloatingCast:
   2712   case CK_FloatingRealToComplex:
   2713   case CK_FloatingComplexToReal:
   2714   case CK_FloatingComplexToBoolean:
   2715   case CK_FloatingComplexCast:
   2716   case CK_FloatingComplexToIntegralComplex:
   2717   case CK_IntegralRealToComplex:
   2718   case CK_IntegralComplexToReal:
   2719   case CK_IntegralComplexToBoolean:
   2720   case CK_IntegralComplexCast:
   2721   case CK_IntegralComplexToFloatingComplex:
   2722   case CK_DerivedToBaseMemberPointer:
   2723   case CK_BaseToDerivedMemberPointer:
   2724   case CK_MemberPointerToBoolean:
   2725   case CK_ReinterpretMemberPointer:
   2726   case CK_AnyPointerToBlockPointerCast:
   2727   case CK_ARCProduceObject:
   2728   case CK_ARCConsumeObject:
   2729   case CK_ARCReclaimReturnedObject:
   2730   case CK_ARCExtendBlockObject:
   2731   case CK_CopyAndAutoreleaseBlockObject: {
   2732     // These casts only produce lvalues when we're binding a reference to a
   2733     // temporary realized from a (converted) pure rvalue. Emit the expression
   2734     // as a value, copy it into a temporary, and return an lvalue referring to
   2735     // that temporary.
   2736     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
   2737     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
   2738     return MakeAddrLValue(V, E->getType());
   2739   }
   2740 
   2741   case CK_Dynamic: {
   2742     LValue LV = EmitLValue(E->getSubExpr());
   2743     llvm::Value *V = LV.getAddress();
   2744     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
   2745     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
   2746   }
   2747 
   2748   case CK_ConstructorConversion:
   2749   case CK_UserDefinedConversion:
   2750   case CK_CPointerToObjCPointerCast:
   2751   case CK_BlockPointerToObjCPointerCast:
   2752     return EmitLValue(E->getSubExpr());
   2753 
   2754   case CK_UncheckedDerivedToBase:
   2755   case CK_DerivedToBase: {
   2756     const RecordType *DerivedClassTy =
   2757       E->getSubExpr()->getType()->getAs<RecordType>();
   2758     CXXRecordDecl *DerivedClassDecl =
   2759       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   2760 
   2761     LValue LV = EmitLValue(E->getSubExpr());
   2762     llvm::Value *This = LV.getAddress();
   2763 
   2764     // Perform the derived-to-base conversion
   2765     llvm::Value *Base =
   2766       GetAddressOfBaseClass(This, DerivedClassDecl,
   2767                             E->path_begin(), E->path_end(),
   2768                             /*NullCheckValue=*/false);
   2769 
   2770     return MakeAddrLValue(Base, E->getType());
   2771   }
   2772   case CK_ToUnion:
   2773     return EmitAggExprToLValue(E);
   2774   case CK_BaseToDerived: {
   2775     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
   2776     CXXRecordDecl *DerivedClassDecl =
   2777       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   2778 
   2779     LValue LV = EmitLValue(E->getSubExpr());
   2780 
   2781     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
   2782     // performed and the object is not of the derived type.
   2783     if (SanitizePerformTypeCheck)
   2784       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
   2785                     LV.getAddress(), E->getType());
   2786 
   2787     // Perform the base-to-derived conversion
   2788     llvm::Value *Derived =
   2789       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
   2790                                E->path_begin(), E->path_end(),
   2791                                /*NullCheckValue=*/false);
   2792 
   2793     return MakeAddrLValue(Derived, E->getType());
   2794   }
   2795   case CK_LValueBitCast: {
   2796     // This must be a reinterpret_cast (or c-style equivalent).
   2797     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
   2798 
   2799     LValue LV = EmitLValue(E->getSubExpr());
   2800     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   2801                                            ConvertType(CE->getTypeAsWritten()));
   2802     return MakeAddrLValue(V, E->getType());
   2803   }
   2804   case CK_ObjCObjectLValueCast: {
   2805     LValue LV = EmitLValue(E->getSubExpr());
   2806     QualType ToType = getContext().getLValueReferenceType(E->getType());
   2807     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   2808                                            ConvertType(ToType));
   2809     return MakeAddrLValue(V, E->getType());
   2810   }
   2811   case CK_ZeroToOCLEvent:
   2812     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
   2813   }
   2814 
   2815   llvm_unreachable("Unhandled lvalue cast kind?");
   2816 }
   2817 
   2818 LValue CodeGenFunction::EmitNullInitializationLValue(
   2819                                               const CXXScalarValueInitExpr *E) {
   2820   QualType Ty = E->getType();
   2821   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
   2822   EmitNullInitialization(LV.getAddress(), Ty);
   2823   return LV;
   2824 }
   2825 
   2826 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
   2827   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
   2828   return getOpaqueLValueMapping(e);
   2829 }
   2830 
   2831 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
   2832                                            const MaterializeTemporaryExpr *E) {
   2833   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
   2834   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   2835 }
   2836 
   2837 RValue CodeGenFunction::EmitRValueForField(LValue LV,
   2838                                            const FieldDecl *FD) {
   2839   QualType FT = FD->getType();
   2840   LValue FieldLV = EmitLValueForField(LV, FD);
   2841   switch (getEvaluationKind(FT)) {
   2842   case TEK_Complex:
   2843     return RValue::getComplex(EmitLoadOfComplex(FieldLV));
   2844   case TEK_Aggregate:
   2845     return FieldLV.asAggregateRValue();
   2846   case TEK_Scalar:
   2847     return EmitLoadOfLValue(FieldLV);
   2848   }
   2849   llvm_unreachable("bad evaluation kind");
   2850 }
   2851 
   2852 //===--------------------------------------------------------------------===//
   2853 //                             Expression Emission
   2854 //===--------------------------------------------------------------------===//
   2855 
   2856 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
   2857                                      ReturnValueSlot ReturnValue) {
   2858   if (CGDebugInfo *DI = getDebugInfo()) {
   2859     SourceLocation Loc = E->getLocStart();
   2860     // Force column info to be generated so we can differentiate
   2861     // multiple call sites on the same line in the debug info.
   2862     const FunctionDecl* Callee = E->getDirectCallee();
   2863     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
   2864     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
   2865   }
   2866 
   2867   // Builtins never have block type.
   2868   if (E->getCallee()->getType()->isBlockPointerType())
   2869     return EmitBlockCallExpr(E, ReturnValue);
   2870 
   2871   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
   2872     return EmitCXXMemberCallExpr(CE, ReturnValue);
   2873 
   2874   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
   2875     return EmitCUDAKernelCallExpr(CE, ReturnValue);
   2876 
   2877   const Decl *TargetDecl = E->getCalleeDecl();
   2878   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
   2879     if (unsigned builtinID = FD->getBuiltinID())
   2880       return EmitBuiltinExpr(FD, builtinID, E);
   2881   }
   2882 
   2883   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
   2884     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
   2885       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
   2886 
   2887   if (const CXXPseudoDestructorExpr *PseudoDtor
   2888           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
   2889     QualType DestroyedType = PseudoDtor->getDestroyedType();
   2890     if (getLangOpts().ObjCAutoRefCount &&
   2891         DestroyedType->isObjCLifetimeType() &&
   2892         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
   2893          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
   2894       // Automatic Reference Counting:
   2895       //   If the pseudo-expression names a retainable object with weak or
   2896       //   strong lifetime, the object shall be released.
   2897       Expr *BaseExpr = PseudoDtor->getBase();
   2898       llvm::Value *BaseValue = NULL;
   2899       Qualifiers BaseQuals;
   2900 
   2901       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
   2902       if (PseudoDtor->isArrow()) {
   2903         BaseValue = EmitScalarExpr(BaseExpr);
   2904         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
   2905         BaseQuals = PTy->getPointeeType().getQualifiers();
   2906       } else {
   2907         LValue BaseLV = EmitLValue(BaseExpr);
   2908         BaseValue = BaseLV.getAddress();
   2909         QualType BaseTy = BaseExpr->getType();
   2910         BaseQuals = BaseTy.getQualifiers();
   2911       }
   2912 
   2913       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
   2914       case Qualifiers::OCL_None:
   2915       case Qualifiers::OCL_ExplicitNone:
   2916       case Qualifiers::OCL_Autoreleasing:
   2917         break;
   2918 
   2919       case Qualifiers::OCL_Strong:
   2920         EmitARCRelease(Builder.CreateLoad(BaseValue,
   2921                           PseudoDtor->getDestroyedType().isVolatileQualified()),
   2922                        ARCPreciseLifetime);
   2923         break;
   2924 
   2925       case Qualifiers::OCL_Weak:
   2926         EmitARCDestroyWeak(BaseValue);
   2927         break;
   2928       }
   2929     } else {
   2930       // C++ [expr.pseudo]p1:
   2931       //   The result shall only be used as the operand for the function call
   2932       //   operator (), and the result of such a call has type void. The only
   2933       //   effect is the evaluation of the postfix-expression before the dot or
   2934       //   arrow.
   2935       EmitScalarExpr(E->getCallee());
   2936     }
   2937 
   2938     return RValue::get(0);
   2939   }
   2940 
   2941   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
   2942   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
   2943                   E->arg_begin(), E->arg_end(), TargetDecl);
   2944 }
   2945 
   2946 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
   2947   // Comma expressions just emit their LHS then their RHS as an l-value.
   2948   if (E->getOpcode() == BO_Comma) {
   2949     EmitIgnoredExpr(E->getLHS());
   2950     EnsureInsertPoint();
   2951     return EmitLValue(E->getRHS());
   2952   }
   2953 
   2954   if (E->getOpcode() == BO_PtrMemD ||
   2955       E->getOpcode() == BO_PtrMemI)
   2956     return EmitPointerToDataMemberBinaryExpr(E);
   2957 
   2958   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
   2959 
   2960   // Note that in all of these cases, __block variables need the RHS
   2961   // evaluated first just in case the variable gets moved by the RHS.
   2962 
   2963   switch (getEvaluationKind(E->getType())) {
   2964   case TEK_Scalar: {
   2965     switch (E->getLHS()->getType().getObjCLifetime()) {
   2966     case Qualifiers::OCL_Strong:
   2967       return EmitARCStoreStrong(E, /*ignored*/ false).first;
   2968 
   2969     case Qualifiers::OCL_Autoreleasing:
   2970       return EmitARCStoreAutoreleasing(E).first;
   2971 
   2972     // No reason to do any of these differently.
   2973     case Qualifiers::OCL_None:
   2974     case Qualifiers::OCL_ExplicitNone:
   2975     case Qualifiers::OCL_Weak:
   2976       break;
   2977     }
   2978 
   2979     RValue RV = EmitAnyExpr(E->getRHS());
   2980     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
   2981     EmitStoreThroughLValue(RV, LV);
   2982     return LV;
   2983   }
   2984 
   2985   case TEK_Complex:
   2986     return EmitComplexAssignmentLValue(E);
   2987 
   2988   case TEK_Aggregate:
   2989     return EmitAggExprToLValue(E);
   2990   }
   2991   llvm_unreachable("bad evaluation kind");
   2992 }
   2993 
   2994 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
   2995   RValue RV = EmitCallExpr(E);
   2996 
   2997   if (!RV.isScalar())
   2998     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   2999 
   3000   assert(E->getCallReturnType()->isReferenceType() &&
   3001          "Can't have a scalar return unless the return type is a "
   3002          "reference type!");
   3003 
   3004   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   3005 }
   3006 
   3007 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
   3008   // FIXME: This shouldn't require another copy.
   3009   return EmitAggExprToLValue(E);
   3010 }
   3011 
   3012 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
   3013   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
   3014          && "binding l-value to type which needs a temporary");
   3015   AggValueSlot Slot = CreateAggTemp(E->getType());
   3016   EmitCXXConstructExpr(E, Slot);
   3017   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3018 }
   3019 
   3020 LValue
   3021 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
   3022   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
   3023 }
   3024 
   3025 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
   3026   return CGM.GetAddrOfUuidDescriptor(E);
   3027 }
   3028 
   3029 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
   3030   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
   3031 }
   3032 
   3033 LValue
   3034 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
   3035   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3036   Slot.setExternallyDestructed();
   3037   EmitAggExpr(E->getSubExpr(), Slot);
   3038   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
   3039   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3040 }
   3041 
   3042 LValue
   3043 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
   3044   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3045   EmitLambdaExpr(E, Slot);
   3046   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3047 }
   3048 
   3049 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
   3050   RValue RV = EmitObjCMessageExpr(E);
   3051 
   3052   if (!RV.isScalar())
   3053     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3054 
   3055   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
   3056          "Can't have a scalar return unless the return type is a "
   3057          "reference type!");
   3058 
   3059   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   3060 }
   3061 
   3062 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
   3063   llvm::Value *V =
   3064     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
   3065   return MakeAddrLValue(V, E->getType());
   3066 }
   3067 
   3068 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   3069                                              const ObjCIvarDecl *Ivar) {
   3070   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
   3071 }
   3072 
   3073 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
   3074                                           llvm::Value *BaseValue,
   3075                                           const ObjCIvarDecl *Ivar,
   3076                                           unsigned CVRQualifiers) {
   3077   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
   3078                                                    Ivar, CVRQualifiers);
   3079 }
   3080 
   3081 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
   3082   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
   3083   llvm::Value *BaseValue = 0;
   3084   const Expr *BaseExpr = E->getBase();
   3085   Qualifiers BaseQuals;
   3086   QualType ObjectTy;
   3087   if (E->isArrow()) {
   3088     BaseValue = EmitScalarExpr(BaseExpr);
   3089     ObjectTy = BaseExpr->getType()->getPointeeType();
   3090     BaseQuals = ObjectTy.getQualifiers();
   3091   } else {
   3092     LValue BaseLV = EmitLValue(BaseExpr);
   3093     // FIXME: this isn't right for bitfields.
   3094     BaseValue = BaseLV.getAddress();
   3095     ObjectTy = BaseExpr->getType();
   3096     BaseQuals = ObjectTy.getQualifiers();
   3097   }
   3098 
   3099   LValue LV =
   3100     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
   3101                       BaseQuals.getCVRQualifiers());
   3102   setObjCGCLValueClass(getContext(), E, LV);
   3103   return LV;
   3104 }
   3105 
   3106 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
   3107   // Can only get l-value for message expression returning aggregate type
   3108   RValue RV = EmitAnyExprToTemp(E);
   3109   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3110 }
   3111 
   3112 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
   3113                                  ReturnValueSlot ReturnValue,
   3114                                  CallExpr::const_arg_iterator ArgBeg,
   3115                                  CallExpr::const_arg_iterator ArgEnd,
   3116                                  const Decl *TargetDecl) {
   3117   // Get the actual function type. The callee type will always be a pointer to
   3118   // function type or a block pointer type.
   3119   assert(CalleeType->isFunctionPointerType() &&
   3120          "Call must have function pointer type!");
   3121 
   3122   CalleeType = getContext().getCanonicalType(CalleeType);
   3123 
   3124   const FunctionType *FnType
   3125     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
   3126 
   3127   CallArgList Args;
   3128   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
   3129 
   3130   const CGFunctionInfo &FnInfo =
   3131     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
   3132 
   3133   // C99 6.5.2.2p6:
   3134   //   If the expression that denotes the called function has a type
   3135   //   that does not include a prototype, [the default argument
   3136   //   promotions are performed]. If the number of arguments does not
   3137   //   equal the number of parameters, the behavior is undefined. If
   3138   //   the function is defined with a type that includes a prototype,
   3139   //   and either the prototype ends with an ellipsis (, ...) or the
   3140   //   types of the arguments after promotion are not compatible with
   3141   //   the types of the parameters, the behavior is undefined. If the
   3142   //   function is defined with a type that does not include a
   3143   //   prototype, and the types of the arguments after promotion are
   3144   //   not compatible with those of the parameters after promotion,
   3145   //   the behavior is undefined [except in some trivial cases].
   3146   // That is, in the general case, we should assume that a call
   3147   // through an unprototyped function type works like a *non-variadic*
   3148   // call.  The way we make this work is to cast to the exact type
   3149   // of the promoted arguments.
   3150   if (isa<FunctionNoProtoType>(FnType)) {
   3151     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
   3152     CalleeTy = CalleeTy->getPointerTo();
   3153     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
   3154   }
   3155 
   3156   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
   3157 }
   3158 
   3159 LValue CodeGenFunction::
   3160 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
   3161   llvm::Value *BaseV;
   3162   if (E->getOpcode() == BO_PtrMemI)
   3163     BaseV = EmitScalarExpr(E->getLHS());
   3164   else
   3165     BaseV = EmitLValue(E->getLHS()).getAddress();
   3166 
   3167   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
   3168 
   3169   const MemberPointerType *MPT
   3170     = E->getRHS()->getType()->getAs<MemberPointerType>();
   3171 
   3172   llvm::Value *AddV =
   3173     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
   3174 
   3175   return MakeAddrLValue(AddV, MPT->getPointeeType());
   3176 }
   3177 
   3178 /// Given the address of a temporary variable, produce an r-value of
   3179 /// its type.
   3180 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
   3181                                             QualType type) {
   3182   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
   3183   switch (getEvaluationKind(type)) {
   3184   case TEK_Complex:
   3185     return RValue::getComplex(EmitLoadOfComplex(lvalue));
   3186   case TEK_Aggregate:
   3187     return lvalue.asAggregateRValue();
   3188   case TEK_Scalar:
   3189     return RValue::get(EmitLoadOfScalar(lvalue));
   3190   }
   3191   llvm_unreachable("bad evaluation kind");
   3192 }
   3193 
   3194 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
   3195   assert(Val->getType()->isFPOrFPVectorTy());
   3196   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
   3197     return;
   3198 
   3199   llvm::MDBuilder MDHelper(getLLVMContext());
   3200   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
   3201 
   3202   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
   3203 }
   3204 
   3205 namespace {
   3206   struct LValueOrRValue {
   3207     LValue LV;
   3208     RValue RV;
   3209   };
   3210 }
   3211 
   3212 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
   3213                                            const PseudoObjectExpr *E,
   3214                                            bool forLValue,
   3215                                            AggValueSlot slot) {
   3216   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   3217 
   3218   // Find the result expression, if any.
   3219   const Expr *resultExpr = E->getResultExpr();
   3220   LValueOrRValue result;
   3221 
   3222   for (PseudoObjectExpr::const_semantics_iterator
   3223          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   3224     const Expr *semantic = *i;
   3225 
   3226     // If this semantic expression is an opaque value, bind it
   3227     // to the result of its source expression.
   3228     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   3229 
   3230       // If this is the result expression, we may need to evaluate
   3231       // directly into the slot.
   3232       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   3233       OVMA opaqueData;
   3234       if (ov == resultExpr && ov->isRValue() && !forLValue &&
   3235           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
   3236         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
   3237 
   3238         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
   3239         opaqueData = OVMA::bind(CGF, ov, LV);
   3240         result.RV = slot.asRValue();
   3241 
   3242       // Otherwise, emit as normal.
   3243       } else {
   3244         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   3245 
   3246         // If this is the result, also evaluate the result now.
   3247         if (ov == resultExpr) {
   3248           if (forLValue)
   3249             result.LV = CGF.EmitLValue(ov);
   3250           else
   3251             result.RV = CGF.EmitAnyExpr(ov, slot);
   3252         }
   3253       }
   3254 
   3255       opaques.push_back(opaqueData);
   3256 
   3257     // Otherwise, if the expression is the result, evaluate it
   3258     // and remember the result.
   3259     } else if (semantic == resultExpr) {
   3260       if (forLValue)
   3261         result.LV = CGF.EmitLValue(semantic);
   3262       else
   3263         result.RV = CGF.EmitAnyExpr(semantic, slot);
   3264 
   3265     // Otherwise, evaluate the expression in an ignored context.
   3266     } else {
   3267       CGF.EmitIgnoredExpr(semantic);
   3268     }
   3269   }
   3270 
   3271   // Unbind all the opaques now.
   3272   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   3273     opaques[i].unbind(CGF);
   3274 
   3275   return result;
   3276 }
   3277 
   3278 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
   3279                                                AggValueSlot slot) {
   3280   return emitPseudoObjectExpr(*this, E, false, slot).RV;
   3281 }
   3282 
   3283 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
   3284   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
   3285 }
   3286