Home | History | Annotate | Download | only in Utils
      1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements some loop unrolling utilities. It does not define any
     11 // actual pass or policy, but provides a single function to perform loop
     12 // unrolling.
     13 //
     14 // The process of unrolling can produce extraneous basic blocks linked with
     15 // unconditional branches.  This will be corrected in the future.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #define DEBUG_TYPE "loop-unroll"
     20 #include "llvm/Transforms/Utils/UnrollLoop.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/LoopIterator.h"
     24 #include "llvm/Analysis/LoopPass.h"
     25 #include "llvm/Analysis/ScalarEvolution.h"
     26 #include "llvm/IR/BasicBlock.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     30 #include "llvm/Transforms/Utils/Cloning.h"
     31 #include "llvm/Transforms/Utils/Local.h"
     32 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     33 using namespace llvm;
     34 
     35 // TODO: Should these be here or in LoopUnroll?
     36 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
     37 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
     38 
     39 /// RemapInstruction - Convert the instruction operands from referencing the
     40 /// current values into those specified by VMap.
     41 static inline void RemapInstruction(Instruction *I,
     42                                     ValueToValueMapTy &VMap) {
     43   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
     44     Value *Op = I->getOperand(op);
     45     ValueToValueMapTy::iterator It = VMap.find(Op);
     46     if (It != VMap.end())
     47       I->setOperand(op, It->second);
     48   }
     49 
     50   if (PHINode *PN = dyn_cast<PHINode>(I)) {
     51     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
     52       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
     53       if (It != VMap.end())
     54         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
     55     }
     56   }
     57 }
     58 
     59 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
     60 /// only has one predecessor, and that predecessor only has one successor.
     61 /// The LoopInfo Analysis that is passed will be kept consistent.
     62 /// Returns the new combined block.
     63 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
     64                                             LPPassManager *LPM) {
     65   // Merge basic blocks into their predecessor if there is only one distinct
     66   // pred, and if there is only one distinct successor of the predecessor, and
     67   // if there are no PHI nodes.
     68   BasicBlock *OnlyPred = BB->getSinglePredecessor();
     69   if (!OnlyPred) return 0;
     70 
     71   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
     72     return 0;
     73 
     74   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
     75 
     76   // Resolve any PHI nodes at the start of the block.  They are all
     77   // guaranteed to have exactly one entry if they exist, unless there are
     78   // multiple duplicate (but guaranteed to be equal) entries for the
     79   // incoming edges.  This occurs when there are multiple edges from
     80   // OnlyPred to OnlySucc.
     81   FoldSingleEntryPHINodes(BB);
     82 
     83   // Delete the unconditional branch from the predecessor...
     84   OnlyPred->getInstList().pop_back();
     85 
     86   // Make all PHI nodes that referred to BB now refer to Pred as their
     87   // source...
     88   BB->replaceAllUsesWith(OnlyPred);
     89 
     90   // Move all definitions in the successor to the predecessor...
     91   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
     92 
     93   std::string OldName = BB->getName();
     94 
     95   // Erase basic block from the function...
     96 
     97   // ScalarEvolution holds references to loop exit blocks.
     98   if (LPM) {
     99     if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
    100       if (Loop *L = LI->getLoopFor(BB))
    101         SE->forgetLoop(L);
    102     }
    103   }
    104   LI->removeBlock(BB);
    105   BB->eraseFromParent();
    106 
    107   // Inherit predecessor's name if it exists...
    108   if (!OldName.empty() && !OnlyPred->hasName())
    109     OnlyPred->setName(OldName);
    110 
    111   return OnlyPred;
    112 }
    113 
    114 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
    115 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
    116 /// can only fail when the loop's latch block is not terminated by a conditional
    117 /// branch instruction. However, if the trip count (and multiple) are not known,
    118 /// loop unrolling will mostly produce more code that is no faster.
    119 ///
    120 /// TripCount is generally defined as the number of times the loop header
    121 /// executes. UnrollLoop relaxes the definition to permit early exits: here
    122 /// TripCount is the iteration on which control exits LatchBlock if no early
    123 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
    124 /// terminates LatchBlock in order to remove unnecesssary instances of the
    125 /// test. In other words, control may exit the loop prior to TripCount
    126 /// iterations via an early branch, but control may not exit the loop from the
    127 /// LatchBlock's terminator prior to TripCount iterations.
    128 ///
    129 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
    130 /// execute without exiting the loop.
    131 ///
    132 /// The LoopInfo Analysis that is passed will be kept consistent.
    133 ///
    134 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
    135 /// removed from the LoopPassManager as well. LPM can also be NULL.
    136 ///
    137 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
    138 /// available it must also preserve those analyses.
    139 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
    140                       bool AllowRuntime, unsigned TripMultiple,
    141                       LoopInfo *LI, LPPassManager *LPM) {
    142   BasicBlock *Preheader = L->getLoopPreheader();
    143   if (!Preheader) {
    144     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
    145     return false;
    146   }
    147 
    148   BasicBlock *LatchBlock = L->getLoopLatch();
    149   if (!LatchBlock) {
    150     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
    151     return false;
    152   }
    153 
    154   // Loops with indirectbr cannot be cloned.
    155   if (!L->isSafeToClone()) {
    156     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
    157     return false;
    158   }
    159 
    160   BasicBlock *Header = L->getHeader();
    161   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
    162 
    163   if (!BI || BI->isUnconditional()) {
    164     // The loop-rotate pass can be helpful to avoid this in many cases.
    165     DEBUG(dbgs() <<
    166              "  Can't unroll; loop not terminated by a conditional branch.\n");
    167     return false;
    168   }
    169 
    170   if (Header->hasAddressTaken()) {
    171     // The loop-rotate pass can be helpful to avoid this in many cases.
    172     DEBUG(dbgs() <<
    173           "  Won't unroll loop: address of header block is taken.\n");
    174     return false;
    175   }
    176 
    177   if (TripCount != 0)
    178     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
    179   if (TripMultiple != 1)
    180     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
    181 
    182   // Effectively "DCE" unrolled iterations that are beyond the tripcount
    183   // and will never be executed.
    184   if (TripCount != 0 && Count > TripCount)
    185     Count = TripCount;
    186 
    187   // Don't enter the unroll code if there is nothing to do. This way we don't
    188   // need to support "partial unrolling by 1".
    189   if (TripCount == 0 && Count < 2)
    190     return false;
    191 
    192   assert(Count > 0);
    193   assert(TripMultiple > 0);
    194   assert(TripCount == 0 || TripCount % TripMultiple == 0);
    195 
    196   // Are we eliminating the loop control altogether?
    197   bool CompletelyUnroll = Count == TripCount;
    198 
    199   // We assume a run-time trip count if the compiler cannot
    200   // figure out the loop trip count and the unroll-runtime
    201   // flag is specified.
    202   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
    203 
    204   if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
    205     return false;
    206 
    207   // Notify ScalarEvolution that the loop will be substantially changed,
    208   // if not outright eliminated.
    209   if (LPM) {
    210     ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
    211     if (SE)
    212       SE->forgetLoop(L);
    213   }
    214 
    215   // If we know the trip count, we know the multiple...
    216   unsigned BreakoutTrip = 0;
    217   if (TripCount != 0) {
    218     BreakoutTrip = TripCount % Count;
    219     TripMultiple = 0;
    220   } else {
    221     // Figure out what multiple to use.
    222     BreakoutTrip = TripMultiple =
    223       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
    224   }
    225 
    226   if (CompletelyUnroll) {
    227     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
    228           << " with trip count " << TripCount << "!\n");
    229   } else {
    230     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
    231           << " by " << Count);
    232     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
    233       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
    234     } else if (TripMultiple != 1) {
    235       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
    236     } else if (RuntimeTripCount) {
    237       DEBUG(dbgs() << " with run-time trip count");
    238     }
    239     DEBUG(dbgs() << "!\n");
    240   }
    241 
    242   std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
    243 
    244   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
    245   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
    246 
    247   // For the first iteration of the loop, we should use the precloned values for
    248   // PHI nodes.  Insert associations now.
    249   ValueToValueMapTy LastValueMap;
    250   std::vector<PHINode*> OrigPHINode;
    251   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    252     OrigPHINode.push_back(cast<PHINode>(I));
    253   }
    254 
    255   std::vector<BasicBlock*> Headers;
    256   std::vector<BasicBlock*> Latches;
    257   Headers.push_back(Header);
    258   Latches.push_back(LatchBlock);
    259 
    260   // The current on-the-fly SSA update requires blocks to be processed in
    261   // reverse postorder so that LastValueMap contains the correct value at each
    262   // exit.
    263   LoopBlocksDFS DFS(L);
    264   DFS.perform(LI);
    265 
    266   // Stash the DFS iterators before adding blocks to the loop.
    267   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
    268   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
    269 
    270   for (unsigned It = 1; It != Count; ++It) {
    271     std::vector<BasicBlock*> NewBlocks;
    272 
    273     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    274       ValueToValueMapTy VMap;
    275       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
    276       Header->getParent()->getBasicBlockList().push_back(New);
    277 
    278       // Loop over all of the PHI nodes in the block, changing them to use the
    279       // incoming values from the previous block.
    280       if (*BB == Header)
    281         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    282           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
    283           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
    284           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
    285             if (It > 1 && L->contains(InValI))
    286               InVal = LastValueMap[InValI];
    287           VMap[OrigPHINode[i]] = InVal;
    288           New->getInstList().erase(NewPHI);
    289         }
    290 
    291       // Update our running map of newest clones
    292       LastValueMap[*BB] = New;
    293       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
    294            VI != VE; ++VI)
    295         LastValueMap[VI->first] = VI->second;
    296 
    297       L->addBasicBlockToLoop(New, LI->getBase());
    298 
    299       // Add phi entries for newly created values to all exit blocks.
    300       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
    301            SI != SE; ++SI) {
    302         if (L->contains(*SI))
    303           continue;
    304         for (BasicBlock::iterator BBI = (*SI)->begin();
    305              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
    306           Value *Incoming = phi->getIncomingValueForBlock(*BB);
    307           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
    308           if (It != LastValueMap.end())
    309             Incoming = It->second;
    310           phi->addIncoming(Incoming, New);
    311         }
    312       }
    313       // Keep track of new headers and latches as we create them, so that
    314       // we can insert the proper branches later.
    315       if (*BB == Header)
    316         Headers.push_back(New);
    317       if (*BB == LatchBlock)
    318         Latches.push_back(New);
    319 
    320       NewBlocks.push_back(New);
    321     }
    322 
    323     // Remap all instructions in the most recent iteration
    324     for (unsigned i = 0; i < NewBlocks.size(); ++i)
    325       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
    326            E = NewBlocks[i]->end(); I != E; ++I)
    327         ::RemapInstruction(I, LastValueMap);
    328   }
    329 
    330   // Loop over the PHI nodes in the original block, setting incoming values.
    331   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    332     PHINode *PN = OrigPHINode[i];
    333     if (CompletelyUnroll) {
    334       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
    335       Header->getInstList().erase(PN);
    336     }
    337     else if (Count > 1) {
    338       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
    339       // If this value was defined in the loop, take the value defined by the
    340       // last iteration of the loop.
    341       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
    342         if (L->contains(InValI))
    343           InVal = LastValueMap[InVal];
    344       }
    345       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
    346       PN->addIncoming(InVal, Latches.back());
    347     }
    348   }
    349 
    350   // Now that all the basic blocks for the unrolled iterations are in place,
    351   // set up the branches to connect them.
    352   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    353     // The original branch was replicated in each unrolled iteration.
    354     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
    355 
    356     // The branch destination.
    357     unsigned j = (i + 1) % e;
    358     BasicBlock *Dest = Headers[j];
    359     bool NeedConditional = true;
    360 
    361     if (RuntimeTripCount && j != 0) {
    362       NeedConditional = false;
    363     }
    364 
    365     // For a complete unroll, make the last iteration end with a branch
    366     // to the exit block.
    367     if (CompletelyUnroll && j == 0) {
    368       Dest = LoopExit;
    369       NeedConditional = false;
    370     }
    371 
    372     // If we know the trip count or a multiple of it, we can safely use an
    373     // unconditional branch for some iterations.
    374     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
    375       NeedConditional = false;
    376     }
    377 
    378     if (NeedConditional) {
    379       // Update the conditional branch's successor for the following
    380       // iteration.
    381       Term->setSuccessor(!ContinueOnTrue, Dest);
    382     } else {
    383       // Remove phi operands at this loop exit
    384       if (Dest != LoopExit) {
    385         BasicBlock *BB = Latches[i];
    386         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
    387              SI != SE; ++SI) {
    388           if (*SI == Headers[i])
    389             continue;
    390           for (BasicBlock::iterator BBI = (*SI)->begin();
    391                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
    392             Phi->removeIncomingValue(BB, false);
    393           }
    394         }
    395       }
    396       // Replace the conditional branch with an unconditional one.
    397       BranchInst::Create(Dest, Term);
    398       Term->eraseFromParent();
    399     }
    400   }
    401 
    402   // Merge adjacent basic blocks, if possible.
    403   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    404     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
    405     if (Term->isUnconditional()) {
    406       BasicBlock *Dest = Term->getSuccessor(0);
    407       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
    408         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
    409     }
    410   }
    411 
    412   if (LPM) {
    413     // FIXME: Reconstruct dom info, because it is not preserved properly.
    414     // Incrementally updating domtree after loop unrolling would be easy.
    415     if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
    416       DT->runOnFunction(*L->getHeader()->getParent());
    417 
    418     // Simplify any new induction variables in the partially unrolled loop.
    419     ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
    420     if (SE && !CompletelyUnroll) {
    421       SmallVector<WeakVH, 16> DeadInsts;
    422       simplifyLoopIVs(L, SE, LPM, DeadInsts);
    423 
    424       // Aggressively clean up dead instructions that simplifyLoopIVs already
    425       // identified. Any remaining should be cleaned up below.
    426       while (!DeadInsts.empty())
    427         if (Instruction *Inst =
    428             dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
    429           RecursivelyDeleteTriviallyDeadInstructions(Inst);
    430     }
    431   }
    432   // At this point, the code is well formed.  We now do a quick sweep over the
    433   // inserted code, doing constant propagation and dead code elimination as we
    434   // go.
    435   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
    436   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
    437        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
    438     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
    439       Instruction *Inst = I++;
    440 
    441       if (isInstructionTriviallyDead(Inst))
    442         (*BB)->getInstList().erase(Inst);
    443       else if (Value *V = SimplifyInstruction(Inst))
    444         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
    445           Inst->replaceAllUsesWith(V);
    446           (*BB)->getInstList().erase(Inst);
    447         }
    448     }
    449 
    450   NumCompletelyUnrolled += CompletelyUnroll;
    451   ++NumUnrolled;
    452   // Remove the loop from the LoopPassManager if it's completely removed.
    453   if (CompletelyUnroll && LPM != NULL)
    454     LPM->deleteLoopFromQueue(L);
    455 
    456   return true;
    457 }
    458