Home | History | Annotate | Download | only in Lex
      1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the NumericLiteralParser, CharLiteralParser, and
     11 // StringLiteralParser interfaces.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Lex/LiteralSupport.h"
     16 #include "clang/Basic/CharInfo.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Lex/LexDiagnostic.h"
     19 #include "clang/Lex/Preprocessor.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/Support/ConvertUTF.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 
     24 using namespace clang;
     25 
     26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
     27   switch (kind) {
     28   default: llvm_unreachable("Unknown token type!");
     29   case tok::char_constant:
     30   case tok::string_literal:
     31   case tok::utf8_string_literal:
     32     return Target.getCharWidth();
     33   case tok::wide_char_constant:
     34   case tok::wide_string_literal:
     35     return Target.getWCharWidth();
     36   case tok::utf16_char_constant:
     37   case tok::utf16_string_literal:
     38     return Target.getChar16Width();
     39   case tok::utf32_char_constant:
     40   case tok::utf32_string_literal:
     41     return Target.getChar32Width();
     42   }
     43 }
     44 
     45 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
     46                                            FullSourceLoc TokLoc,
     47                                            const char *TokBegin,
     48                                            const char *TokRangeBegin,
     49                                            const char *TokRangeEnd) {
     50   SourceLocation Begin =
     51     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     52                                    TokLoc.getManager(), Features);
     53   SourceLocation End =
     54     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
     55                                    TokLoc.getManager(), Features);
     56   return CharSourceRange::getCharRange(Begin, End);
     57 }
     58 
     59 /// \brief Produce a diagnostic highlighting some portion of a literal.
     60 ///
     61 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
     62 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
     63 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
     64 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
     65                               const LangOptions &Features, FullSourceLoc TokLoc,
     66                               const char *TokBegin, const char *TokRangeBegin,
     67                               const char *TokRangeEnd, unsigned DiagID) {
     68   SourceLocation Begin =
     69     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     70                                    TokLoc.getManager(), Features);
     71   return Diags->Report(Begin, DiagID) <<
     72     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
     73 }
     74 
     75 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
     76 /// either a character or a string literal.
     77 static unsigned ProcessCharEscape(const char *ThisTokBegin,
     78                                   const char *&ThisTokBuf,
     79                                   const char *ThisTokEnd, bool &HadError,
     80                                   FullSourceLoc Loc, unsigned CharWidth,
     81                                   DiagnosticsEngine *Diags,
     82                                   const LangOptions &Features) {
     83   const char *EscapeBegin = ThisTokBuf;
     84 
     85   // Skip the '\' char.
     86   ++ThisTokBuf;
     87 
     88   // We know that this character can't be off the end of the buffer, because
     89   // that would have been \", which would not have been the end of string.
     90   unsigned ResultChar = *ThisTokBuf++;
     91   switch (ResultChar) {
     92   // These map to themselves.
     93   case '\\': case '\'': case '"': case '?': break;
     94 
     95     // These have fixed mappings.
     96   case 'a':
     97     // TODO: K&R: the meaning of '\\a' is different in traditional C
     98     ResultChar = 7;
     99     break;
    100   case 'b':
    101     ResultChar = 8;
    102     break;
    103   case 'e':
    104     if (Diags)
    105       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    106            diag::ext_nonstandard_escape) << "e";
    107     ResultChar = 27;
    108     break;
    109   case 'E':
    110     if (Diags)
    111       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    112            diag::ext_nonstandard_escape) << "E";
    113     ResultChar = 27;
    114     break;
    115   case 'f':
    116     ResultChar = 12;
    117     break;
    118   case 'n':
    119     ResultChar = 10;
    120     break;
    121   case 'r':
    122     ResultChar = 13;
    123     break;
    124   case 't':
    125     ResultChar = 9;
    126     break;
    127   case 'v':
    128     ResultChar = 11;
    129     break;
    130   case 'x': { // Hex escape.
    131     ResultChar = 0;
    132     if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    133       if (Diags)
    134         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    135              diag::err_hex_escape_no_digits) << "x";
    136       HadError = 1;
    137       break;
    138     }
    139 
    140     // Hex escapes are a maximal series of hex digits.
    141     bool Overflow = false;
    142     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
    143       int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    144       if (CharVal == -1) break;
    145       // About to shift out a digit?
    146       Overflow |= (ResultChar & 0xF0000000) ? true : false;
    147       ResultChar <<= 4;
    148       ResultChar |= CharVal;
    149     }
    150 
    151     // See if any bits will be truncated when evaluated as a character.
    152     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    153       Overflow = true;
    154       ResultChar &= ~0U >> (32-CharWidth);
    155     }
    156 
    157     // Check for overflow.
    158     if (Overflow && Diags)   // Too many digits to fit in
    159       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    160            diag::warn_hex_escape_too_large);
    161     break;
    162   }
    163   case '0': case '1': case '2': case '3':
    164   case '4': case '5': case '6': case '7': {
    165     // Octal escapes.
    166     --ThisTokBuf;
    167     ResultChar = 0;
    168 
    169     // Octal escapes are a series of octal digits with maximum length 3.
    170     // "\0123" is a two digit sequence equal to "\012" "3".
    171     unsigned NumDigits = 0;
    172     do {
    173       ResultChar <<= 3;
    174       ResultChar |= *ThisTokBuf++ - '0';
    175       ++NumDigits;
    176     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
    177              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
    178 
    179     // Check for overflow.  Reject '\777', but not L'\777'.
    180     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    181       if (Diags)
    182         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    183              diag::warn_octal_escape_too_large);
    184       ResultChar &= ~0U >> (32-CharWidth);
    185     }
    186     break;
    187   }
    188 
    189     // Otherwise, these are not valid escapes.
    190   case '(': case '{': case '[': case '%':
    191     // GCC accepts these as extensions.  We warn about them as such though.
    192     if (Diags)
    193       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    194            diag::ext_nonstandard_escape)
    195         << std::string(1, ResultChar);
    196     break;
    197   default:
    198     if (Diags == 0)
    199       break;
    200 
    201     if (isPrintable(ResultChar))
    202       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    203            diag::ext_unknown_escape)
    204         << std::string(1, ResultChar);
    205     else
    206       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    207            diag::ext_unknown_escape)
    208         << "x" + llvm::utohexstr(ResultChar);
    209     break;
    210   }
    211 
    212   return ResultChar;
    213 }
    214 
    215 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
    216 /// return the UTF32.
    217 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    218                              const char *ThisTokEnd,
    219                              uint32_t &UcnVal, unsigned short &UcnLen,
    220                              FullSourceLoc Loc, DiagnosticsEngine *Diags,
    221                              const LangOptions &Features,
    222                              bool in_char_string_literal = false) {
    223   const char *UcnBegin = ThisTokBuf;
    224 
    225   // Skip the '\u' char's.
    226   ThisTokBuf += 2;
    227 
    228   if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    229     if (Diags)
    230       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    231            diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
    232     return false;
    233   }
    234   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
    235   unsigned short UcnLenSave = UcnLen;
    236   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
    237     int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    238     if (CharVal == -1) break;
    239     UcnVal <<= 4;
    240     UcnVal |= CharVal;
    241   }
    242   // If we didn't consume the proper number of digits, there is a problem.
    243   if (UcnLenSave) {
    244     if (Diags)
    245       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    246            diag::err_ucn_escape_incomplete);
    247     return false;
    248   }
    249 
    250   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
    251   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
    252       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
    253     if (Diags)
    254       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    255            diag::err_ucn_escape_invalid);
    256     return false;
    257   }
    258 
    259   // C++11 allows UCNs that refer to control characters and basic source
    260   // characters inside character and string literals
    261   if (UcnVal < 0xa0 &&
    262       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
    263     bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
    264     if (Diags) {
    265       char BasicSCSChar = UcnVal;
    266       if (UcnVal >= 0x20 && UcnVal < 0x7f)
    267         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    268              IsError ? diag::err_ucn_escape_basic_scs :
    269                        diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
    270             << StringRef(&BasicSCSChar, 1);
    271       else
    272         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    273              IsError ? diag::err_ucn_control_character :
    274                        diag::warn_cxx98_compat_literal_ucn_control_character);
    275     }
    276     if (IsError)
    277       return false;
    278   }
    279 
    280   if (!Features.CPlusPlus && !Features.C99 && Diags)
    281     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    282          diag::warn_ucn_not_valid_in_c89_literal);
    283 
    284   return true;
    285 }
    286 
    287 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
    288 /// which this UCN will occupy.
    289 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    290                             const char *ThisTokEnd, unsigned CharByteWidth,
    291                             const LangOptions &Features, bool &HadError) {
    292   // UTF-32: 4 bytes per escape.
    293   if (CharByteWidth == 4)
    294     return 4;
    295 
    296   uint32_t UcnVal = 0;
    297   unsigned short UcnLen = 0;
    298   FullSourceLoc Loc;
    299 
    300   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
    301                         UcnLen, Loc, 0, Features, true)) {
    302     HadError = true;
    303     return 0;
    304   }
    305 
    306   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
    307   if (CharByteWidth == 2)
    308     return UcnVal <= 0xFFFF ? 2 : 4;
    309 
    310   // UTF-8.
    311   if (UcnVal < 0x80)
    312     return 1;
    313   if (UcnVal < 0x800)
    314     return 2;
    315   if (UcnVal < 0x10000)
    316     return 3;
    317   return 4;
    318 }
    319 
    320 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
    321 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
    322 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
    323 /// we will likely rework our support for UCN's.
    324 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    325                             const char *ThisTokEnd,
    326                             char *&ResultBuf, bool &HadError,
    327                             FullSourceLoc Loc, unsigned CharByteWidth,
    328                             DiagnosticsEngine *Diags,
    329                             const LangOptions &Features) {
    330   typedef uint32_t UTF32;
    331   UTF32 UcnVal = 0;
    332   unsigned short UcnLen = 0;
    333   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
    334                         Loc, Diags, Features, true)) {
    335     HadError = true;
    336     return;
    337   }
    338 
    339   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth) &&
    340          "only character widths of 1, 2, or 4 bytes supported");
    341 
    342   (void)UcnLen;
    343   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
    344 
    345   if (CharByteWidth == 4) {
    346     // FIXME: Make the type of the result buffer correct instead of
    347     // using reinterpret_cast.
    348     UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
    349     *ResultPtr = UcnVal;
    350     ResultBuf += 4;
    351     return;
    352   }
    353 
    354   if (CharByteWidth == 2) {
    355     // FIXME: Make the type of the result buffer correct instead of
    356     // using reinterpret_cast.
    357     UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
    358 
    359     if (UcnVal <= (UTF32)0xFFFF) {
    360       *ResultPtr = UcnVal;
    361       ResultBuf += 2;
    362       return;
    363     }
    364 
    365     // Convert to UTF16.
    366     UcnVal -= 0x10000;
    367     *ResultPtr     = 0xD800 + (UcnVal >> 10);
    368     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
    369     ResultBuf += 4;
    370     return;
    371   }
    372 
    373   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
    374 
    375   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
    376   // The conversion below was inspired by:
    377   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
    378   // First, we determine how many bytes the result will require.
    379   typedef uint8_t UTF8;
    380 
    381   unsigned short bytesToWrite = 0;
    382   if (UcnVal < (UTF32)0x80)
    383     bytesToWrite = 1;
    384   else if (UcnVal < (UTF32)0x800)
    385     bytesToWrite = 2;
    386   else if (UcnVal < (UTF32)0x10000)
    387     bytesToWrite = 3;
    388   else
    389     bytesToWrite = 4;
    390 
    391   const unsigned byteMask = 0xBF;
    392   const unsigned byteMark = 0x80;
    393 
    394   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
    395   // into the first byte, depending on how many bytes follow.
    396   static const UTF8 firstByteMark[5] = {
    397     0x00, 0x00, 0xC0, 0xE0, 0xF0
    398   };
    399   // Finally, we write the bytes into ResultBuf.
    400   ResultBuf += bytesToWrite;
    401   switch (bytesToWrite) { // note: everything falls through.
    402   case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    403   case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    404   case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    405   case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
    406   }
    407   // Update the buffer.
    408   ResultBuf += bytesToWrite;
    409 }
    410 
    411 
    412 ///       integer-constant: [C99 6.4.4.1]
    413 ///         decimal-constant integer-suffix
    414 ///         octal-constant integer-suffix
    415 ///         hexadecimal-constant integer-suffix
    416 ///       user-defined-integer-literal: [C++11 lex.ext]
    417 ///         decimal-literal ud-suffix
    418 ///         octal-literal ud-suffix
    419 ///         hexadecimal-literal ud-suffix
    420 ///       decimal-constant:
    421 ///         nonzero-digit
    422 ///         decimal-constant digit
    423 ///       octal-constant:
    424 ///         0
    425 ///         octal-constant octal-digit
    426 ///       hexadecimal-constant:
    427 ///         hexadecimal-prefix hexadecimal-digit
    428 ///         hexadecimal-constant hexadecimal-digit
    429 ///       hexadecimal-prefix: one of
    430 ///         0x 0X
    431 ///       integer-suffix:
    432 ///         unsigned-suffix [long-suffix]
    433 ///         unsigned-suffix [long-long-suffix]
    434 ///         long-suffix [unsigned-suffix]
    435 ///         long-long-suffix [unsigned-sufix]
    436 ///       nonzero-digit:
    437 ///         1 2 3 4 5 6 7 8 9
    438 ///       octal-digit:
    439 ///         0 1 2 3 4 5 6 7
    440 ///       hexadecimal-digit:
    441 ///         0 1 2 3 4 5 6 7 8 9
    442 ///         a b c d e f
    443 ///         A B C D E F
    444 ///       unsigned-suffix: one of
    445 ///         u U
    446 ///       long-suffix: one of
    447 ///         l L
    448 ///       long-long-suffix: one of
    449 ///         ll LL
    450 ///
    451 ///       floating-constant: [C99 6.4.4.2]
    452 ///         TODO: add rules...
    453 ///
    454 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
    455                                            SourceLocation TokLoc,
    456                                            Preprocessor &PP)
    457   : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
    458 
    459   // This routine assumes that the range begin/end matches the regex for integer
    460   // and FP constants (specifically, the 'pp-number' regex), and assumes that
    461   // the byte at "*end" is both valid and not part of the regex.  Because of
    462   // this, it doesn't have to check for 'overscan' in various places.
    463   assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
    464 
    465   s = DigitsBegin = ThisTokBegin;
    466   saw_exponent = false;
    467   saw_period = false;
    468   saw_ud_suffix = false;
    469   isLong = false;
    470   isUnsigned = false;
    471   isLongLong = false;
    472   isFloat = false;
    473   isImaginary = false;
    474   isMicrosoftInteger = false;
    475   hadError = false;
    476 
    477   if (*s == '0') { // parse radix
    478     ParseNumberStartingWithZero(TokLoc);
    479     if (hadError)
    480       return;
    481   } else { // the first digit is non-zero
    482     radix = 10;
    483     s = SkipDigits(s);
    484     if (s == ThisTokEnd) {
    485       // Done.
    486     } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
    487       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    488               diag::err_invalid_decimal_digit) << StringRef(s, 1);
    489       hadError = true;
    490       return;
    491     } else if (*s == '.') {
    492       s++;
    493       saw_period = true;
    494       s = SkipDigits(s);
    495     }
    496     if ((*s == 'e' || *s == 'E')) { // exponent
    497       const char *Exponent = s;
    498       s++;
    499       saw_exponent = true;
    500       if (*s == '+' || *s == '-')  s++; // sign
    501       const char *first_non_digit = SkipDigits(s);
    502       if (first_non_digit != s) {
    503         s = first_non_digit;
    504       } else {
    505         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
    506                 diag::err_exponent_has_no_digits);
    507         hadError = true;
    508         return;
    509       }
    510     }
    511   }
    512 
    513   SuffixBegin = s;
    514 
    515   // Parse the suffix.  At this point we can classify whether we have an FP or
    516   // integer constant.
    517   bool isFPConstant = isFloatingLiteral();
    518 
    519   // Loop over all of the characters of the suffix.  If we see something bad,
    520   // we break out of the loop.
    521   for (; s != ThisTokEnd; ++s) {
    522     switch (*s) {
    523     case 'f':      // FP Suffix for "float"
    524     case 'F':
    525       if (!isFPConstant) break;  // Error for integer constant.
    526       if (isFloat || isLong) break; // FF, LF invalid.
    527       isFloat = true;
    528       continue;  // Success.
    529     case 'u':
    530     case 'U':
    531       if (isFPConstant) break;  // Error for floating constant.
    532       if (isUnsigned) break;    // Cannot be repeated.
    533       isUnsigned = true;
    534       continue;  // Success.
    535     case 'l':
    536     case 'L':
    537       if (isLong || isLongLong) break;  // Cannot be repeated.
    538       if (isFloat) break;               // LF invalid.
    539 
    540       // Check for long long.  The L's need to be adjacent and the same case.
    541       if (s+1 != ThisTokEnd && s[1] == s[0]) {
    542         if (isFPConstant) break;        // long long invalid for floats.
    543         isLongLong = true;
    544         ++s;  // Eat both of them.
    545       } else {
    546         isLong = true;
    547       }
    548       continue;  // Success.
    549     case 'i':
    550     case 'I':
    551       if (PP.getLangOpts().MicrosoftExt) {
    552         if (isFPConstant || isLong || isLongLong) break;
    553 
    554         // Allow i8, i16, i32, i64, and i128.
    555         if (s + 1 != ThisTokEnd) {
    556           switch (s[1]) {
    557             case '8':
    558               s += 2; // i8 suffix
    559               isMicrosoftInteger = true;
    560               break;
    561             case '1':
    562               if (s + 2 == ThisTokEnd) break;
    563               if (s[2] == '6') {
    564                 s += 3; // i16 suffix
    565                 isMicrosoftInteger = true;
    566               }
    567               else if (s[2] == '2') {
    568                 if (s + 3 == ThisTokEnd) break;
    569                 if (s[3] == '8') {
    570                   s += 4; // i128 suffix
    571                   isMicrosoftInteger = true;
    572                 }
    573               }
    574               break;
    575             case '3':
    576               if (s + 2 == ThisTokEnd) break;
    577               if (s[2] == '2') {
    578                 s += 3; // i32 suffix
    579                 isLong = true;
    580                 isMicrosoftInteger = true;
    581               }
    582               break;
    583             case '6':
    584               if (s + 2 == ThisTokEnd) break;
    585               if (s[2] == '4') {
    586                 s += 3; // i64 suffix
    587                 isLongLong = true;
    588                 isMicrosoftInteger = true;
    589               }
    590               break;
    591             default:
    592               break;
    593           }
    594           break;
    595         }
    596       }
    597       // fall through.
    598     case 'j':
    599     case 'J':
    600       if (isImaginary) break;   // Cannot be repeated.
    601       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    602               diag::ext_imaginary_constant);
    603       isImaginary = true;
    604       continue;  // Success.
    605     }
    606     // If we reached here, there was an error or a ud-suffix.
    607     break;
    608   }
    609 
    610   if (s != ThisTokEnd) {
    611     if (PP.getLangOpts().CPlusPlus11 && s == SuffixBegin && *s == '_') {
    612       // We have a ud-suffix! By C++11 [lex.ext]p10, ud-suffixes not starting
    613       // with an '_' are ill-formed.
    614       saw_ud_suffix = true;
    615       return;
    616     }
    617 
    618     // Report an error if there are any.
    619     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
    620             isFPConstant ? diag::err_invalid_suffix_float_constant :
    621                            diag::err_invalid_suffix_integer_constant)
    622       << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
    623     hadError = true;
    624     return;
    625   }
    626 }
    627 
    628 /// ParseNumberStartingWithZero - This method is called when the first character
    629 /// of the number is found to be a zero.  This means it is either an octal
    630 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
    631 /// a floating point number (01239.123e4).  Eat the prefix, determining the
    632 /// radix etc.
    633 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
    634   assert(s[0] == '0' && "Invalid method call");
    635   s++;
    636 
    637   // Handle a hex number like 0x1234.
    638   if ((*s == 'x' || *s == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
    639     s++;
    640     radix = 16;
    641     DigitsBegin = s;
    642     s = SkipHexDigits(s);
    643     bool noSignificand = (s == DigitsBegin);
    644     if (s == ThisTokEnd) {
    645       // Done.
    646     } else if (*s == '.') {
    647       s++;
    648       saw_period = true;
    649       const char *floatDigitsBegin = s;
    650       s = SkipHexDigits(s);
    651       noSignificand &= (floatDigitsBegin == s);
    652     }
    653 
    654     if (noSignificand) {
    655       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    656         diag::err_hexconstant_requires_digits);
    657       hadError = true;
    658       return;
    659     }
    660 
    661     // A binary exponent can appear with or with a '.'. If dotted, the
    662     // binary exponent is required.
    663     if (*s == 'p' || *s == 'P') {
    664       const char *Exponent = s;
    665       s++;
    666       saw_exponent = true;
    667       if (*s == '+' || *s == '-')  s++; // sign
    668       const char *first_non_digit = SkipDigits(s);
    669       if (first_non_digit == s) {
    670         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    671                 diag::err_exponent_has_no_digits);
    672         hadError = true;
    673         return;
    674       }
    675       s = first_non_digit;
    676 
    677       if (!PP.getLangOpts().HexFloats)
    678         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
    679     } else if (saw_period) {
    680       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    681               diag::err_hexconstant_requires_exponent);
    682       hadError = true;
    683     }
    684     return;
    685   }
    686 
    687   // Handle simple binary numbers 0b01010
    688   if (*s == 'b' || *s == 'B') {
    689     // 0b101010 is a GCC extension.
    690     PP.Diag(TokLoc, diag::ext_binary_literal);
    691     ++s;
    692     radix = 2;
    693     DigitsBegin = s;
    694     s = SkipBinaryDigits(s);
    695     if (s == ThisTokEnd) {
    696       // Done.
    697     } else if (isHexDigit(*s)) {
    698       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    699               diag::err_invalid_binary_digit) << StringRef(s, 1);
    700       hadError = true;
    701     }
    702     // Other suffixes will be diagnosed by the caller.
    703     return;
    704   }
    705 
    706   // For now, the radix is set to 8. If we discover that we have a
    707   // floating point constant, the radix will change to 10. Octal floating
    708   // point constants are not permitted (only decimal and hexadecimal).
    709   radix = 8;
    710   DigitsBegin = s;
    711   s = SkipOctalDigits(s);
    712   if (s == ThisTokEnd)
    713     return; // Done, simple octal number like 01234
    714 
    715   // If we have some other non-octal digit that *is* a decimal digit, see if
    716   // this is part of a floating point number like 094.123 or 09e1.
    717   if (isDigit(*s)) {
    718     const char *EndDecimal = SkipDigits(s);
    719     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
    720       s = EndDecimal;
    721       radix = 10;
    722     }
    723   }
    724 
    725   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
    726   // the code is using an incorrect base.
    727   if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
    728     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    729             diag::err_invalid_octal_digit) << StringRef(s, 1);
    730     hadError = true;
    731     return;
    732   }
    733 
    734   if (*s == '.') {
    735     s++;
    736     radix = 10;
    737     saw_period = true;
    738     s = SkipDigits(s); // Skip suffix.
    739   }
    740   if (*s == 'e' || *s == 'E') { // exponent
    741     const char *Exponent = s;
    742     s++;
    743     radix = 10;
    744     saw_exponent = true;
    745     if (*s == '+' || *s == '-')  s++; // sign
    746     const char *first_non_digit = SkipDigits(s);
    747     if (first_non_digit != s) {
    748       s = first_non_digit;
    749     } else {
    750       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    751               diag::err_exponent_has_no_digits);
    752       hadError = true;
    753       return;
    754     }
    755   }
    756 }
    757 
    758 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
    759   switch (Radix) {
    760   case 2:
    761     return NumDigits <= 64;
    762   case 8:
    763     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
    764   case 10:
    765     return NumDigits <= 19; // floor(log10(2^64))
    766   case 16:
    767     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
    768   default:
    769     llvm_unreachable("impossible Radix");
    770   }
    771 }
    772 
    773 /// GetIntegerValue - Convert this numeric literal value to an APInt that
    774 /// matches Val's input width.  If there is an overflow, set Val to the low bits
    775 /// of the result and return true.  Otherwise, return false.
    776 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
    777   // Fast path: Compute a conservative bound on the maximum number of
    778   // bits per digit in this radix. If we can't possibly overflow a
    779   // uint64 based on that bound then do the simple conversion to
    780   // integer. This avoids the expensive overflow checking below, and
    781   // handles the common cases that matter (small decimal integers and
    782   // hex/octal values which don't overflow).
    783   const unsigned NumDigits = SuffixBegin - DigitsBegin;
    784   if (alwaysFitsInto64Bits(radix, NumDigits)) {
    785     uint64_t N = 0;
    786     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
    787       N = N * radix + llvm::hexDigitValue(*Ptr);
    788 
    789     // This will truncate the value to Val's input width. Simply check
    790     // for overflow by comparing.
    791     Val = N;
    792     return Val.getZExtValue() != N;
    793   }
    794 
    795   Val = 0;
    796   const char *Ptr = DigitsBegin;
    797 
    798   llvm::APInt RadixVal(Val.getBitWidth(), radix);
    799   llvm::APInt CharVal(Val.getBitWidth(), 0);
    800   llvm::APInt OldVal = Val;
    801 
    802   bool OverflowOccurred = false;
    803   while (Ptr < SuffixBegin) {
    804     unsigned C = llvm::hexDigitValue(*Ptr++);
    805 
    806     // If this letter is out of bound for this radix, reject it.
    807     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
    808 
    809     CharVal = C;
    810 
    811     // Add the digit to the value in the appropriate radix.  If adding in digits
    812     // made the value smaller, then this overflowed.
    813     OldVal = Val;
    814 
    815     // Multiply by radix, did overflow occur on the multiply?
    816     Val *= RadixVal;
    817     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
    818 
    819     // Add value, did overflow occur on the value?
    820     //   (a + b) ult b  <=> overflow
    821     Val += CharVal;
    822     OverflowOccurred |= Val.ult(CharVal);
    823   }
    824   return OverflowOccurred;
    825 }
    826 
    827 llvm::APFloat::opStatus
    828 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
    829   using llvm::APFloat;
    830 
    831   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
    832   return Result.convertFromString(StringRef(ThisTokBegin, n),
    833                                   APFloat::rmNearestTiesToEven);
    834 }
    835 
    836 
    837 /// \verbatim
    838 ///       user-defined-character-literal: [C++11 lex.ext]
    839 ///         character-literal ud-suffix
    840 ///       ud-suffix:
    841 ///         identifier
    842 ///       character-literal: [C++11 lex.ccon]
    843 ///         ' c-char-sequence '
    844 ///         u' c-char-sequence '
    845 ///         U' c-char-sequence '
    846 ///         L' c-char-sequence '
    847 ///       c-char-sequence:
    848 ///         c-char
    849 ///         c-char-sequence c-char
    850 ///       c-char:
    851 ///         any member of the source character set except the single-quote ',
    852 ///           backslash \, or new-line character
    853 ///         escape-sequence
    854 ///         universal-character-name
    855 ///       escape-sequence:
    856 ///         simple-escape-sequence
    857 ///         octal-escape-sequence
    858 ///         hexadecimal-escape-sequence
    859 ///       simple-escape-sequence:
    860 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
    861 ///       octal-escape-sequence:
    862 ///         \ octal-digit
    863 ///         \ octal-digit octal-digit
    864 ///         \ octal-digit octal-digit octal-digit
    865 ///       hexadecimal-escape-sequence:
    866 ///         \x hexadecimal-digit
    867 ///         hexadecimal-escape-sequence hexadecimal-digit
    868 ///       universal-character-name: [C++11 lex.charset]
    869 ///         \u hex-quad
    870 ///         \U hex-quad hex-quad
    871 ///       hex-quad:
    872 ///         hex-digit hex-digit hex-digit hex-digit
    873 /// \endverbatim
    874 ///
    875 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
    876                                      SourceLocation Loc, Preprocessor &PP,
    877                                      tok::TokenKind kind) {
    878   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
    879   HadError = false;
    880 
    881   Kind = kind;
    882 
    883   const char *TokBegin = begin;
    884 
    885   // Skip over wide character determinant.
    886   if (Kind != tok::char_constant) {
    887     ++begin;
    888   }
    889 
    890   // Skip over the entry quote.
    891   assert(begin[0] == '\'' && "Invalid token lexed");
    892   ++begin;
    893 
    894   // Remove an optional ud-suffix.
    895   if (end[-1] != '\'') {
    896     const char *UDSuffixEnd = end;
    897     do {
    898       --end;
    899     } while (end[-1] != '\'');
    900     UDSuffixBuf.assign(end, UDSuffixEnd);
    901     UDSuffixOffset = end - TokBegin;
    902   }
    903 
    904   // Trim the ending quote.
    905   assert(end != begin && "Invalid token lexed");
    906   --end;
    907 
    908   // FIXME: The "Value" is an uint64_t so we can handle char literals of
    909   // up to 64-bits.
    910   // FIXME: This extensively assumes that 'char' is 8-bits.
    911   assert(PP.getTargetInfo().getCharWidth() == 8 &&
    912          "Assumes char is 8 bits");
    913   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
    914          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
    915          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
    916   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
    917          "Assumes sizeof(wchar) on target is <= 64");
    918 
    919   SmallVector<uint32_t,4> codepoint_buffer;
    920   codepoint_buffer.resize(end-begin);
    921   uint32_t *buffer_begin = &codepoint_buffer.front();
    922   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
    923 
    924   // Unicode escapes representing characters that cannot be correctly
    925   // represented in a single code unit are disallowed in character literals
    926   // by this implementation.
    927   uint32_t largest_character_for_kind;
    928   if (tok::wide_char_constant == Kind) {
    929     largest_character_for_kind = 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
    930   } else if (tok::utf16_char_constant == Kind) {
    931     largest_character_for_kind = 0xFFFF;
    932   } else if (tok::utf32_char_constant == Kind) {
    933     largest_character_for_kind = 0x10FFFF;
    934   } else {
    935     largest_character_for_kind = 0x7Fu;
    936   }
    937 
    938   while (begin!=end) {
    939     // Is this a span of non-escape characters?
    940     if (begin[0] != '\\') {
    941       char const *start = begin;
    942       do {
    943         ++begin;
    944       } while (begin != end && *begin != '\\');
    945 
    946       char const *tmp_in_start = start;
    947       uint32_t *tmp_out_start = buffer_begin;
    948       ConversionResult res =
    949       ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
    950                          reinterpret_cast<UTF8 const *>(begin),
    951                          &buffer_begin,buffer_end,strictConversion);
    952       if (res!=conversionOK) {
    953         // If we see bad encoding for unprefixed character literals, warn and
    954         // simply copy the byte values, for compatibility with gcc and
    955         // older versions of clang.
    956         bool NoErrorOnBadEncoding = isAscii();
    957         unsigned Msg = diag::err_bad_character_encoding;
    958         if (NoErrorOnBadEncoding)
    959           Msg = diag::warn_bad_character_encoding;
    960         PP.Diag(Loc, Msg);
    961         if (NoErrorOnBadEncoding) {
    962           start = tmp_in_start;
    963           buffer_begin = tmp_out_start;
    964           for ( ; start != begin; ++start, ++buffer_begin)
    965             *buffer_begin = static_cast<uint8_t>(*start);
    966         } else {
    967           HadError = true;
    968         }
    969       } else {
    970         for (; tmp_out_start <buffer_begin; ++tmp_out_start) {
    971           if (*tmp_out_start > largest_character_for_kind) {
    972             HadError = true;
    973             PP.Diag(Loc, diag::err_character_too_large);
    974           }
    975         }
    976       }
    977 
    978       continue;
    979     }
    980     // Is this a Universal Character Name excape?
    981     if (begin[1] == 'u' || begin[1] == 'U') {
    982       unsigned short UcnLen = 0;
    983       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
    984                             FullSourceLoc(Loc, PP.getSourceManager()),
    985                             &PP.getDiagnostics(), PP.getLangOpts(),
    986                             true))
    987       {
    988         HadError = true;
    989       } else if (*buffer_begin > largest_character_for_kind) {
    990         HadError = true;
    991         PP.Diag(Loc, diag::err_character_too_large);
    992       }
    993 
    994       ++buffer_begin;
    995       continue;
    996     }
    997     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
    998     uint64_t result =
    999       ProcessCharEscape(TokBegin, begin, end, HadError,
   1000                         FullSourceLoc(Loc,PP.getSourceManager()),
   1001                         CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
   1002     *buffer_begin++ = result;
   1003   }
   1004 
   1005   unsigned NumCharsSoFar = buffer_begin-&codepoint_buffer.front();
   1006 
   1007   if (NumCharsSoFar > 1) {
   1008     if (isWide())
   1009       PP.Diag(Loc, diag::warn_extraneous_char_constant);
   1010     else if (isAscii() && NumCharsSoFar == 4)
   1011       PP.Diag(Loc, diag::ext_four_char_character_literal);
   1012     else if (isAscii())
   1013       PP.Diag(Loc, diag::ext_multichar_character_literal);
   1014     else
   1015       PP.Diag(Loc, diag::err_multichar_utf_character_literal);
   1016     IsMultiChar = true;
   1017   } else
   1018     IsMultiChar = false;
   1019 
   1020   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
   1021 
   1022   // Narrow character literals act as though their value is concatenated
   1023   // in this implementation, but warn on overflow.
   1024   bool multi_char_too_long = false;
   1025   if (isAscii() && isMultiChar()) {
   1026     LitVal = 0;
   1027     for (size_t i=0;i<NumCharsSoFar;++i) {
   1028       // check for enough leading zeros to shift into
   1029       multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
   1030       LitVal <<= 8;
   1031       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
   1032     }
   1033   } else if (NumCharsSoFar > 0) {
   1034     // otherwise just take the last character
   1035     LitVal = buffer_begin[-1];
   1036   }
   1037 
   1038   if (!HadError && multi_char_too_long) {
   1039     PP.Diag(Loc,diag::warn_char_constant_too_large);
   1040   }
   1041 
   1042   // Transfer the value from APInt to uint64_t
   1043   Value = LitVal.getZExtValue();
   1044 
   1045   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
   1046   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
   1047   // character constants are not sign extended in the this implementation:
   1048   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
   1049   if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
   1050       PP.getLangOpts().CharIsSigned)
   1051     Value = (signed char)Value;
   1052 }
   1053 
   1054 /// \verbatim
   1055 ///       string-literal: [C++0x lex.string]
   1056 ///         encoding-prefix " [s-char-sequence] "
   1057 ///         encoding-prefix R raw-string
   1058 ///       encoding-prefix:
   1059 ///         u8
   1060 ///         u
   1061 ///         U
   1062 ///         L
   1063 ///       s-char-sequence:
   1064 ///         s-char
   1065 ///         s-char-sequence s-char
   1066 ///       s-char:
   1067 ///         any member of the source character set except the double-quote ",
   1068 ///           backslash \, or new-line character
   1069 ///         escape-sequence
   1070 ///         universal-character-name
   1071 ///       raw-string:
   1072 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
   1073 ///       r-char-sequence:
   1074 ///         r-char
   1075 ///         r-char-sequence r-char
   1076 ///       r-char:
   1077 ///         any member of the source character set, except a right parenthesis )
   1078 ///           followed by the initial d-char-sequence (which may be empty)
   1079 ///           followed by a double quote ".
   1080 ///       d-char-sequence:
   1081 ///         d-char
   1082 ///         d-char-sequence d-char
   1083 ///       d-char:
   1084 ///         any member of the basic source character set except:
   1085 ///           space, the left parenthesis (, the right parenthesis ),
   1086 ///           the backslash \, and the control characters representing horizontal
   1087 ///           tab, vertical tab, form feed, and newline.
   1088 ///       escape-sequence: [C++0x lex.ccon]
   1089 ///         simple-escape-sequence
   1090 ///         octal-escape-sequence
   1091 ///         hexadecimal-escape-sequence
   1092 ///       simple-escape-sequence:
   1093 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
   1094 ///       octal-escape-sequence:
   1095 ///         \ octal-digit
   1096 ///         \ octal-digit octal-digit
   1097 ///         \ octal-digit octal-digit octal-digit
   1098 ///       hexadecimal-escape-sequence:
   1099 ///         \x hexadecimal-digit
   1100 ///         hexadecimal-escape-sequence hexadecimal-digit
   1101 ///       universal-character-name:
   1102 ///         \u hex-quad
   1103 ///         \U hex-quad hex-quad
   1104 ///       hex-quad:
   1105 ///         hex-digit hex-digit hex-digit hex-digit
   1106 /// \endverbatim
   1107 ///
   1108 StringLiteralParser::
   1109 StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
   1110                     Preprocessor &PP, bool Complain)
   1111   : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
   1112     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
   1113     MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
   1114     ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
   1115   init(StringToks, NumStringToks);
   1116 }
   1117 
   1118 void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
   1119   // The literal token may have come from an invalid source location (e.g. due
   1120   // to a PCH error), in which case the token length will be 0.
   1121   if (NumStringToks == 0 || StringToks[0].getLength() < 2)
   1122     return DiagnoseLexingError(SourceLocation());
   1123 
   1124   // Scan all of the string portions, remember the max individual token length,
   1125   // computing a bound on the concatenated string length, and see whether any
   1126   // piece is a wide-string.  If any of the string portions is a wide-string
   1127   // literal, the result is a wide-string literal [C99 6.4.5p4].
   1128   assert(NumStringToks && "expected at least one token");
   1129   MaxTokenLength = StringToks[0].getLength();
   1130   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
   1131   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
   1132   Kind = StringToks[0].getKind();
   1133 
   1134   hadError = false;
   1135 
   1136   // Implement Translation Phase #6: concatenation of string literals
   1137   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
   1138   for (unsigned i = 1; i != NumStringToks; ++i) {
   1139     if (StringToks[i].getLength() < 2)
   1140       return DiagnoseLexingError(StringToks[i].getLocation());
   1141 
   1142     // The string could be shorter than this if it needs cleaning, but this is a
   1143     // reasonable bound, which is all we need.
   1144     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
   1145     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
   1146 
   1147     // Remember maximum string piece length.
   1148     if (StringToks[i].getLength() > MaxTokenLength)
   1149       MaxTokenLength = StringToks[i].getLength();
   1150 
   1151     // Remember if we see any wide or utf-8/16/32 strings.
   1152     // Also check for illegal concatenations.
   1153     if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
   1154       if (isAscii()) {
   1155         Kind = StringToks[i].getKind();
   1156       } else {
   1157         if (Diags)
   1158           Diags->Report(StringToks[i].getLocation(),
   1159                         diag::err_unsupported_string_concat);
   1160         hadError = true;
   1161       }
   1162     }
   1163   }
   1164 
   1165   // Include space for the null terminator.
   1166   ++SizeBound;
   1167 
   1168   // TODO: K&R warning: "traditional C rejects string constant concatenation"
   1169 
   1170   // Get the width in bytes of char/wchar_t/char16_t/char32_t
   1171   CharByteWidth = getCharWidth(Kind, Target);
   1172   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
   1173   CharByteWidth /= 8;
   1174 
   1175   // The output buffer size needs to be large enough to hold wide characters.
   1176   // This is a worst-case assumption which basically corresponds to L"" "long".
   1177   SizeBound *= CharByteWidth;
   1178 
   1179   // Size the temporary buffer to hold the result string data.
   1180   ResultBuf.resize(SizeBound);
   1181 
   1182   // Likewise, but for each string piece.
   1183   SmallString<512> TokenBuf;
   1184   TokenBuf.resize(MaxTokenLength);
   1185 
   1186   // Loop over all the strings, getting their spelling, and expanding them to
   1187   // wide strings as appropriate.
   1188   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
   1189 
   1190   Pascal = false;
   1191 
   1192   SourceLocation UDSuffixTokLoc;
   1193 
   1194   for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
   1195     const char *ThisTokBuf = &TokenBuf[0];
   1196     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
   1197     // that ThisTokBuf points to a buffer that is big enough for the whole token
   1198     // and 'spelled' tokens can only shrink.
   1199     bool StringInvalid = false;
   1200     unsigned ThisTokLen =
   1201       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
   1202                          &StringInvalid);
   1203     if (StringInvalid)
   1204       return DiagnoseLexingError(StringToks[i].getLocation());
   1205 
   1206     const char *ThisTokBegin = ThisTokBuf;
   1207     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
   1208 
   1209     // Remove an optional ud-suffix.
   1210     if (ThisTokEnd[-1] != '"') {
   1211       const char *UDSuffixEnd = ThisTokEnd;
   1212       do {
   1213         --ThisTokEnd;
   1214       } while (ThisTokEnd[-1] != '"');
   1215 
   1216       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
   1217 
   1218       if (UDSuffixBuf.empty()) {
   1219         UDSuffixBuf.assign(UDSuffix);
   1220         UDSuffixToken = i;
   1221         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
   1222         UDSuffixTokLoc = StringToks[i].getLocation();
   1223       } else if (!UDSuffixBuf.equals(UDSuffix)) {
   1224         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
   1225         // result of a concatenation involving at least one user-defined-string-
   1226         // literal, all the participating user-defined-string-literals shall
   1227         // have the same ud-suffix.
   1228         if (Diags) {
   1229           SourceLocation TokLoc = StringToks[i].getLocation();
   1230           Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
   1231             << UDSuffixBuf << UDSuffix
   1232             << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
   1233             << SourceRange(TokLoc, TokLoc);
   1234         }
   1235         hadError = true;
   1236       }
   1237     }
   1238 
   1239     // Strip the end quote.
   1240     --ThisTokEnd;
   1241 
   1242     // TODO: Input character set mapping support.
   1243 
   1244     // Skip marker for wide or unicode strings.
   1245     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
   1246       ++ThisTokBuf;
   1247       // Skip 8 of u8 marker for utf8 strings.
   1248       if (ThisTokBuf[0] == '8')
   1249         ++ThisTokBuf;
   1250     }
   1251 
   1252     // Check for raw string
   1253     if (ThisTokBuf[0] == 'R') {
   1254       ThisTokBuf += 2; // skip R"
   1255 
   1256       const char *Prefix = ThisTokBuf;
   1257       while (ThisTokBuf[0] != '(')
   1258         ++ThisTokBuf;
   1259       ++ThisTokBuf; // skip '('
   1260 
   1261       // Remove same number of characters from the end
   1262       ThisTokEnd -= ThisTokBuf - Prefix;
   1263       assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
   1264 
   1265       // Copy the string over
   1266       if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1267                              StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
   1268         hadError = true;
   1269     } else {
   1270       if (ThisTokBuf[0] != '"') {
   1271         // The file may have come from PCH and then changed after loading the
   1272         // PCH; Fail gracefully.
   1273         return DiagnoseLexingError(StringToks[i].getLocation());
   1274       }
   1275       ++ThisTokBuf; // skip "
   1276 
   1277       // Check if this is a pascal string
   1278       if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
   1279           ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
   1280 
   1281         // If the \p sequence is found in the first token, we have a pascal string
   1282         // Otherwise, if we already have a pascal string, ignore the first \p
   1283         if (i == 0) {
   1284           ++ThisTokBuf;
   1285           Pascal = true;
   1286         } else if (Pascal)
   1287           ThisTokBuf += 2;
   1288       }
   1289 
   1290       while (ThisTokBuf != ThisTokEnd) {
   1291         // Is this a span of non-escape characters?
   1292         if (ThisTokBuf[0] != '\\') {
   1293           const char *InStart = ThisTokBuf;
   1294           do {
   1295             ++ThisTokBuf;
   1296           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
   1297 
   1298           // Copy the character span over.
   1299           if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1300                                  StringRef(InStart, ThisTokBuf - InStart)))
   1301             hadError = true;
   1302           continue;
   1303         }
   1304         // Is this a Universal Character Name escape?
   1305         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
   1306           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
   1307                           ResultPtr, hadError,
   1308                           FullSourceLoc(StringToks[i].getLocation(), SM),
   1309                           CharByteWidth, Diags, Features);
   1310           continue;
   1311         }
   1312         // Otherwise, this is a non-UCN escape character.  Process it.
   1313         unsigned ResultChar =
   1314           ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
   1315                             FullSourceLoc(StringToks[i].getLocation(), SM),
   1316                             CharByteWidth*8, Diags, Features);
   1317 
   1318         if (CharByteWidth == 4) {
   1319           // FIXME: Make the type of the result buffer correct instead of
   1320           // using reinterpret_cast.
   1321           UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
   1322           *ResultWidePtr = ResultChar;
   1323           ResultPtr += 4;
   1324         } else if (CharByteWidth == 2) {
   1325           // FIXME: Make the type of the result buffer correct instead of
   1326           // using reinterpret_cast.
   1327           UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
   1328           *ResultWidePtr = ResultChar & 0xFFFF;
   1329           ResultPtr += 2;
   1330         } else {
   1331           assert(CharByteWidth == 1 && "Unexpected char width");
   1332           *ResultPtr++ = ResultChar & 0xFF;
   1333         }
   1334       }
   1335     }
   1336   }
   1337 
   1338   if (Pascal) {
   1339     if (CharByteWidth == 4) {
   1340       // FIXME: Make the type of the result buffer correct instead of
   1341       // using reinterpret_cast.
   1342       UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
   1343       ResultWidePtr[0] = GetNumStringChars() - 1;
   1344     } else if (CharByteWidth == 2) {
   1345       // FIXME: Make the type of the result buffer correct instead of
   1346       // using reinterpret_cast.
   1347       UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
   1348       ResultWidePtr[0] = GetNumStringChars() - 1;
   1349     } else {
   1350       assert(CharByteWidth == 1 && "Unexpected char width");
   1351       ResultBuf[0] = GetNumStringChars() - 1;
   1352     }
   1353 
   1354     // Verify that pascal strings aren't too large.
   1355     if (GetStringLength() > 256) {
   1356       if (Diags)
   1357         Diags->Report(StringToks[0].getLocation(),
   1358                       diag::err_pascal_string_too_long)
   1359           << SourceRange(StringToks[0].getLocation(),
   1360                          StringToks[NumStringToks-1].getLocation());
   1361       hadError = true;
   1362       return;
   1363     }
   1364   } else if (Diags) {
   1365     // Complain if this string literal has too many characters.
   1366     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
   1367 
   1368     if (GetNumStringChars() > MaxChars)
   1369       Diags->Report(StringToks[0].getLocation(),
   1370                     diag::ext_string_too_long)
   1371         << GetNumStringChars() << MaxChars
   1372         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
   1373         << SourceRange(StringToks[0].getLocation(),
   1374                        StringToks[NumStringToks-1].getLocation());
   1375   }
   1376 }
   1377 
   1378 static const char *resyncUTF8(const char *Err, const char *End) {
   1379   if (Err == End)
   1380     return End;
   1381   End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
   1382   while (++Err != End && (*Err & 0xC0) == 0x80)
   1383     ;
   1384   return Err;
   1385 }
   1386 
   1387 /// \brief This function copies from Fragment, which is a sequence of bytes
   1388 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
   1389 /// Performs widening for multi-byte characters.
   1390 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
   1391                                              const char *TokBegin,
   1392                                              StringRef Fragment) {
   1393   const UTF8 *ErrorPtrTmp;
   1394   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
   1395     return false;
   1396 
   1397   // If we see bad encoding for unprefixed string literals, warn and
   1398   // simply copy the byte values, for compatibility with gcc and older
   1399   // versions of clang.
   1400   bool NoErrorOnBadEncoding = isAscii();
   1401   if (NoErrorOnBadEncoding) {
   1402     memcpy(ResultPtr, Fragment.data(), Fragment.size());
   1403     ResultPtr += Fragment.size();
   1404   }
   1405 
   1406   if (Diags) {
   1407     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1408 
   1409     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
   1410     const DiagnosticBuilder &Builder =
   1411       Diag(Diags, Features, SourceLoc, TokBegin,
   1412            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
   1413            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
   1414                                 : diag::err_bad_string_encoding);
   1415 
   1416     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1417     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
   1418 
   1419     // Decode into a dummy buffer.
   1420     SmallString<512> Dummy;
   1421     Dummy.reserve(Fragment.size() * CharByteWidth);
   1422     char *Ptr = Dummy.data();
   1423 
   1424     while (!Builder.hasMaxRanges() &&
   1425            !ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
   1426       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1427       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1428       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
   1429                                      ErrorPtr, NextStart);
   1430       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
   1431     }
   1432   }
   1433   return !NoErrorOnBadEncoding;
   1434 }
   1435 
   1436 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
   1437   hadError = true;
   1438   if (Diags)
   1439     Diags->Report(Loc, diag::err_lexing_string);
   1440 }
   1441 
   1442 /// getOffsetOfStringByte - This function returns the offset of the
   1443 /// specified byte of the string data represented by Token.  This handles
   1444 /// advancing over escape sequences in the string.
   1445 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
   1446                                                     unsigned ByteNo) const {
   1447   // Get the spelling of the token.
   1448   SmallString<32> SpellingBuffer;
   1449   SpellingBuffer.resize(Tok.getLength());
   1450 
   1451   bool StringInvalid = false;
   1452   const char *SpellingPtr = &SpellingBuffer[0];
   1453   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
   1454                                        &StringInvalid);
   1455   if (StringInvalid)
   1456     return 0;
   1457 
   1458   const char *SpellingStart = SpellingPtr;
   1459   const char *SpellingEnd = SpellingPtr+TokLen;
   1460 
   1461   // Handle UTF-8 strings just like narrow strings.
   1462   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
   1463     SpellingPtr += 2;
   1464 
   1465   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
   1466          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
   1467 
   1468   // For raw string literals, this is easy.
   1469   if (SpellingPtr[0] == 'R') {
   1470     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
   1471     // Skip 'R"'.
   1472     SpellingPtr += 2;
   1473     while (*SpellingPtr != '(') {
   1474       ++SpellingPtr;
   1475       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
   1476     }
   1477     // Skip '('.
   1478     ++SpellingPtr;
   1479     return SpellingPtr - SpellingStart + ByteNo;
   1480   }
   1481 
   1482   // Skip over the leading quote
   1483   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
   1484   ++SpellingPtr;
   1485 
   1486   // Skip over bytes until we find the offset we're looking for.
   1487   while (ByteNo) {
   1488     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
   1489 
   1490     // Step over non-escapes simply.
   1491     if (*SpellingPtr != '\\') {
   1492       ++SpellingPtr;
   1493       --ByteNo;
   1494       continue;
   1495     }
   1496 
   1497     // Otherwise, this is an escape character.  Advance over it.
   1498     bool HadError = false;
   1499     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
   1500       const char *EscapePtr = SpellingPtr;
   1501       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
   1502                                       1, Features, HadError);
   1503       if (Len > ByteNo) {
   1504         // ByteNo is somewhere within the escape sequence.
   1505         SpellingPtr = EscapePtr;
   1506         break;
   1507       }
   1508       ByteNo -= Len;
   1509     } else {
   1510       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
   1511                         FullSourceLoc(Tok.getLocation(), SM),
   1512                         CharByteWidth*8, Diags, Features);
   1513       --ByteNo;
   1514     }
   1515     assert(!HadError && "This method isn't valid on erroneous strings");
   1516   }
   1517 
   1518   return SpellingPtr-SpellingStart;
   1519 }
   1520