Home | History | Annotate | Download | only in utils
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // This code is licensed under the same terms as WebM:
      4 //  Software License Agreement:  http://www.webmproject.org/license/software/
      5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
      6 // -----------------------------------------------------------------------------
      7 //
      8 // Quantize levels for specified number of quantization-levels ([2, 256]).
      9 // Min and max values are preserved (usual 0 and 255 for alpha plane).
     10 //
     11 // Author: Skal (pascal.massimino (at) gmail.com)
     12 
     13 #include <assert.h>
     14 
     15 #include "./quant_levels.h"
     16 
     17 #if defined(__cplusplus) || defined(c_plusplus)
     18 extern "C" {
     19 #endif
     20 
     21 #define NUM_SYMBOLS     256
     22 
     23 #define MAX_ITER  6             // Maximum number of convergence steps.
     24 #define ERROR_THRESHOLD 1e-4    // MSE stopping criterion.
     25 
     26 // -----------------------------------------------------------------------------
     27 // Quantize levels.
     28 
     29 int QuantizeLevels(uint8_t* const data, int width, int height,
     30                    int num_levels, uint64_t* const sse) {
     31   int freq[NUM_SYMBOLS] = { 0 };
     32   int q_level[NUM_SYMBOLS] = { 0 };
     33   double inv_q_level[NUM_SYMBOLS] = { 0 };
     34   int min_s = 255, max_s = 0;
     35   const size_t data_size = height * width;
     36   int i, num_levels_in, iter;
     37   double last_err = 1.e38, err = 0.;
     38   const double err_threshold = ERROR_THRESHOLD * data_size;
     39 
     40   if (data == NULL) {
     41     return 0;
     42   }
     43 
     44   if (width <= 0 || height <= 0) {
     45     return 0;
     46   }
     47 
     48   if (num_levels < 2 || num_levels > 256) {
     49     return 0;
     50   }
     51 
     52   {
     53     size_t n;
     54     num_levels_in = 0;
     55     for (n = 0; n < data_size; ++n) {
     56       num_levels_in += (freq[data[n]] == 0);
     57       if (min_s > data[n]) min_s = data[n];
     58       if (max_s < data[n]) max_s = data[n];
     59       ++freq[data[n]];
     60     }
     61   }
     62 
     63   if (num_levels_in <= num_levels) goto End;  // nothing to do!
     64 
     65   // Start with uniformly spread centroids.
     66   for (i = 0; i < num_levels; ++i) {
     67     inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
     68   }
     69 
     70   // Fixed values. Won't be changed.
     71   q_level[min_s] = 0;
     72   q_level[max_s] = num_levels - 1;
     73   assert(inv_q_level[0] == min_s);
     74   assert(inv_q_level[num_levels - 1] == max_s);
     75 
     76   // k-Means iterations.
     77   for (iter = 0; iter < MAX_ITER; ++iter) {
     78     double q_sum[NUM_SYMBOLS] = { 0 };
     79     double q_count[NUM_SYMBOLS] = { 0 };
     80     int s, slot = 0;
     81 
     82     // Assign classes to representatives.
     83     for (s = min_s; s <= max_s; ++s) {
     84       // Keep track of the nearest neighbour 'slot'
     85       while (slot < num_levels - 1 &&
     86              2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
     87         ++slot;
     88       }
     89       if (freq[s] > 0) {
     90         q_sum[slot] += s * freq[s];
     91         q_count[slot] += freq[s];
     92       }
     93       q_level[s] = slot;
     94     }
     95 
     96     // Assign new representatives to classes.
     97     if (num_levels > 2) {
     98       for (slot = 1; slot < num_levels - 1; ++slot) {
     99         const double count = q_count[slot];
    100         if (count > 0.) {
    101           inv_q_level[slot] = q_sum[slot] / count;
    102         }
    103       }
    104     }
    105 
    106     // Compute convergence error.
    107     err = 0.;
    108     for (s = min_s; s <= max_s; ++s) {
    109       const double error = s - inv_q_level[q_level[s]];
    110       err += freq[s] * error * error;
    111     }
    112 
    113     // Check for convergence: we stop as soon as the error is no
    114     // longer improving.
    115     if (last_err - err < err_threshold) break;
    116     last_err = err;
    117   }
    118 
    119   // Remap the alpha plane to quantized values.
    120   {
    121     // double->int rounding operation can be costly, so we do it
    122     // once for all before remapping. We also perform the data[] -> slot
    123     // mapping, while at it (avoid one indirection in the final loop).
    124     uint8_t map[NUM_SYMBOLS];
    125     int s;
    126     size_t n;
    127     for (s = min_s; s <= max_s; ++s) {
    128       const int slot = q_level[s];
    129       map[s] = (uint8_t)(inv_q_level[slot] + .5);
    130     }
    131     // Final pass.
    132     for (n = 0; n < data_size; ++n) {
    133       data[n] = map[data[n]];
    134     }
    135   }
    136  End:
    137   // Store sum of squared error if needed.
    138   if (sse != NULL) *sse = (uint64_t)err;
    139 
    140   return 1;
    141 }
    142 
    143 #if defined(__cplusplus) || defined(c_plusplus)
    144 }    // extern "C"
    145 #endif
    146