1 2 /* 3 * Copyright 2011 Google Inc. 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10 #ifndef GrGpu_DEFINED 11 #define GrGpu_DEFINED 12 13 #include "GrDrawTarget.h" 14 #include "GrRect.h" 15 #include "GrRefCnt.h" 16 #include "GrClipMaskManager.h" 17 18 #include "SkPath.h" 19 20 class GrContext; 21 class GrIndexBufferAllocPool; 22 class GrPath; 23 class GrPathRenderer; 24 class GrPathRendererChain; 25 class GrResource; 26 class GrStencilBuffer; 27 class GrVertexBufferAllocPool; 28 29 class GrGpu : public GrDrawTarget { 30 31 public: 32 33 /** 34 * Additional blend coefficients for dual source blending, not exposed 35 * through GrPaint/GrContext. 36 */ 37 enum ExtendedBlendCoeffs { 38 // source 2 refers to second output color when 39 // using dual source blending. 40 kS2C_GrBlendCoeff = kPublicGrBlendCoeffCount, 41 kIS2C_GrBlendCoeff, 42 kS2A_GrBlendCoeff, 43 kIS2A_GrBlendCoeff, 44 45 kTotalGrBlendCoeffCount 46 }; 47 48 /** 49 * Create an instance of GrGpu that matches the specified backend. If the requested backend is 50 * not supported (at compile-time or run-time) this returns NULL. 51 */ 52 static GrGpu* Create(GrBackend, GrBackendContext); 53 54 //////////////////////////////////////////////////////////////////////////// 55 56 GrGpu(); 57 virtual ~GrGpu(); 58 59 // The GrContext sets itself as the owner of this Gpu object 60 void setContext(GrContext* context) { 61 GrAssert(NULL == fContext); 62 fContext = context; 63 fClipMaskManager.setContext(context); 64 } 65 GrContext* getContext() { return fContext; } 66 const GrContext* getContext() const { return fContext; } 67 68 /** 69 * The GrGpu object normally assumes that no outsider is setting state 70 * within the underlying 3D API's context/device/whatever. This call informs 71 * the GrGpu that the state was modified and it shouldn't make assumptions 72 * about the state. 73 */ 74 void markContextDirty() { fContextIsDirty = true; } 75 76 void unimpl(const char[]); 77 78 /** 79 * Creates a texture object. If desc width or height is not a power of 80 * two but underlying API requires a power of two texture then srcData 81 * will be embedded in a power of two texture. The extra width and height 82 * is filled as though srcData were rendered clamped into the texture. 83 * 84 * If kRenderTarget_TextureFlag is specified the GrRenderTarget is 85 * accessible via GrTexture::asRenderTarget(). The texture will hold a ref 86 * on the render target until its releaseRenderTarget() is called or it is 87 * destroyed. 88 * 89 * @param desc describes the texture to be created. 90 * @param srcData texel data to load texture. Begins with full-size 91 * palette data for paletted textures. Contains width* 92 * height texels. If NULL texture data is uninitialized. 93 * 94 * @return The texture object if successful, otherwise NULL. 95 */ 96 GrTexture* createTexture(const GrTextureDesc& desc, 97 const void* srcData, size_t rowBytes); 98 99 /** 100 * Implements GrContext::wrapBackendTexture 101 */ 102 GrTexture* wrapBackendTexture(const GrBackendTextureDesc&); 103 104 /** 105 * Implements GrContext::wrapBackendTexture 106 */ 107 GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc&); 108 109 /** 110 * Creates a vertex buffer. 111 * 112 * @param size size in bytes of the vertex buffer 113 * @param dynamic hints whether the data will be frequently changed 114 * by either GrVertexBuffer::lock or 115 * GrVertexBuffer::updateData. 116 * 117 * @return The vertex buffer if successful, otherwise NULL. 118 */ 119 GrVertexBuffer* createVertexBuffer(uint32_t size, bool dynamic); 120 121 /** 122 * Creates an index buffer. 123 * 124 * @param size size in bytes of the index buffer 125 * @param dynamic hints whether the data will be frequently changed 126 * by either GrIndexBuffer::lock or 127 * GrIndexBuffer::updateData. 128 * 129 * @return The index buffer if successful, otherwise NULL. 130 */ 131 GrIndexBuffer* createIndexBuffer(uint32_t size, bool dynamic); 132 133 /** 134 * Creates a path object that can be stenciled using stencilPath(). It is 135 * only legal to call this if the caps report support for path stenciling. 136 */ 137 GrPath* createPath(const SkPath& path); 138 139 /** 140 * Returns an index buffer that can be used to render quads. 141 * Six indices per quad: 0, 1, 2, 0, 2, 3, etc. 142 * The max number of quads can be queried using GrIndexBuffer::maxQuads(). 143 * Draw with kTriangles_GrPrimitiveType 144 * @ return the quad index buffer 145 */ 146 const GrIndexBuffer* getQuadIndexBuffer() const; 147 148 /** 149 * Returns a vertex buffer with four position-only vertices [(0,0), (1,0), 150 * (1,1), (0,1)]. 151 * @ return unit square vertex buffer 152 */ 153 const GrVertexBuffer* getUnitSquareVertexBuffer() const; 154 155 /** 156 * Resolves MSAA. 157 */ 158 void resolveRenderTarget(GrRenderTarget* target); 159 160 /** 161 * Ensures that the current render target is actually set in the 162 * underlying 3D API. Used when client wants to use 3D API to directly 163 * render to the RT. 164 */ 165 void forceRenderTargetFlush(); 166 167 /** 168 * readPixels with some configs may be slow. Given a desired config this 169 * function returns a fast-path config. The returned config must have the 170 * same components and component sizes. The caller is free to ignore the 171 * result and call readPixels with the original config. 172 */ 173 virtual GrPixelConfig preferredReadPixelsConfig(GrPixelConfig config) 174 const { 175 return config; 176 } 177 178 /** 179 * Same as above but applies to writeTexturePixels 180 */ 181 virtual GrPixelConfig preferredWritePixelsConfig(GrPixelConfig config) 182 const { 183 return config; 184 } 185 186 /** 187 * OpenGL's readPixels returns the result bottom-to-top while the skia 188 * API is top-to-bottom. Thus we have to do a y-axis flip. The obvious 189 * solution is to have the subclass do the flip using either the CPU or GPU. 190 * However, the caller (GrContext) may have transformations to apply and can 191 * simply fold in the y-flip for free. On the other hand, the subclass may 192 * be able to do it for free itself. For example, the subclass may have to 193 * do memcpys to handle rowBytes that aren't tight. It could do the y-flip 194 * concurrently. 195 * 196 * This function returns true if a y-flip is required to put the pixels in 197 * top-to-bottom order and the subclass cannot do it for free. 198 * 199 * See read pixels for the params 200 * @return true if calling readPixels with the same set of params will 201 * produce bottom-to-top data 202 */ 203 virtual bool readPixelsWillPayForYFlip(GrRenderTarget* renderTarget, 204 int left, int top, 205 int width, int height, 206 GrPixelConfig config, 207 size_t rowBytes) const = 0; 208 /** 209 * This should return true if reading a NxM rectangle of pixels from a 210 * render target is faster if the target has dimensons N and M and the read 211 * rectangle has its top-left at 0,0. 212 */ 213 virtual bool fullReadPixelsIsFasterThanPartial() const { return false; }; 214 215 /** 216 * Reads a rectangle of pixels from a render target. 217 * 218 * @param renderTarget the render target to read from. NULL means the 219 * current render target. 220 * @param left left edge of the rectangle to read (inclusive) 221 * @param top top edge of the rectangle to read (inclusive) 222 * @param width width of rectangle to read in pixels. 223 * @param height height of rectangle to read in pixels. 224 * @param config the pixel config of the destination buffer 225 * @param buffer memory to read the rectangle into. 226 * @param rowBytes the number of bytes between consecutive rows. Zero 227 * means rows are tightly packed. 228 * @param invertY buffer should be populated bottom-to-top as opposed 229 * to top-to-bottom (skia's usual order) 230 * 231 * @return true if the read succeeded, false if not. The read can fail 232 * because of a unsupported pixel config or because no render 233 * target is currently set. 234 */ 235 bool readPixels(GrRenderTarget* renderTarget, 236 int left, int top, int width, int height, 237 GrPixelConfig config, void* buffer, size_t rowBytes, 238 bool invertY); 239 240 /** 241 * Updates the pixels in a rectangle of a texture. 242 * 243 * @param left left edge of the rectangle to write (inclusive) 244 * @param top top edge of the rectangle to write (inclusive) 245 * @param width width of rectangle to write in pixels. 246 * @param height height of rectangle to write in pixels. 247 * @param config the pixel config of the source buffer 248 * @param buffer memory to read pixels from 249 * @param rowBytes number of bytes between consecutive rows. Zero 250 * means rows are tightly packed. 251 */ 252 void writeTexturePixels(GrTexture* texture, 253 int left, int top, int width, int height, 254 GrPixelConfig config, const void* buffer, 255 size_t rowBytes); 256 257 /** 258 * Called to tell Gpu object that all GrResources have been lost and should 259 * be abandoned. Overrides must call INHERITED::abandonResources(). 260 */ 261 virtual void abandonResources(); 262 263 /** 264 * Called to tell Gpu object to release all GrResources. Overrides must call 265 * INHERITED::releaseResources(). 266 */ 267 void releaseResources(); 268 269 /** 270 * Add resource to list of resources. Should only be called by GrResource. 271 * @param resource the resource to add. 272 */ 273 void insertResource(GrResource* resource); 274 275 /** 276 * Remove resource from list of resources. Should only be called by 277 * GrResource. 278 * @param resource the resource to remove. 279 */ 280 void removeResource(GrResource* resource); 281 282 // GrDrawTarget overrides 283 virtual void clear(const GrIRect* rect, 284 GrColor color, 285 GrRenderTarget* renderTarget = NULL) SK_OVERRIDE; 286 287 virtual void purgeResources() SK_OVERRIDE { 288 // The clip mask manager can rebuild all its clip masks so just 289 // get rid of them all. 290 fClipMaskManager.releaseResources(); 291 } 292 293 // After the client interacts directly with the 3D context state the GrGpu 294 // must resync its internal state and assumptions about 3D context state. 295 // Each time this occurs the GrGpu bumps a timestamp. 296 // state of the 3D context 297 // At 10 resets / frame and 60fps a 64bit timestamp will overflow in about 298 // a billion years. 299 typedef uint64_t ResetTimestamp; 300 301 // This timestamp is always older than the current timestamp 302 static const ResetTimestamp kExpiredTimestamp = 0; 303 // Returns a timestamp based on the number of times the context was reset. 304 // This timestamp can be used to lazily detect when cached 3D context state 305 // is dirty. 306 ResetTimestamp getResetTimestamp() const { 307 return fResetTimestamp; 308 } 309 310 /** 311 * Can the provided configuration act as a color render target? 312 */ 313 bool isConfigRenderable(GrPixelConfig config) const { 314 GrAssert(kGrPixelConfigCount > config); 315 return fConfigRenderSupport[config]; 316 } 317 318 /** 319 * These methods are called by the clip manager's setupClipping function 320 * which (called as part of GrGpu's implementation of onDraw and 321 * onStencilPath member functions.) The GrGpu subclass should flush the 322 * stencil state to the 3D API in its implementation of flushGraphicsState. 323 */ 324 void enableScissor(const GrIRect& rect) { 325 fScissorState.fEnabled = true; 326 fScissorState.fRect = rect; 327 } 328 void disableScissor() { fScissorState.fEnabled = false; } 329 330 /** 331 * Like the scissor methods above this is called by setupClipping and 332 * should be flushed by the GrGpu subclass in flushGraphicsState. These 333 * stencil settings should be used in place of those on the GrDrawState. 334 * They have been adjusted to account for any interactions between the 335 * GrDrawState's stencil settings and stencil clipping. 336 */ 337 void setStencilSettings(const GrStencilSettings& settings) { 338 fStencilSettings = settings; 339 } 340 void disableStencil() { fStencilSettings.setDisabled(); } 341 342 // GrGpu subclass sets clip bit in the stencil buffer. The subclass is 343 // free to clear the remaining bits to zero if masked clears are more 344 // expensive than clearing all bits. 345 virtual void clearStencilClip(const GrIRect& rect, bool insideClip) = 0; 346 347 enum PrivateDrawStateStateBits { 348 kFirstBit = (GrDrawState::kLastPublicStateBit << 1), 349 350 kModifyStencilClip_StateBit = kFirstBit, // allows draws to modify 351 // stencil bits used for 352 // clipping. 353 }; 354 355 protected: 356 enum DrawType { 357 kDrawPoints_DrawType, 358 kDrawLines_DrawType, 359 kDrawTriangles_DrawType, 360 kStencilPath_DrawType, 361 }; 362 363 DrawType PrimTypeToDrawType(GrPrimitiveType type) { 364 switch (type) { 365 case kTriangles_GrPrimitiveType: 366 case kTriangleStrip_GrPrimitiveType: 367 case kTriangleFan_GrPrimitiveType: 368 return kDrawTriangles_DrawType; 369 case kPoints_GrPrimitiveType: 370 return kDrawPoints_DrawType; 371 case kLines_GrPrimitiveType: 372 case kLineStrip_GrPrimitiveType: 373 return kDrawLines_DrawType; 374 default: 375 GrCrash("Unexpected primitive type"); 376 return kDrawTriangles_DrawType; 377 } 378 } 379 380 // prepares clip flushes gpu state before a draw 381 bool setupClipAndFlushState(DrawType); 382 383 // Functions used to map clip-respecting stencil tests into normal 384 // stencil funcs supported by GPUs. 385 static GrStencilFunc ConvertStencilFunc(bool stencilInClip, 386 GrStencilFunc func); 387 static void ConvertStencilFuncAndMask(GrStencilFunc func, 388 bool clipInStencil, 389 unsigned int clipBit, 390 unsigned int userBits, 391 unsigned int* ref, 392 unsigned int* mask); 393 394 GrClipMaskManager fClipMaskManager; 395 396 struct GeometryPoolState { 397 const GrVertexBuffer* fPoolVertexBuffer; 398 int fPoolStartVertex; 399 400 const GrIndexBuffer* fPoolIndexBuffer; 401 int fPoolStartIndex; 402 }; 403 const GeometryPoolState& getGeomPoolState() { 404 return fGeomPoolStateStack.back(); 405 } 406 407 // The state of the scissor is controlled by the clip manager 408 struct ScissorState { 409 bool fEnabled; 410 GrIRect fRect; 411 } fScissorState; 412 413 // The final stencil settings to use as determined by the clip manager. 414 GrStencilSettings fStencilSettings; 415 416 // Derived classes need access to this so they can fill it out in their 417 // constructors 418 bool fConfigRenderSupport[kGrPixelConfigCount]; 419 420 // Helpers for setting up geometry state 421 void finalizeReservedVertices(); 422 void finalizeReservedIndices(); 423 424 private: 425 // GrDrawTarget overrides 426 virtual bool onReserveVertexSpace(size_t vSize, int vertexCount, void** vertices) SK_OVERRIDE; 427 virtual bool onReserveIndexSpace(int indexCount, void** indices) SK_OVERRIDE; 428 virtual void releaseReservedVertexSpace() SK_OVERRIDE; 429 virtual void releaseReservedIndexSpace() SK_OVERRIDE; 430 virtual void onSetVertexSourceToArray(const void* vertexArray, int vertexCount) SK_OVERRIDE; 431 virtual void onSetIndexSourceToArray(const void* indexArray, int indexCount) SK_OVERRIDE; 432 virtual void releaseVertexArray() SK_OVERRIDE; 433 virtual void releaseIndexArray() SK_OVERRIDE; 434 virtual void geometrySourceWillPush() SK_OVERRIDE; 435 virtual void geometrySourceWillPop(const GeometrySrcState& restoredState) SK_OVERRIDE; 436 437 438 // called when the 3D context state is unknown. Subclass should emit any 439 // assumed 3D context state and dirty any state cache. 440 virtual void onResetContext() = 0; 441 442 // overridden by backend-specific derived class to create objects. 443 virtual GrTexture* onCreateTexture(const GrTextureDesc& desc, 444 const void* srcData, 445 size_t rowBytes) = 0; 446 virtual GrTexture* onWrapBackendTexture(const GrBackendTextureDesc&) = 0; 447 virtual GrRenderTarget* onWrapBackendRenderTarget(const GrBackendRenderTargetDesc&) = 0; 448 virtual GrVertexBuffer* onCreateVertexBuffer(uint32_t size, bool dynamic) = 0; 449 virtual GrIndexBuffer* onCreateIndexBuffer(uint32_t size, bool dynamic) = 0; 450 virtual GrPath* onCreatePath(const SkPath& path) = 0; 451 452 // overridden by backend-specific derived class to perform the clear and 453 // clearRect. NULL rect means clear whole target. 454 virtual void onClear(const GrIRect* rect, GrColor color) = 0; 455 456 // overridden by backend-specific derived class to perform the draw call. 457 virtual void onGpuDraw(const DrawInfo&) = 0; 458 // when GrDrawTarget::stencilPath is called the draw state's current stencil 459 // settings are ignored. Instead the GrGpu decides the stencil rules 460 // necessary to stencil the path. These are still subject to filtering by 461 // the clip mask manager. 462 virtual void setStencilPathSettings(const GrPath&, 463 SkPath::FillType, 464 GrStencilSettings* settings) = 0; 465 // overridden by backend-specific derived class to perform the path stenciling. 466 virtual void onGpuStencilPath(const GrPath*, SkPath::FillType) = 0; 467 468 // overridden by backend-specific derived class to perform flush 469 virtual void onForceRenderTargetFlush() = 0; 470 471 // overridden by backend-specific derived class to perform the read pixels. 472 virtual bool onReadPixels(GrRenderTarget* target, 473 int left, int top, int width, int height, 474 GrPixelConfig, 475 void* buffer, 476 size_t rowBytes, 477 bool invertY) = 0; 478 479 // overridden by backend-specific derived class to perform the texture update 480 virtual void onWriteTexturePixels(GrTexture* texture, 481 int left, int top, int width, int height, 482 GrPixelConfig config, const void* buffer, 483 size_t rowBytes) = 0; 484 485 // overridden by backend-specific derived class to perform the resolve 486 virtual void onResolveRenderTarget(GrRenderTarget* target) = 0; 487 488 // width and height may be larger than rt (if underlying API allows it). 489 // Should attach the SB to the RT. Returns false if compatible sb could 490 // not be created. 491 virtual bool createStencilBufferForRenderTarget(GrRenderTarget*, int width, int height) = 0; 492 493 // attaches an existing SB to an existing RT. 494 virtual bool attachStencilBufferToRenderTarget(GrStencilBuffer*, GrRenderTarget*) = 0; 495 496 // The GrGpu typically records the clients requested state and then flushes 497 // deltas from previous state at draw time. This function does the 498 // backend-specific flush of the state 499 // returns false if current state is unsupported. 500 virtual bool flushGraphicsState(DrawType) = 0; 501 502 // clears the entire stencil buffer to 0 503 virtual void clearStencil() = 0; 504 505 // Given a rt, find or create a stencil buffer and attach it 506 bool attachStencilBufferToRenderTarget(GrRenderTarget* target); 507 508 // GrDrawTarget overrides 509 virtual void onDraw(const DrawInfo&) SK_OVERRIDE; 510 virtual void onStencilPath(const GrPath* path, const SkStrokeRec& stroke, 511 SkPath::FillType) SK_OVERRIDE; 512 513 // readies the pools to provide vertex/index data. 514 void prepareVertexPool(); 515 void prepareIndexPool(); 516 517 void resetContext() { 518 // We call this because the client may have messed with the 519 // stencil buffer. Perhaps we should detect whether it is a 520 // internally created stencil buffer and if so skip the invalidate. 521 fClipMaskManager.invalidateStencilMask(); 522 this->onResetContext(); 523 ++fResetTimestamp; 524 } 525 526 void handleDirtyContext() { 527 if (fContextIsDirty) { 528 this->resetContext(); 529 fContextIsDirty = false; 530 } 531 } 532 533 enum { 534 kPreallocGeomPoolStateStackCnt = 4, 535 }; 536 typedef SkTInternalLList<GrResource> ResourceList; 537 SkSTArray<kPreallocGeomPoolStateStackCnt, GeometryPoolState, true> fGeomPoolStateStack; 538 GrContext* fContext; // not reffed 539 ResetTimestamp fResetTimestamp; 540 GrVertexBufferAllocPool* fVertexPool; 541 GrIndexBufferAllocPool* fIndexPool; 542 // counts number of uses of vertex/index pool in the geometry stack 543 int fVertexPoolUseCnt; 544 int fIndexPoolUseCnt; 545 // these are mutable so they can be created on-demand 546 mutable GrVertexBuffer* fUnitSquareVertexBuffer; 547 mutable GrIndexBuffer* fQuadIndexBuffer; 548 bool fContextIsDirty; 549 ResourceList fResourceList; 550 551 typedef GrDrawTarget INHERITED; 552 }; 553 554 #endif 555