Home | History | Annotate | Download | only in TableGen
      1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits code for use by the "fast" instruction
     11 // selection algorithm. See the comments at the top of
     12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
     13 //
     14 // This file scans through the target's tablegen instruction-info files
     15 // and extracts instructions with obvious-looking patterns, and it emits
     16 // code to look up these instructions by type and operator.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "CodeGenDAGPatterns.h"
     21 #include "llvm/ADT/SmallString.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 #include "llvm/TableGen/Error.h"
     25 #include "llvm/TableGen/Record.h"
     26 #include "llvm/TableGen/TableGenBackend.h"
     27 using namespace llvm;
     28 
     29 
     30 /// InstructionMemo - This class holds additional information about an
     31 /// instruction needed to emit code for it.
     32 ///
     33 namespace {
     34 struct InstructionMemo {
     35   std::string Name;
     36   const CodeGenRegisterClass *RC;
     37   std::string SubRegNo;
     38   std::vector<std::string>* PhysRegs;
     39 };
     40 } // End anonymous namespace
     41 
     42 /// ImmPredicateSet - This uniques predicates (represented as a string) and
     43 /// gives them unique (small) integer ID's that start at 0.
     44 namespace {
     45 class ImmPredicateSet {
     46   DenseMap<TreePattern *, unsigned> ImmIDs;
     47   std::vector<TreePredicateFn> PredsByName;
     48 public:
     49 
     50   unsigned getIDFor(TreePredicateFn Pred) {
     51     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
     52     if (Entry == 0) {
     53       PredsByName.push_back(Pred);
     54       Entry = PredsByName.size();
     55     }
     56     return Entry-1;
     57   }
     58 
     59   const TreePredicateFn &getPredicate(unsigned i) {
     60     assert(i < PredsByName.size());
     61     return PredsByName[i];
     62   }
     63 
     64   typedef std::vector<TreePredicateFn>::const_iterator iterator;
     65   iterator begin() const { return PredsByName.begin(); }
     66   iterator end() const { return PredsByName.end(); }
     67 
     68 };
     69 } // End anonymous namespace
     70 
     71 /// OperandsSignature - This class holds a description of a list of operand
     72 /// types. It has utility methods for emitting text based on the operands.
     73 ///
     74 namespace {
     75 struct OperandsSignature {
     76   class OpKind {
     77     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
     78     char Repr;
     79   public:
     80 
     81     OpKind() : Repr(OK_Invalid) {}
     82 
     83     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
     84     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
     85 
     86     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
     87     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
     88     static OpKind getImm(unsigned V) {
     89       assert((unsigned)OK_Imm+V < 128 &&
     90              "Too many integer predicates for the 'Repr' char");
     91       OpKind K; K.Repr = OK_Imm+V; return K;
     92     }
     93 
     94     bool isReg() const { return Repr == OK_Reg; }
     95     bool isFP() const  { return Repr == OK_FP; }
     96     bool isImm() const { return Repr >= OK_Imm; }
     97 
     98     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
     99 
    100     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
    101                              bool StripImmCodes) const {
    102       if (isReg())
    103         OS << 'r';
    104       else if (isFP())
    105         OS << 'f';
    106       else {
    107         OS << 'i';
    108         if (!StripImmCodes)
    109           if (unsigned Code = getImmCode())
    110             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
    111       }
    112     }
    113   };
    114 
    115 
    116   SmallVector<OpKind, 3> Operands;
    117 
    118   bool operator<(const OperandsSignature &O) const {
    119     return Operands < O.Operands;
    120   }
    121   bool operator==(const OperandsSignature &O) const {
    122     return Operands == O.Operands;
    123   }
    124 
    125   bool empty() const { return Operands.empty(); }
    126 
    127   bool hasAnyImmediateCodes() const {
    128     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    129       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
    130         return true;
    131     return false;
    132   }
    133 
    134   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
    135   /// to zero.
    136   OperandsSignature getWithoutImmCodes() const {
    137     OperandsSignature Result;
    138     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    139       if (!Operands[i].isImm())
    140         Result.Operands.push_back(Operands[i]);
    141       else
    142         Result.Operands.push_back(OpKind::getImm(0));
    143     return Result;
    144   }
    145 
    146   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
    147     bool EmittedAnything = false;
    148     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    149       if (!Operands[i].isImm()) continue;
    150 
    151       unsigned Code = Operands[i].getImmCode();
    152       if (Code == 0) continue;
    153 
    154       if (EmittedAnything)
    155         OS << " &&\n        ";
    156 
    157       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
    158 
    159       // Emit the type check.
    160       OS << "VT == "
    161          << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
    162          << " && ";
    163 
    164 
    165       OS << PredFn.getFnName() << "(imm" << i <<')';
    166       EmittedAnything = true;
    167     }
    168   }
    169 
    170   /// initialize - Examine the given pattern and initialize the contents
    171   /// of the Operands array accordingly. Return true if all the operands
    172   /// are supported, false otherwise.
    173   ///
    174   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
    175                   MVT::SimpleValueType VT,
    176                   ImmPredicateSet &ImmediatePredicates) {
    177     if (InstPatNode->isLeaf())
    178       return false;
    179 
    180     if (InstPatNode->getOperator()->getName() == "imm") {
    181       Operands.push_back(OpKind::getImm(0));
    182       return true;
    183     }
    184 
    185     if (InstPatNode->getOperator()->getName() == "fpimm") {
    186       Operands.push_back(OpKind::getFP());
    187       return true;
    188     }
    189 
    190     const CodeGenRegisterClass *DstRC = 0;
    191 
    192     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
    193       TreePatternNode *Op = InstPatNode->getChild(i);
    194 
    195       // Handle imm operands specially.
    196       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
    197         unsigned PredNo = 0;
    198         if (!Op->getPredicateFns().empty()) {
    199           TreePredicateFn PredFn = Op->getPredicateFns()[0];
    200           // If there is more than one predicate weighing in on this operand
    201           // then we don't handle it.  This doesn't typically happen for
    202           // immediates anyway.
    203           if (Op->getPredicateFns().size() > 1 ||
    204               !PredFn.isImmediatePattern())
    205             return false;
    206           // Ignore any instruction with 'FastIselShouldIgnore', these are
    207           // not needed and just bloat the fast instruction selector.  For
    208           // example, X86 doesn't need to generate code to match ADD16ri8 since
    209           // ADD16ri will do just fine.
    210           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
    211           if (Rec->getValueAsBit("FastIselShouldIgnore"))
    212             return false;
    213 
    214           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
    215         }
    216 
    217         // Handle unmatched immediate sizes here.
    218         //if (Op->getType(0) != VT)
    219         //  return false;
    220 
    221         Operands.push_back(OpKind::getImm(PredNo));
    222         continue;
    223       }
    224 
    225 
    226       // For now, filter out any operand with a predicate.
    227       // For now, filter out any operand with multiple values.
    228       if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
    229         return false;
    230 
    231       if (!Op->isLeaf()) {
    232          if (Op->getOperator()->getName() == "fpimm") {
    233           Operands.push_back(OpKind::getFP());
    234           continue;
    235         }
    236         // For now, ignore other non-leaf nodes.
    237         return false;
    238       }
    239 
    240       assert(Op->hasTypeSet(0) && "Type infererence not done?");
    241 
    242       // For now, all the operands must have the same type (if they aren't
    243       // immediates).  Note that this causes us to reject variable sized shifts
    244       // on X86.
    245       if (Op->getType(0) != VT)
    246         return false;
    247 
    248       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
    249       if (!OpDI)
    250         return false;
    251       Record *OpLeafRec = OpDI->getDef();
    252 
    253       // For now, the only other thing we accept is register operands.
    254       const CodeGenRegisterClass *RC = 0;
    255       if (OpLeafRec->isSubClassOf("RegisterOperand"))
    256         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
    257       if (OpLeafRec->isSubClassOf("RegisterClass"))
    258         RC = &Target.getRegisterClass(OpLeafRec);
    259       else if (OpLeafRec->isSubClassOf("Register"))
    260         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
    261       else
    262         return false;
    263 
    264       // For now, this needs to be a register class of some sort.
    265       if (!RC)
    266         return false;
    267 
    268       // For now, all the operands must have the same register class or be
    269       // a strict subclass of the destination.
    270       if (DstRC) {
    271         if (DstRC != RC && !DstRC->hasSubClass(RC))
    272           return false;
    273       } else
    274         DstRC = RC;
    275       Operands.push_back(OpKind::getReg());
    276     }
    277     return true;
    278   }
    279 
    280   void PrintParameters(raw_ostream &OS) const {
    281     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    282       if (Operands[i].isReg()) {
    283         OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
    284       } else if (Operands[i].isImm()) {
    285         OS << "uint64_t imm" << i;
    286       } else if (Operands[i].isFP()) {
    287         OS << "const ConstantFP *f" << i;
    288       } else {
    289         llvm_unreachable("Unknown operand kind!");
    290       }
    291       if (i + 1 != e)
    292         OS << ", ";
    293     }
    294   }
    295 
    296   void PrintArguments(raw_ostream &OS,
    297                       const std::vector<std::string> &PR) const {
    298     assert(PR.size() == Operands.size());
    299     bool PrintedArg = false;
    300     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    301       if (PR[i] != "")
    302         // Implicit physical register operand.
    303         continue;
    304 
    305       if (PrintedArg)
    306         OS << ", ";
    307       if (Operands[i].isReg()) {
    308         OS << "Op" << i << ", Op" << i << "IsKill";
    309         PrintedArg = true;
    310       } else if (Operands[i].isImm()) {
    311         OS << "imm" << i;
    312         PrintedArg = true;
    313       } else if (Operands[i].isFP()) {
    314         OS << "f" << i;
    315         PrintedArg = true;
    316       } else {
    317         llvm_unreachable("Unknown operand kind!");
    318       }
    319     }
    320   }
    321 
    322   void PrintArguments(raw_ostream &OS) const {
    323     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    324       if (Operands[i].isReg()) {
    325         OS << "Op" << i << ", Op" << i << "IsKill";
    326       } else if (Operands[i].isImm()) {
    327         OS << "imm" << i;
    328       } else if (Operands[i].isFP()) {
    329         OS << "f" << i;
    330       } else {
    331         llvm_unreachable("Unknown operand kind!");
    332       }
    333       if (i + 1 != e)
    334         OS << ", ";
    335     }
    336   }
    337 
    338 
    339   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
    340                            ImmPredicateSet &ImmPredicates,
    341                            bool StripImmCodes = false) const {
    342     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    343       if (PR[i] != "")
    344         // Implicit physical register operand. e.g. Instruction::Mul expect to
    345         // select to a binary op. On x86, mul may take a single operand with
    346         // the other operand being implicit. We must emit something that looks
    347         // like a binary instruction except for the very inner FastEmitInst_*
    348         // call.
    349         continue;
    350       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
    351     }
    352   }
    353 
    354   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
    355                            bool StripImmCodes = false) const {
    356     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    357       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
    358   }
    359 };
    360 } // End anonymous namespace
    361 
    362 namespace {
    363 class FastISelMap {
    364   typedef std::map<std::string, InstructionMemo> PredMap;
    365   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
    366   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
    367   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
    368   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
    369             OperandsOpcodeTypeRetPredMap;
    370 
    371   OperandsOpcodeTypeRetPredMap SimplePatterns;
    372 
    373   std::map<OperandsSignature, std::vector<OperandsSignature> >
    374     SignaturesWithConstantForms;
    375 
    376   std::string InstNS;
    377   ImmPredicateSet ImmediatePredicates;
    378 public:
    379   explicit FastISelMap(std::string InstNS);
    380 
    381   void collectPatterns(CodeGenDAGPatterns &CGP);
    382   void printImmediatePredicates(raw_ostream &OS);
    383   void printFunctionDefinitions(raw_ostream &OS);
    384 };
    385 } // End anonymous namespace
    386 
    387 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
    388   return CGP.getSDNodeInfo(Op).getEnumName();
    389 }
    390 
    391 static std::string getLegalCName(std::string OpName) {
    392   std::string::size_type pos = OpName.find("::");
    393   if (pos != std::string::npos)
    394     OpName.replace(pos, 2, "_");
    395   return OpName;
    396 }
    397 
    398 FastISelMap::FastISelMap(std::string instns)
    399   : InstNS(instns) {
    400 }
    401 
    402 static std::string PhyRegForNode(TreePatternNode *Op,
    403                                  const CodeGenTarget &Target) {
    404   std::string PhysReg;
    405 
    406   if (!Op->isLeaf())
    407     return PhysReg;
    408 
    409   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
    410   if (!OpLeafRec->isSubClassOf("Register"))
    411     return PhysReg;
    412 
    413   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
    414                ->getValue();
    415   PhysReg += "::";
    416   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
    417   return PhysReg;
    418 }
    419 
    420 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
    421   const CodeGenTarget &Target = CGP.getTargetInfo();
    422 
    423   // Determine the target's namespace name.
    424   InstNS = Target.getInstNamespace() + "::";
    425   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
    426 
    427   // Scan through all the patterns and record the simple ones.
    428   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
    429        E = CGP.ptm_end(); I != E; ++I) {
    430     const PatternToMatch &Pattern = *I;
    431 
    432     // For now, just look at Instructions, so that we don't have to worry
    433     // about emitting multiple instructions for a pattern.
    434     TreePatternNode *Dst = Pattern.getDstPattern();
    435     if (Dst->isLeaf()) continue;
    436     Record *Op = Dst->getOperator();
    437     if (!Op->isSubClassOf("Instruction"))
    438       continue;
    439     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
    440     if (II.Operands.empty())
    441       continue;
    442 
    443     // For now, ignore multi-instruction patterns.
    444     bool MultiInsts = false;
    445     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
    446       TreePatternNode *ChildOp = Dst->getChild(i);
    447       if (ChildOp->isLeaf())
    448         continue;
    449       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
    450         MultiInsts = true;
    451         break;
    452       }
    453     }
    454     if (MultiInsts)
    455       continue;
    456 
    457     // For now, ignore instructions where the first operand is not an
    458     // output register.
    459     const CodeGenRegisterClass *DstRC = 0;
    460     std::string SubRegNo;
    461     if (Op->getName() != "EXTRACT_SUBREG") {
    462       Record *Op0Rec = II.Operands[0].Rec;
    463       if (Op0Rec->isSubClassOf("RegisterOperand"))
    464         Op0Rec = Op0Rec->getValueAsDef("RegClass");
    465       if (!Op0Rec->isSubClassOf("RegisterClass"))
    466         continue;
    467       DstRC = &Target.getRegisterClass(Op0Rec);
    468       if (!DstRC)
    469         continue;
    470     } else {
    471       // If this isn't a leaf, then continue since the register classes are
    472       // a bit too complicated for now.
    473       if (!Dst->getChild(1)->isLeaf()) continue;
    474 
    475       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
    476       if (SR)
    477         SubRegNo = getQualifiedName(SR->getDef());
    478       else
    479         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
    480     }
    481 
    482     // Inspect the pattern.
    483     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
    484     if (!InstPatNode) continue;
    485     if (InstPatNode->isLeaf()) continue;
    486 
    487     // Ignore multiple result nodes for now.
    488     if (InstPatNode->getNumTypes() > 1) continue;
    489 
    490     Record *InstPatOp = InstPatNode->getOperator();
    491     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
    492     MVT::SimpleValueType RetVT = MVT::isVoid;
    493     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
    494     MVT::SimpleValueType VT = RetVT;
    495     if (InstPatNode->getNumChildren()) {
    496       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
    497       VT = InstPatNode->getChild(0)->getType(0);
    498     }
    499 
    500     // For now, filter out any instructions with predicates.
    501     if (!InstPatNode->getPredicateFns().empty())
    502       continue;
    503 
    504     // Check all the operands.
    505     OperandsSignature Operands;
    506     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates))
    507       continue;
    508 
    509     std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
    510     if (InstPatNode->getOperator()->getName() == "imm" ||
    511         InstPatNode->getOperator()->getName() == "fpimm")
    512       PhysRegInputs->push_back("");
    513     else {
    514       // Compute the PhysRegs used by the given pattern, and check that
    515       // the mapping from the src to dst patterns is simple.
    516       bool FoundNonSimplePattern = false;
    517       unsigned DstIndex = 0;
    518       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
    519         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
    520         if (PhysReg.empty()) {
    521           if (DstIndex >= Dst->getNumChildren() ||
    522               Dst->getChild(DstIndex)->getName() !=
    523               InstPatNode->getChild(i)->getName()) {
    524             FoundNonSimplePattern = true;
    525             break;
    526           }
    527           ++DstIndex;
    528         }
    529 
    530         PhysRegInputs->push_back(PhysReg);
    531       }
    532 
    533       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
    534         FoundNonSimplePattern = true;
    535 
    536       if (FoundNonSimplePattern)
    537         continue;
    538     }
    539 
    540     // Get the predicate that guards this pattern.
    541     std::string PredicateCheck = Pattern.getPredicateCheck();
    542 
    543     // Ok, we found a pattern that we can handle. Remember it.
    544     InstructionMemo Memo = {
    545       Pattern.getDstPattern()->getOperator()->getName(),
    546       DstRC,
    547       SubRegNo,
    548       PhysRegInputs
    549     };
    550 
    551     if (SimplePatterns[Operands][OpcodeName][VT][RetVT].count(PredicateCheck))
    552       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
    553                     "Duplicate record in FastISel table!");
    554 
    555     SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo;
    556 
    557     // If any of the operands were immediates with predicates on them, strip
    558     // them down to a signature that doesn't have predicates so that we can
    559     // associate them with the stripped predicate version.
    560     if (Operands.hasAnyImmediateCodes()) {
    561       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
    562         .push_back(Operands);
    563     }
    564   }
    565 }
    566 
    567 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
    568   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
    569     return;
    570 
    571   OS << "\n// FastEmit Immediate Predicate functions.\n";
    572   for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
    573        E = ImmediatePredicates.end(); I != E; ++I) {
    574     OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
    575     OS << I->getImmediatePredicateCode() << "\n}\n";
    576   }
    577 
    578   OS << "\n\n";
    579 }
    580 
    581 
    582 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
    583   // Now emit code for all the patterns that we collected.
    584   for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
    585        OE = SimplePatterns.end(); OI != OE; ++OI) {
    586     const OperandsSignature &Operands = OI->first;
    587     const OpcodeTypeRetPredMap &OTM = OI->second;
    588 
    589     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
    590          I != E; ++I) {
    591       const std::string &Opcode = I->first;
    592       const TypeRetPredMap &TM = I->second;
    593 
    594       OS << "// FastEmit functions for " << Opcode << ".\n";
    595       OS << "\n";
    596 
    597       // Emit one function for each opcode,type pair.
    598       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
    599            TI != TE; ++TI) {
    600         MVT::SimpleValueType VT = TI->first;
    601         const RetPredMap &RM = TI->second;
    602         if (RM.size() != 1) {
    603           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
    604                RI != RE; ++RI) {
    605             MVT::SimpleValueType RetVT = RI->first;
    606             const PredMap &PM = RI->second;
    607             bool HasPred = false;
    608 
    609             OS << "unsigned FastEmit_"
    610                << getLegalCName(Opcode)
    611                << "_" << getLegalCName(getName(VT))
    612                << "_" << getLegalCName(getName(RetVT)) << "_";
    613             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    614             OS << "(";
    615             Operands.PrintParameters(OS);
    616             OS << ") {\n";
    617 
    618             // Emit code for each possible instruction. There may be
    619             // multiple if there are subtarget concerns.
    620             for (PredMap::const_iterator PI = PM.begin(), PE = PM.end();
    621                  PI != PE; ++PI) {
    622               std::string PredicateCheck = PI->first;
    623               const InstructionMemo &Memo = PI->second;
    624 
    625               if (PredicateCheck.empty()) {
    626                 assert(!HasPred &&
    627                        "Multiple instructions match, at least one has "
    628                        "a predicate and at least one doesn't!");
    629               } else {
    630                 OS << "  if (" + PredicateCheck + ") {\n";
    631                 OS << "  ";
    632                 HasPred = true;
    633               }
    634 
    635               for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
    636                 if ((*Memo.PhysRegs)[i] != "")
    637                   OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, "
    638                      << "TII.get(TargetOpcode::COPY), "
    639                      << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
    640               }
    641 
    642               OS << "  return FastEmitInst_";
    643               if (Memo.SubRegNo.empty()) {
    644                 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
    645                                              ImmediatePredicates, true);
    646                 OS << "(" << InstNS << Memo.Name << ", ";
    647                 OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
    648                 if (!Operands.empty())
    649                   OS << ", ";
    650                 Operands.PrintArguments(OS, *Memo.PhysRegs);
    651                 OS << ");\n";
    652               } else {
    653                 OS << "extractsubreg(" << getName(RetVT);
    654                 OS << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
    655               }
    656 
    657               if (HasPred)
    658                 OS << "  }\n";
    659 
    660             }
    661             // Return 0 if none of the predicates were satisfied.
    662             if (HasPred)
    663               OS << "  return 0;\n";
    664             OS << "}\n";
    665             OS << "\n";
    666           }
    667 
    668           // Emit one function for the type that demultiplexes on return type.
    669           OS << "unsigned FastEmit_"
    670              << getLegalCName(Opcode) << "_"
    671              << getLegalCName(getName(VT)) << "_";
    672           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    673           OS << "(MVT RetVT";
    674           if (!Operands.empty())
    675             OS << ", ";
    676           Operands.PrintParameters(OS);
    677           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
    678           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
    679                RI != RE; ++RI) {
    680             MVT::SimpleValueType RetVT = RI->first;
    681             OS << "  case " << getName(RetVT) << ": return FastEmit_"
    682                << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
    683                << "_" << getLegalCName(getName(RetVT)) << "_";
    684             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    685             OS << "(";
    686             Operands.PrintArguments(OS);
    687             OS << ");\n";
    688           }
    689           OS << "  default: return 0;\n}\n}\n\n";
    690 
    691         } else {
    692           // Non-variadic return type.
    693           OS << "unsigned FastEmit_"
    694              << getLegalCName(Opcode) << "_"
    695              << getLegalCName(getName(VT)) << "_";
    696           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    697           OS << "(MVT RetVT";
    698           if (!Operands.empty())
    699             OS << ", ";
    700           Operands.PrintParameters(OS);
    701           OS << ") {\n";
    702 
    703           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
    704              << ")\n    return 0;\n";
    705 
    706           const PredMap &PM = RM.begin()->second;
    707           bool HasPred = false;
    708 
    709           // Emit code for each possible instruction. There may be
    710           // multiple if there are subtarget concerns.
    711           for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE;
    712                ++PI) {
    713             std::string PredicateCheck = PI->first;
    714             const InstructionMemo &Memo = PI->second;
    715 
    716             if (PredicateCheck.empty()) {
    717               assert(!HasPred &&
    718                      "Multiple instructions match, at least one has "
    719                      "a predicate and at least one doesn't!");
    720             } else {
    721               OS << "  if (" + PredicateCheck + ") {\n";
    722               OS << "  ";
    723               HasPred = true;
    724             }
    725 
    726             for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
    727               if ((*Memo.PhysRegs)[i] != "")
    728                 OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, "
    729                    << "TII.get(TargetOpcode::COPY), "
    730                    << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
    731             }
    732 
    733             OS << "  return FastEmitInst_";
    734 
    735             if (Memo.SubRegNo.empty()) {
    736               Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
    737                                            ImmediatePredicates, true);
    738               OS << "(" << InstNS << Memo.Name << ", ";
    739               OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
    740               if (!Operands.empty())
    741                 OS << ", ";
    742               Operands.PrintArguments(OS, *Memo.PhysRegs);
    743               OS << ");\n";
    744             } else {
    745               OS << "extractsubreg(RetVT, Op0, Op0IsKill, ";
    746               OS << Memo.SubRegNo;
    747               OS << ");\n";
    748             }
    749 
    750              if (HasPred)
    751                OS << "  }\n";
    752           }
    753 
    754           // Return 0 if none of the predicates were satisfied.
    755           if (HasPred)
    756             OS << "  return 0;\n";
    757           OS << "}\n";
    758           OS << "\n";
    759         }
    760       }
    761 
    762       // Emit one function for the opcode that demultiplexes based on the type.
    763       OS << "unsigned FastEmit_"
    764          << getLegalCName(Opcode) << "_";
    765       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    766       OS << "(MVT VT, MVT RetVT";
    767       if (!Operands.empty())
    768         OS << ", ";
    769       Operands.PrintParameters(OS);
    770       OS << ") {\n";
    771       OS << "  switch (VT.SimpleTy) {\n";
    772       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
    773            TI != TE; ++TI) {
    774         MVT::SimpleValueType VT = TI->first;
    775         std::string TypeName = getName(VT);
    776         OS << "  case " << TypeName << ": return FastEmit_"
    777            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
    778         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    779         OS << "(RetVT";
    780         if (!Operands.empty())
    781           OS << ", ";
    782         Operands.PrintArguments(OS);
    783         OS << ");\n";
    784       }
    785       OS << "  default: return 0;\n";
    786       OS << "  }\n";
    787       OS << "}\n";
    788       OS << "\n";
    789     }
    790 
    791     OS << "// Top-level FastEmit function.\n";
    792     OS << "\n";
    793 
    794     // Emit one function for the operand signature that demultiplexes based
    795     // on opcode and type.
    796     OS << "unsigned FastEmit_";
    797     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    798     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
    799     if (!Operands.empty())
    800       OS << ", ";
    801     Operands.PrintParameters(OS);
    802     OS << ") {\n";
    803 
    804     // If there are any forms of this signature available that operand on
    805     // constrained forms of the immediate (e.g. 32-bit sext immediate in a
    806     // 64-bit operand), check them first.
    807 
    808     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
    809       = SignaturesWithConstantForms.find(Operands);
    810     if (MI != SignaturesWithConstantForms.end()) {
    811       // Unique any duplicates out of the list.
    812       std::sort(MI->second.begin(), MI->second.end());
    813       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
    814                        MI->second.end());
    815 
    816       // Check each in order it was seen.  It would be nice to have a good
    817       // relative ordering between them, but we're not going for optimality
    818       // here.
    819       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
    820         OS << "  if (";
    821         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
    822         OS << ")\n    if (unsigned Reg = FastEmit_";
    823         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
    824         OS << "(VT, RetVT, Opcode";
    825         if (!MI->second[i].empty())
    826           OS << ", ";
    827         MI->second[i].PrintArguments(OS);
    828         OS << "))\n      return Reg;\n\n";
    829       }
    830 
    831       // Done with this, remove it.
    832       SignaturesWithConstantForms.erase(MI);
    833     }
    834 
    835     OS << "  switch (Opcode) {\n";
    836     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
    837          I != E; ++I) {
    838       const std::string &Opcode = I->first;
    839 
    840       OS << "  case " << Opcode << ": return FastEmit_"
    841          << getLegalCName(Opcode) << "_";
    842       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    843       OS << "(VT, RetVT";
    844       if (!Operands.empty())
    845         OS << ", ";
    846       Operands.PrintArguments(OS);
    847       OS << ");\n";
    848     }
    849     OS << "  default: return 0;\n";
    850     OS << "  }\n";
    851     OS << "}\n";
    852     OS << "\n";
    853   }
    854 
    855   // TODO: SignaturesWithConstantForms should be empty here.
    856 }
    857 
    858 namespace llvm {
    859 
    860 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
    861   CodeGenDAGPatterns CGP(RK);
    862   const CodeGenTarget &Target = CGP.getTargetInfo();
    863   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
    864                        Target.getName() + " target", OS);
    865 
    866   // Determine the target's namespace name.
    867   std::string InstNS = Target.getInstNamespace() + "::";
    868   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
    869 
    870   FastISelMap F(InstNS);
    871   F.collectPatterns(CGP);
    872   F.printImmediatePredicates(OS);
    873   F.printFunctionDefinitions(OS);
    874 }
    875 
    876 } // End llvm namespace
    877