1 /* 2 ********************************************************************** 3 * Copyright (C) 1999-2012, International Business Machines 4 * Corporation and others. All Rights Reserved. 5 ********************************************************************** 6 * Date Name Description 7 * 11/17/99 aliu Creation. 8 ********************************************************************** 9 */ 10 11 #include "utypeinfo.h" // for 'typeid' to work 12 13 #include "unicode/utypes.h" 14 15 #if !UCONFIG_NO_TRANSLITERATION 16 17 #include "unicode/putil.h" 18 #include "unicode/translit.h" 19 #include "unicode/locid.h" 20 #include "unicode/msgfmt.h" 21 #include "unicode/rep.h" 22 #include "unicode/resbund.h" 23 #include "unicode/unifilt.h" 24 #include "unicode/uniset.h" 25 #include "unicode/uscript.h" 26 #include "unicode/strenum.h" 27 #include "unicode/utf16.h" 28 #include "cpdtrans.h" 29 #include "nultrans.h" 30 #include "rbt_data.h" 31 #include "rbt_pars.h" 32 #include "rbt.h" 33 #include "transreg.h" 34 #include "name2uni.h" 35 #include "nortrans.h" 36 #include "remtrans.h" 37 #include "titletrn.h" 38 #include "tolowtrn.h" 39 #include "toupptrn.h" 40 #include "uni2name.h" 41 #include "brktrans.h" 42 #include "esctrn.h" 43 #include "unesctrn.h" 44 #include "tridpars.h" 45 #include "anytrans.h" 46 #include "util.h" 47 #include "hash.h" 48 #include "mutex.h" 49 #include "ucln_in.h" 50 #include "uassert.h" 51 #include "cmemory.h" 52 #include "cstring.h" 53 #include "uinvchar.h" 54 55 static const UChar TARGET_SEP = 0x002D; /*-*/ 56 static const UChar ID_DELIM = 0x003B; /*;*/ 57 static const UChar VARIANT_SEP = 0x002F; // '/' 58 59 /** 60 * Prefix for resource bundle key for the display name for a 61 * transliterator. The ID is appended to this to form the key. 62 * The resource bundle value should be a String. 63 */ 64 static const char RB_DISPLAY_NAME_PREFIX[] = "%Translit%%"; 65 66 /** 67 * Prefix for resource bundle key for the display name for a 68 * transliterator SCRIPT. The ID is appended to this to form the key. 69 * The resource bundle value should be a String. 70 */ 71 static const char RB_SCRIPT_DISPLAY_NAME_PREFIX[] = "%Translit%"; 72 73 /** 74 * Resource bundle key for display name pattern. 75 * The resource bundle value should be a String forming a 76 * MessageFormat pattern, e.g.: 77 * "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}". 78 */ 79 static const char RB_DISPLAY_NAME_PATTERN[] = "TransliteratorNamePattern"; 80 81 /** 82 * Resource bundle key for the list of RuleBasedTransliterator IDs. 83 * The resource bundle value should be a String[] with each element 84 * being a valid ID. The ID will be appended to RB_RULE_BASED_PREFIX 85 * to obtain the class name in which the RB_RULE key will be sought. 86 */ 87 static const char RB_RULE_BASED_IDS[] = "RuleBasedTransliteratorIDs"; 88 89 /** 90 * The mutex controlling access to registry object. 91 */ 92 static UMutex registryMutex = U_MUTEX_INITIALIZER; 93 94 /** 95 * System transliterator registry; non-null when initialized. 96 */ 97 static icu::TransliteratorRegistry* registry = 0; 98 99 // Macro to check/initialize the registry. ONLY USE WITHIN 100 // MUTEX. Avoids function call when registry is initialized. 101 #define HAVE_REGISTRY(status) (registry!=0 || initializeRegistry(status)) 102 103 U_NAMESPACE_BEGIN 104 105 UOBJECT_DEFINE_ABSTRACT_RTTI_IMPLEMENTATION(Transliterator) 106 107 /** 108 * Return TRUE if the given UTransPosition is valid for text of 109 * the given length. 110 */ 111 static inline UBool positionIsValid(UTransPosition& index, int32_t len) { 112 return !(index.contextStart < 0 || 113 index.start < index.contextStart || 114 index.limit < index.start || 115 index.contextLimit < index.limit || 116 len < index.contextLimit); 117 } 118 119 /** 120 * Default constructor. 121 * @param theID the string identifier for this transliterator 122 * @param theFilter the filter. Any character for which 123 * <tt>filter.contains()</tt> returns <tt>FALSE</tt> will not be 124 * altered by this transliterator. If <tt>filter</tt> is 125 * <tt>null</tt> then no filtering is applied. 126 */ 127 Transliterator::Transliterator(const UnicodeString& theID, 128 UnicodeFilter* adoptedFilter) : 129 UObject(), ID(theID), filter(adoptedFilter), 130 maximumContextLength(0) 131 { 132 // NUL-terminate the ID string, which is a non-aliased copy. 133 ID.append((UChar)0); 134 ID.truncate(ID.length()-1); 135 } 136 137 /** 138 * Destructor. 139 */ 140 Transliterator::~Transliterator() { 141 if (filter) { 142 delete filter; 143 } 144 } 145 146 /** 147 * Copy constructor. 148 */ 149 Transliterator::Transliterator(const Transliterator& other) : 150 UObject(other), ID(other.ID), filter(0), 151 maximumContextLength(other.maximumContextLength) 152 { 153 // NUL-terminate the ID string, which is a non-aliased copy. 154 ID.append((UChar)0); 155 ID.truncate(ID.length()-1); 156 157 if (other.filter != 0) { 158 // We own the filter, so we must have our own copy 159 filter = (UnicodeFilter*) other.filter->clone(); 160 } 161 } 162 163 Transliterator* Transliterator::clone() const { 164 return NULL; 165 } 166 167 /** 168 * Assignment operator. 169 */ 170 Transliterator& Transliterator::operator=(const Transliterator& other) { 171 ID = other.ID; 172 // NUL-terminate the ID string 173 ID.getTerminatedBuffer(); 174 175 maximumContextLength = other.maximumContextLength; 176 adoptFilter((other.filter == 0) ? 0 : (UnicodeFilter*) other.filter->clone()); 177 return *this; 178 } 179 180 /** 181 * Transliterates a segment of a string. <code>Transliterator</code> API. 182 * @param text the string to be transliterated 183 * @param start the beginning index, inclusive; <code>0 <= start 184 * <= limit</code>. 185 * @param limit the ending index, exclusive; <code>start <= limit 186 * <= text.length()</code>. 187 * @return the new limit index, or -1 188 */ 189 int32_t Transliterator::transliterate(Replaceable& text, 190 int32_t start, int32_t limit) const { 191 if (start < 0 || 192 limit < start || 193 text.length() < limit) { 194 return -1; 195 } 196 197 UTransPosition offsets; 198 offsets.contextStart= start; 199 offsets.contextLimit = limit; 200 offsets.start = start; 201 offsets.limit = limit; 202 filteredTransliterate(text, offsets, FALSE, TRUE); 203 return offsets.limit; 204 } 205 206 /** 207 * Transliterates an entire string in place. Convenience method. 208 * @param text the string to be transliterated 209 */ 210 void Transliterator::transliterate(Replaceable& text) const { 211 transliterate(text, 0, text.length()); 212 } 213 214 /** 215 * Transliterates the portion of the text buffer that can be 216 * transliterated unambiguosly after new text has been inserted, 217 * typically as a result of a keyboard event. The new text in 218 * <code>insertion</code> will be inserted into <code>text</code> 219 * at <code>index.contextLimit</code>, advancing 220 * <code>index.contextLimit</code> by <code>insertion.length()</code>. 221 * Then the transliterator will try to transliterate characters of 222 * <code>text</code> between <code>index.start</code> and 223 * <code>index.contextLimit</code>. Characters before 224 * <code>index.start</code> will not be changed. 225 * 226 * <p>Upon return, values in <code>index</code> will be updated. 227 * <code>index.contextStart</code> will be advanced to the first 228 * character that future calls to this method will read. 229 * <code>index.start</code> and <code>index.contextLimit</code> will 230 * be adjusted to delimit the range of text that future calls to 231 * this method may change. 232 * 233 * <p>Typical usage of this method begins with an initial call 234 * with <code>index.contextStart</code> and <code>index.contextLimit</code> 235 * set to indicate the portion of <code>text</code> to be 236 * transliterated, and <code>index.start == index.contextStart</code>. 237 * Thereafter, <code>index</code> can be used without 238 * modification in future calls, provided that all changes to 239 * <code>text</code> are made via this method. 240 * 241 * <p>This method assumes that future calls may be made that will 242 * insert new text into the buffer. As a result, it only performs 243 * unambiguous transliterations. After the last call to this 244 * method, there may be untransliterated text that is waiting for 245 * more input to resolve an ambiguity. In order to perform these 246 * pending transliterations, clients should call {@link 247 * #finishKeyboardTransliteration} after the last call to this 248 * method has been made. 249 * 250 * @param text the buffer holding transliterated and untransliterated text 251 * @param index an array of three integers. 252 * 253 * <ul><li><code>index.contextStart</code>: the beginning index, 254 * inclusive; <code>0 <= index.contextStart <= index.contextLimit</code>. 255 * 256 * <li><code>index.contextLimit</code>: the ending index, exclusive; 257 * <code>index.contextStart <= index.contextLimit <= text.length()</code>. 258 * <code>insertion</code> is inserted at 259 * <code>index.contextLimit</code>. 260 * 261 * <li><code>index.start</code>: the next character to be 262 * considered for transliteration; <code>index.contextStart <= 263 * index.start <= index.contextLimit</code>. Characters before 264 * <code>index.start</code> will not be changed by future calls 265 * to this method.</ul> 266 * 267 * @param insertion text to be inserted and possibly 268 * transliterated into the translation buffer at 269 * <code>index.contextLimit</code>. If <code>null</code> then no text 270 * is inserted. 271 * @see #START 272 * @see #LIMIT 273 * @see #CURSOR 274 * @see #handleTransliterate 275 * @exception IllegalArgumentException if <code>index</code> 276 * is invalid 277 */ 278 void Transliterator::transliterate(Replaceable& text, 279 UTransPosition& index, 280 const UnicodeString& insertion, 281 UErrorCode &status) const { 282 _transliterate(text, index, &insertion, status); 283 } 284 285 /** 286 * Transliterates the portion of the text buffer that can be 287 * transliterated unambiguosly after a new character has been 288 * inserted, typically as a result of a keyboard event. This is a 289 * convenience method; see {@link 290 * #transliterate(Replaceable, int[], String)} for details. 291 * @param text the buffer holding transliterated and 292 * untransliterated text 293 * @param index an array of three integers. See {@link 294 * #transliterate(Replaceable, int[], String)}. 295 * @param insertion text to be inserted and possibly 296 * transliterated into the translation buffer at 297 * <code>index.contextLimit</code>. 298 * @see #transliterate(Replaceable, int[], String) 299 */ 300 void Transliterator::transliterate(Replaceable& text, 301 UTransPosition& index, 302 UChar32 insertion, 303 UErrorCode& status) const { 304 UnicodeString str(insertion); 305 _transliterate(text, index, &str, status); 306 } 307 308 /** 309 * Transliterates the portion of the text buffer that can be 310 * transliterated unambiguosly. This is a convenience method; see 311 * {@link #transliterate(Replaceable, int[], String)} for 312 * details. 313 * @param text the buffer holding transliterated and 314 * untransliterated text 315 * @param index an array of three integers. See {@link 316 * #transliterate(Replaceable, int[], String)}. 317 * @see #transliterate(Replaceable, int[], String) 318 */ 319 void Transliterator::transliterate(Replaceable& text, 320 UTransPosition& index, 321 UErrorCode& status) const { 322 _transliterate(text, index, 0, status); 323 } 324 325 /** 326 * Finishes any pending transliterations that were waiting for 327 * more characters. Clients should call this method as the last 328 * call after a sequence of one or more calls to 329 * <code>transliterate()</code>. 330 * @param text the buffer holding transliterated and 331 * untransliterated text. 332 * @param index the array of indices previously passed to {@link 333 * #transliterate} 334 */ 335 void Transliterator::finishTransliteration(Replaceable& text, 336 UTransPosition& index) const { 337 if (!positionIsValid(index, text.length())) { 338 return; 339 } 340 341 filteredTransliterate(text, index, FALSE, TRUE); 342 } 343 344 /** 345 * This internal method does keyboard transliteration. If the 346 * 'insertion' is non-null then we append it to 'text' before 347 * proceeding. This method calls through to the pure virtual 348 * framework method handleTransliterate() to do the actual 349 * work. 350 */ 351 void Transliterator::_transliterate(Replaceable& text, 352 UTransPosition& index, 353 const UnicodeString* insertion, 354 UErrorCode &status) const { 355 if (U_FAILURE(status)) { 356 return; 357 } 358 359 if (!positionIsValid(index, text.length())) { 360 status = U_ILLEGAL_ARGUMENT_ERROR; 361 return; 362 } 363 364 // int32_t originalStart = index.contextStart; 365 if (insertion != 0) { 366 text.handleReplaceBetween(index.limit, index.limit, *insertion); 367 index.limit += insertion->length(); 368 index.contextLimit += insertion->length(); 369 } 370 371 if (index.limit > 0 && 372 U16_IS_LEAD(text.charAt(index.limit - 1))) { 373 // Oops, there is a dangling lead surrogate in the buffer. 374 // This will break most transliterators, since they will 375 // assume it is part of a pair. Don't transliterate until 376 // more text comes in. 377 return; 378 } 379 380 filteredTransliterate(text, index, TRUE, TRUE); 381 382 #if 0 383 // TODO 384 // I CAN'T DO what I'm attempting below now that the Kleene star 385 // operator is supported. For example, in the rule 386 387 // ([:Lu:]+) { x } > $1; 388 389 // what is the maximum context length? getMaximumContextLength() 390 // will return 1, but this is just the length of the ante context 391 // part of the pattern string -- 1 character, which is a standin 392 // for a Quantifier, which contains a StringMatcher, which 393 // contains a UnicodeSet. 394 395 // There is a complicated way to make this work again, and that's 396 // to add a "maximum left context" protocol into the 397 // UnicodeMatcher hierarchy. At present I'm not convinced this is 398 // worth it. 399 400 // --- 401 402 // The purpose of the code below is to keep the context small 403 // while doing incremental transliteration. When part of the left 404 // context (between contextStart and start) is no longer needed, 405 // we try to advance contextStart past that portion. We use the 406 // maximum context length to do so. 407 int32_t newCS = index.start; 408 int32_t n = getMaximumContextLength(); 409 while (newCS > originalStart && n-- > 0) { 410 --newCS; 411 newCS -= U16_LENGTH(text.char32At(newCS)) - 1; 412 } 413 index.contextStart = uprv_max(newCS, originalStart); 414 #endif 415 } 416 417 /** 418 * This method breaks up the input text into runs of unfiltered 419 * characters. It passes each such run to 420 * <subclass>.handleTransliterate(). Subclasses that can handle the 421 * filter logic more efficiently themselves may override this method. 422 * 423 * All transliteration calls in this class go through this method. 424 */ 425 void Transliterator::filteredTransliterate(Replaceable& text, 426 UTransPosition& index, 427 UBool incremental, 428 UBool rollback) const { 429 // Short circuit path for transliterators with no filter in 430 // non-incremental mode. 431 if (filter == 0 && !rollback) { 432 handleTransliterate(text, index, incremental); 433 return; 434 } 435 436 //---------------------------------------------------------------------- 437 // This method processes text in two groupings: 438 // 439 // RUNS -- A run is a contiguous group of characters which are contained 440 // in the filter for this transliterator (filter.contains(ch) == TRUE). 441 // Text outside of runs may appear as context but it is not modified. 442 // The start and limit Position values are narrowed to each run. 443 // 444 // PASSES (incremental only) -- To make incremental mode work correctly, 445 // each run is broken up into n passes, where n is the length (in code 446 // points) of the run. Each pass contains the first n characters. If a 447 // pass is completely transliterated, it is committed, and further passes 448 // include characters after the committed text. If a pass is blocked, 449 // and does not transliterate completely, then this method rolls back 450 // the changes made during the pass, extends the pass by one code point, 451 // and tries again. 452 //---------------------------------------------------------------------- 453 454 // globalLimit is the limit value for the entire operation. We 455 // set index.limit to the end of each unfiltered run before 456 // calling handleTransliterate(), so we need to maintain the real 457 // value of index.limit here. After each transliteration, we 458 // update globalLimit for insertions or deletions that have 459 // happened. 460 int32_t globalLimit = index.limit; 461 462 // If there is a non-null filter, then break the input text up. Say the 463 // input text has the form: 464 // xxxabcxxdefxx 465 // where 'x' represents a filtered character (filter.contains('x') == 466 // false). Then we break this up into: 467 // xxxabc xxdef xx 468 // Each pass through the loop consumes a run of filtered 469 // characters (which are ignored) and a subsequent run of 470 // unfiltered characters (which are transliterated). 471 472 for (;;) { 473 474 if (filter != NULL) { 475 // Narrow the range to be transliterated to the first segment 476 // of unfiltered characters at or after index.start. 477 478 // Advance past filtered chars 479 UChar32 c; 480 while (index.start < globalLimit && 481 !filter->contains(c=text.char32At(index.start))) { 482 index.start += U16_LENGTH(c); 483 } 484 485 // Find the end of this run of unfiltered chars 486 index.limit = index.start; 487 while (index.limit < globalLimit && 488 filter->contains(c=text.char32At(index.limit))) { 489 index.limit += U16_LENGTH(c); 490 } 491 } 492 493 // Check to see if the unfiltered run is empty. This only 494 // happens at the end of the string when all the remaining 495 // characters are filtered. 496 if (index.limit == index.start) { 497 // assert(index.start == globalLimit); 498 break; 499 } 500 501 // Is this run incremental? If there is additional 502 // filtered text (if limit < globalLimit) then we pass in 503 // an incremental value of FALSE to force the subclass to 504 // complete the transliteration for this run. 505 UBool isIncrementalRun = 506 (index.limit < globalLimit ? FALSE : incremental); 507 508 int32_t delta; 509 510 // Implement rollback. To understand the need for rollback, 511 // consider the following transliterator: 512 // 513 // "t" is "a > A;" 514 // "u" is "A > b;" 515 // "v" is a compound of "t; NFD; u" with a filter [:Ll:] 516 // 517 // Now apply "c" to the input text "a". The result is "b". But if 518 // the transliteration is done incrementally, then the NFD holds 519 // things up after "t" has already transformed "a" to "A". When 520 // finishTransliterate() is called, "A" is _not_ processed because 521 // it gets excluded by the [:Ll:] filter, and the end result is "A" 522 // -- incorrect. The problem is that the filter is applied to a 523 // partially-transliterated result, when we only want it to apply to 524 // input text. Although this example hinges on a compound 525 // transliterator containing NFD and a specific filter, it can 526 // actually happen with any transliterator which may do a partial 527 // transformation in incremental mode into characters outside its 528 // filter. 529 // 530 // To handle this, when in incremental mode we supply characters to 531 // handleTransliterate() in several passes. Each pass adds one more 532 // input character to the input text. That is, for input "ABCD", we 533 // first try "A", then "AB", then "ABC", and finally "ABCD". If at 534 // any point we block (upon return, start < limit) then we roll 535 // back. If at any point we complete the run (upon return start == 536 // limit) then we commit that run. 537 538 if (rollback && isIncrementalRun) { 539 540 int32_t runStart = index.start; 541 int32_t runLimit = index.limit; 542 int32_t runLength = runLimit - runStart; 543 544 // Make a rollback copy at the end of the string 545 int32_t rollbackOrigin = text.length(); 546 text.copy(runStart, runLimit, rollbackOrigin); 547 548 // Variables reflecting the commitment of completely 549 // transliterated text. passStart is the runStart, advanced 550 // past committed text. rollbackStart is the rollbackOrigin, 551 // advanced past rollback text that corresponds to committed 552 // text. 553 int32_t passStart = runStart; 554 int32_t rollbackStart = rollbackOrigin; 555 556 // The limit for each pass; we advance by one code point with 557 // each iteration. 558 int32_t passLimit = index.start; 559 560 // Total length, in 16-bit code units, of uncommitted text. 561 // This is the length to be rolled back. 562 int32_t uncommittedLength = 0; 563 564 // Total delta (change in length) for all passes 565 int32_t totalDelta = 0; 566 567 // PASS MAIN LOOP -- Start with a single character, and extend 568 // the text by one character at a time. Roll back partial 569 // transliterations and commit complete transliterations. 570 for (;;) { 571 // Length of additional code point, either one or two 572 int32_t charLength = U16_LENGTH(text.char32At(passLimit)); 573 passLimit += charLength; 574 if (passLimit > runLimit) { 575 break; 576 } 577 uncommittedLength += charLength; 578 579 index.limit = passLimit; 580 581 // Delegate to subclass for actual transliteration. Upon 582 // return, start will be updated to point after the 583 // transliterated text, and limit and contextLimit will be 584 // adjusted for length changes. 585 handleTransliterate(text, index, TRUE); 586 587 delta = index.limit - passLimit; // change in length 588 589 // We failed to completely transliterate this pass. 590 // Roll back the text. Indices remain unchanged; reset 591 // them where necessary. 592 if (index.start != index.limit) { 593 // Find the rollbackStart, adjusted for length changes 594 // and the deletion of partially transliterated text. 595 int32_t rs = rollbackStart + delta - (index.limit - passStart); 596 597 // Delete the partially transliterated text 598 text.handleReplaceBetween(passStart, index.limit, UnicodeString()); 599 600 // Copy the rollback text back 601 text.copy(rs, rs + uncommittedLength, passStart); 602 603 // Restore indices to their original values 604 index.start = passStart; 605 index.limit = passLimit; 606 index.contextLimit -= delta; 607 } 608 609 // We did completely transliterate this pass. Update the 610 // commit indices to record how far we got. Adjust indices 611 // for length change. 612 else { 613 // Move the pass indices past the committed text. 614 passStart = passLimit = index.start; 615 616 // Adjust the rollbackStart for length changes and move 617 // it past the committed text. All characters we've 618 // processed to this point are committed now, so zero 619 // out the uncommittedLength. 620 rollbackStart += delta + uncommittedLength; 621 uncommittedLength = 0; 622 623 // Adjust indices for length changes. 624 runLimit += delta; 625 totalDelta += delta; 626 } 627 } 628 629 // Adjust overall limit and rollbackOrigin for insertions and 630 // deletions. Don't need to worry about contextLimit because 631 // handleTransliterate() maintains that. 632 rollbackOrigin += totalDelta; 633 globalLimit += totalDelta; 634 635 // Delete the rollback copy 636 text.handleReplaceBetween(rollbackOrigin, rollbackOrigin + runLength, UnicodeString()); 637 638 // Move start past committed text 639 index.start = passStart; 640 } 641 642 else { 643 // Delegate to subclass for actual transliteration. 644 int32_t limit = index.limit; 645 handleTransliterate(text, index, isIncrementalRun); 646 delta = index.limit - limit; // change in length 647 648 // In a properly written transliterator, start == limit after 649 // handleTransliterate() returns when incremental is false. 650 // Catch cases where the subclass doesn't do this, and throw 651 // an exception. (Just pinning start to limit is a bad idea, 652 // because what's probably happening is that the subclass 653 // isn't transliterating all the way to the end, and it should 654 // in non-incremental mode.) 655 if (!incremental && index.start != index.limit) { 656 // We can't throw an exception, so just fudge things 657 index.start = index.limit; 658 } 659 660 // Adjust overall limit for insertions/deletions. Don't need 661 // to worry about contextLimit because handleTransliterate() 662 // maintains that. 663 globalLimit += delta; 664 } 665 666 if (filter == NULL || isIncrementalRun) { 667 break; 668 } 669 670 // If we did completely transliterate this 671 // run, then repeat with the next unfiltered run. 672 } 673 674 // Start is valid where it is. Limit needs to be put back where 675 // it was, modulo adjustments for deletions/insertions. 676 index.limit = globalLimit; 677 } 678 679 void Transliterator::filteredTransliterate(Replaceable& text, 680 UTransPosition& index, 681 UBool incremental) const { 682 filteredTransliterate(text, index, incremental, FALSE); 683 } 684 685 /** 686 * Method for subclasses to use to set the maximum context length. 687 * @see #getMaximumContextLength 688 */ 689 void Transliterator::setMaximumContextLength(int32_t maxContextLength) { 690 maximumContextLength = maxContextLength; 691 } 692 693 /** 694 * Returns a programmatic identifier for this transliterator. 695 * If this identifier is passed to <code>getInstance()</code>, it 696 * will return this object, if it has been registered. 697 * @see #registerInstance 698 * @see #getAvailableIDs 699 */ 700 const UnicodeString& Transliterator::getID(void) const { 701 return ID; 702 } 703 704 /** 705 * Returns a name for this transliterator that is appropriate for 706 * display to the user in the default locale. See {@link 707 * #getDisplayName(Locale)} for details. 708 */ 709 UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& ID, 710 UnicodeString& result) { 711 return getDisplayName(ID, Locale::getDefault(), result); 712 } 713 714 /** 715 * Returns a name for this transliterator that is appropriate for 716 * display to the user in the given locale. This name is taken 717 * from the locale resource data in the standard manner of the 718 * <code>java.text</code> package. 719 * 720 * <p>If no localized names exist in the system resource bundles, 721 * a name is synthesized using a localized 722 * <code>MessageFormat</code> pattern from the resource data. The 723 * arguments to this pattern are an integer followed by one or two 724 * strings. The integer is the number of strings, either 1 or 2. 725 * The strings are formed by splitting the ID for this 726 * transliterator at the first TARGET_SEP. If there is no TARGET_SEP, then the 727 * entire ID forms the only string. 728 * @param inLocale the Locale in which the display name should be 729 * localized. 730 * @see java.text.MessageFormat 731 */ 732 UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& id, 733 const Locale& inLocale, 734 UnicodeString& result) { 735 UErrorCode status = U_ZERO_ERROR; 736 737 ResourceBundle bundle(U_ICUDATA_TRANSLIT, inLocale, status); 738 739 // Suspend checking status until later... 740 741 result.truncate(0); 742 743 // Normalize the ID 744 UnicodeString source, target, variant; 745 UBool sawSource; 746 TransliteratorIDParser::IDtoSTV(id, source, target, variant, sawSource); 747 if (target.length() < 1) { 748 // No target; malformed id 749 return result; 750 } 751 if (variant.length() > 0) { // Change "Foo" to "/Foo" 752 variant.insert(0, VARIANT_SEP); 753 } 754 UnicodeString ID(source); 755 ID.append(TARGET_SEP).append(target).append(variant); 756 757 // build the char* key 758 if (uprv_isInvariantUString(ID.getBuffer(), ID.length())) { 759 char key[200]; 760 uprv_strcpy(key, RB_DISPLAY_NAME_PREFIX); 761 int32_t length=(int32_t)uprv_strlen(RB_DISPLAY_NAME_PREFIX); 762 ID.extract(0, (int32_t)(sizeof(key)-length), key+length, (int32_t)(sizeof(key)-length), US_INV); 763 764 // Try to retrieve a UnicodeString from the bundle. 765 UnicodeString resString = bundle.getStringEx(key, status); 766 767 if (U_SUCCESS(status) && resString.length() != 0) { 768 return result = resString; // [sic] assign & return 769 } 770 771 #if !UCONFIG_NO_FORMATTING 772 // We have failed to get a name from the locale data. This is 773 // typical, since most transliterators will not have localized 774 // name data. The next step is to retrieve the MessageFormat 775 // pattern from the locale data and to use it to synthesize the 776 // name from the ID. 777 778 status = U_ZERO_ERROR; 779 resString = bundle.getStringEx(RB_DISPLAY_NAME_PATTERN, status); 780 781 if (U_SUCCESS(status) && resString.length() != 0) { 782 MessageFormat msg(resString, inLocale, status); 783 // Suspend checking status until later... 784 785 // We pass either 2 or 3 Formattable objects to msg. 786 Formattable args[3]; 787 int32_t nargs; 788 args[0].setLong(2); // # of args to follow 789 args[1].setString(source); 790 args[2].setString(target); 791 nargs = 3; 792 793 // Use display names for the scripts, if they exist 794 UnicodeString s; 795 length=(int32_t)uprv_strlen(RB_SCRIPT_DISPLAY_NAME_PREFIX); 796 for (int j=1; j<=2; ++j) { 797 status = U_ZERO_ERROR; 798 uprv_strcpy(key, RB_SCRIPT_DISPLAY_NAME_PREFIX); 799 args[j].getString(s); 800 if (uprv_isInvariantUString(s.getBuffer(), s.length())) { 801 s.extract(0, sizeof(key)-length-1, key+length, (int32_t)sizeof(key)-length-1, US_INV); 802 803 resString = bundle.getStringEx(key, status); 804 805 if (U_SUCCESS(status)) { 806 args[j] = resString; 807 } 808 } 809 } 810 811 status = U_ZERO_ERROR; 812 FieldPosition pos; // ignored by msg 813 msg.format(args, nargs, result, pos, status); 814 if (U_SUCCESS(status)) { 815 result.append(variant); 816 return result; 817 } 818 } 819 #endif 820 } 821 822 // We should not reach this point unless there is something 823 // wrong with the build or the RB_DISPLAY_NAME_PATTERN has 824 // been deleted from the root RB_LOCALE_ELEMENTS resource. 825 result = ID; 826 return result; 827 } 828 829 /** 830 * Returns the filter used by this transliterator, or <tt>null</tt> 831 * if this transliterator uses no filter. Caller musn't delete 832 * the result! 833 */ 834 const UnicodeFilter* Transliterator::getFilter(void) const { 835 return filter; 836 } 837 838 /** 839 * Returns the filter used by this transliterator, or 840 * <tt>NULL</tt> if this transliterator uses no filter. The 841 * caller must eventually delete the result. After this call, 842 * this transliterator's filter is set to <tt>NULL</tt>. 843 */ 844 UnicodeFilter* Transliterator::orphanFilter(void) { 845 UnicodeFilter *result = filter; 846 filter = NULL; 847 return result; 848 } 849 850 /** 851 * Changes the filter used by this transliterator. If the filter 852 * is set to <tt>null</tt> then no filtering will occur. 853 * 854 * <p>Callers must take care if a transliterator is in use by 855 * multiple threads. The filter should not be changed by one 856 * thread while another thread may be transliterating. 857 */ 858 void Transliterator::adoptFilter(UnicodeFilter* filterToAdopt) { 859 delete filter; 860 filter = filterToAdopt; 861 } 862 863 /** 864 * Returns this transliterator's inverse. See the class 865 * documentation for details. This implementation simply inverts 866 * the two entities in the ID and attempts to retrieve the 867 * resulting transliterator. That is, if <code>getID()</code> 868 * returns "A-B", then this method will return the result of 869 * <code>getInstance("B-A")</code>, or <code>null</code> if that 870 * call fails. 871 * 872 * <p>This method does not take filtering into account. The 873 * returned transliterator will have no filter. 874 * 875 * <p>Subclasses with knowledge of their inverse may wish to 876 * override this method. 877 * 878 * @return a transliterator that is an inverse, not necessarily 879 * exact, of this transliterator, or <code>null</code> if no such 880 * transliterator is registered. 881 * @see #registerInstance 882 */ 883 Transliterator* Transliterator::createInverse(UErrorCode& status) const { 884 UParseError parseError; 885 return Transliterator::createInstance(ID, UTRANS_REVERSE,parseError,status); 886 } 887 888 Transliterator* U_EXPORT2 889 Transliterator::createInstance(const UnicodeString& ID, 890 UTransDirection dir, 891 UErrorCode& status) 892 { 893 UParseError parseError; 894 return createInstance(ID, dir, parseError, status); 895 } 896 897 /** 898 * Returns a <code>Transliterator</code> object given its ID. 899 * The ID must be either a system transliterator ID or a ID registered 900 * using <code>registerInstance()</code>. 901 * 902 * @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code> 903 * @return A <code>Transliterator</code> object with the given ID 904 * @see #registerInstance 905 * @see #getAvailableIDs 906 * @see #getID 907 */ 908 Transliterator* U_EXPORT2 909 Transliterator::createInstance(const UnicodeString& ID, 910 UTransDirection dir, 911 UParseError& parseError, 912 UErrorCode& status) 913 { 914 if (U_FAILURE(status)) { 915 return 0; 916 } 917 918 UnicodeString canonID; 919 UVector list(status); 920 if (U_FAILURE(status)) { 921 return NULL; 922 } 923 924 UnicodeSet* globalFilter; 925 // TODO add code for parseError...currently unused, but 926 // later may be used by parsing code... 927 if (!TransliteratorIDParser::parseCompoundID(ID, dir, canonID, list, globalFilter)) { 928 status = U_INVALID_ID; 929 return NULL; 930 } 931 932 TransliteratorIDParser::instantiateList(list, status); 933 if (U_FAILURE(status)) { 934 return NULL; 935 } 936 937 U_ASSERT(list.size() > 0); 938 Transliterator* t = NULL; 939 940 if (list.size() > 1 || canonID.indexOf(ID_DELIM) >= 0) { 941 // [NOTE: If it's a compoundID, we instantiate a CompoundTransliterator even if it only 942 // has one child transliterator. This is so that toRules() will return the right thing 943 // (without any inactive ID), but our main ID still comes out correct. That is, if we 944 // instantiate "(Lower);Latin-Greek;", we want the rules to come out as "::Latin-Greek;" 945 // even though the ID is "(Lower);Latin-Greek;". 946 t = new CompoundTransliterator(list, parseError, status); 947 } 948 else { 949 t = (Transliterator*)list.elementAt(0); 950 } 951 // Check null pointer 952 if (t != NULL) { 953 t->setID(canonID); 954 if (globalFilter != NULL) { 955 t->adoptFilter(globalFilter); 956 } 957 } 958 else if (U_SUCCESS(status)) { 959 status = U_MEMORY_ALLOCATION_ERROR; 960 } 961 return t; 962 } 963 964 /** 965 * Create a transliterator from a basic ID. This is an ID 966 * containing only the forward direction source, target, and 967 * variant. 968 * @param id a basic ID of the form S-T or S-T/V. 969 * @return a newly created Transliterator or null if the ID is 970 * invalid. 971 */ 972 Transliterator* Transliterator::createBasicInstance(const UnicodeString& id, 973 const UnicodeString* canon) { 974 UParseError pe; 975 UErrorCode ec = U_ZERO_ERROR; 976 TransliteratorAlias* alias = 0; 977 Transliterator* t = 0; 978 979 umtx_lock(®istryMutex); 980 if (HAVE_REGISTRY(ec)) { 981 t = registry->get(id, alias, ec); 982 } 983 umtx_unlock(®istryMutex); 984 985 if (U_FAILURE(ec)) { 986 delete t; 987 delete alias; 988 return 0; 989 } 990 991 // We may have not gotten a transliterator: Because we can't 992 // instantiate a transliterator from inside TransliteratorRegistry:: 993 // get() (that would deadlock), we sometimes pass back an alias. This 994 // contains the data we need to finish the instantiation outside the 995 // registry mutex. The alias may, in turn, generate another alias, so 996 // we handle aliases in a loop. The max times through the loop is two. 997 // [alan] 998 while (alias != 0) { 999 U_ASSERT(t==0); 1000 // Rule-based aliases are handled with TransliteratorAlias:: 1001 // parse(), followed by TransliteratorRegistry::reget(). 1002 // Other aliases are handled with TransliteratorAlias::create(). 1003 if (alias->isRuleBased()) { 1004 // Step 1. parse 1005 TransliteratorParser parser(ec); 1006 alias->parse(parser, pe, ec); 1007 delete alias; 1008 alias = 0; 1009 1010 // Step 2. reget 1011 umtx_lock(®istryMutex); 1012 if (HAVE_REGISTRY(ec)) { 1013 t = registry->reget(id, parser, alias, ec); 1014 } 1015 umtx_unlock(®istryMutex); 1016 1017 // Step 3. Loop back around! 1018 } else { 1019 t = alias->create(pe, ec); 1020 delete alias; 1021 alias = 0; 1022 break; 1023 } 1024 if (U_FAILURE(ec)) { 1025 delete t; 1026 delete alias; 1027 t = NULL; 1028 break; 1029 } 1030 } 1031 1032 if (t != NULL && canon != NULL) { 1033 t->setID(*canon); 1034 } 1035 1036 return t; 1037 } 1038 1039 /** 1040 * Returns a <code>Transliterator</code> object constructed from 1041 * the given rule string. This will be a RuleBasedTransliterator, 1042 * if the rule string contains only rules, or a 1043 * CompoundTransliterator, if it contains ID blocks, or a 1044 * NullTransliterator, if it contains ID blocks which parse as 1045 * empty for the given direction. 1046 */ 1047 Transliterator* U_EXPORT2 1048 Transliterator::createFromRules(const UnicodeString& ID, 1049 const UnicodeString& rules, 1050 UTransDirection dir, 1051 UParseError& parseError, 1052 UErrorCode& status) 1053 { 1054 Transliterator* t = NULL; 1055 1056 TransliteratorParser parser(status); 1057 parser.parse(rules, dir, parseError, status); 1058 1059 if (U_FAILURE(status)) { 1060 return 0; 1061 } 1062 1063 // NOTE: The logic here matches that in TransliteratorRegistry. 1064 if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 0) { 1065 t = new NullTransliterator(); 1066 } 1067 else if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 1) { 1068 t = new RuleBasedTransliterator(ID, (TransliterationRuleData*)parser.dataVector.orphanElementAt(0), TRUE); 1069 } 1070 else if (parser.idBlockVector.size() == 1 && parser.dataVector.size() == 0) { 1071 // idBlock, no data -- this is an alias. The ID has 1072 // been munged from reverse into forward mode, if 1073 // necessary, so instantiate the ID in the forward 1074 // direction. 1075 if (parser.compoundFilter != NULL) { 1076 UnicodeString filterPattern; 1077 parser.compoundFilter->toPattern(filterPattern, FALSE); 1078 t = createInstance(filterPattern + UnicodeString(ID_DELIM) 1079 + *((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status); 1080 } 1081 else 1082 t = createInstance(*((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status); 1083 1084 1085 if (t != NULL) { 1086 t->setID(ID); 1087 } 1088 } 1089 else { 1090 UVector transliterators(status); 1091 int32_t passNumber = 1; 1092 1093 int32_t limit = parser.idBlockVector.size(); 1094 if (parser.dataVector.size() > limit) 1095 limit = parser.dataVector.size(); 1096 1097 for (int32_t i = 0; i < limit; i++) { 1098 if (i < parser.idBlockVector.size()) { 1099 UnicodeString* idBlock = (UnicodeString*)parser.idBlockVector.elementAt(i); 1100 if (!idBlock->isEmpty()) { 1101 Transliterator* temp = createInstance(*idBlock, UTRANS_FORWARD, parseError, status); 1102 if (temp != NULL && typeid(*temp) != typeid(NullTransliterator)) 1103 transliterators.addElement(temp, status); 1104 else 1105 delete temp; 1106 } 1107 } 1108 if (!parser.dataVector.isEmpty()) { 1109 TransliterationRuleData* data = (TransliterationRuleData*)parser.dataVector.orphanElementAt(0); 1110 // TODO: Should passNumber be turned into a decimal-string representation (1 -> "1")? 1111 RuleBasedTransliterator* temprbt = new RuleBasedTransliterator(UnicodeString(CompoundTransliterator::PASS_STRING) + UnicodeString(passNumber++), 1112 data, TRUE); 1113 // Check if NULL before adding it to transliterators to avoid future usage of NULL pointer. 1114 if (temprbt == NULL) { 1115 status = U_MEMORY_ALLOCATION_ERROR; 1116 return t; 1117 } 1118 transliterators.addElement(temprbt, status); 1119 } 1120 } 1121 1122 t = new CompoundTransliterator(transliterators, passNumber - 1, parseError, status); 1123 // Null pointer check 1124 if (t != NULL) { 1125 t->setID(ID); 1126 t->adoptFilter(parser.orphanCompoundFilter()); 1127 } 1128 } 1129 if (U_SUCCESS(status) && t == NULL) { 1130 status = U_MEMORY_ALLOCATION_ERROR; 1131 } 1132 return t; 1133 } 1134 1135 UnicodeString& Transliterator::toRules(UnicodeString& rulesSource, 1136 UBool escapeUnprintable) const { 1137 // The base class implementation of toRules munges the ID into 1138 // the correct format. That is: foo => ::foo 1139 if (escapeUnprintable) { 1140 rulesSource.truncate(0); 1141 UnicodeString id = getID(); 1142 for (int32_t i=0; i<id.length();) { 1143 UChar32 c = id.char32At(i); 1144 if (!ICU_Utility::escapeUnprintable(rulesSource, c)) { 1145 rulesSource.append(c); 1146 } 1147 i += U16_LENGTH(c); 1148 } 1149 } else { 1150 rulesSource = getID(); 1151 } 1152 // KEEP in sync with rbt_pars 1153 rulesSource.insert(0, UNICODE_STRING_SIMPLE("::")); 1154 rulesSource.append(ID_DELIM); 1155 return rulesSource; 1156 } 1157 1158 int32_t Transliterator::countElements() const { 1159 const CompoundTransliterator* ct = dynamic_cast<const CompoundTransliterator*>(this); 1160 return ct != NULL ? ct->getCount() : 0; 1161 } 1162 1163 const Transliterator& Transliterator::getElement(int32_t index, UErrorCode& ec) const { 1164 if (U_FAILURE(ec)) { 1165 return *this; 1166 } 1167 const CompoundTransliterator* cpd = dynamic_cast<const CompoundTransliterator*>(this); 1168 int32_t n = (cpd == NULL) ? 1 : cpd->getCount(); 1169 if (index < 0 || index >= n) { 1170 ec = U_INDEX_OUTOFBOUNDS_ERROR; 1171 return *this; 1172 } else { 1173 return (n == 1) ? *this : cpd->getTransliterator(index); 1174 } 1175 } 1176 1177 UnicodeSet& Transliterator::getSourceSet(UnicodeSet& result) const { 1178 handleGetSourceSet(result); 1179 if (filter != NULL) { 1180 UnicodeSet* filterSet = dynamic_cast<UnicodeSet*>(filter); 1181 UBool deleteFilterSet = FALSE; 1182 // Most, but not all filters will be UnicodeSets. Optimize for 1183 // the high-runner case. 1184 if (filterSet == NULL) { 1185 filterSet = new UnicodeSet(); 1186 // Check null pointer 1187 if (filterSet == NULL) { 1188 return result; 1189 } 1190 deleteFilterSet = TRUE; 1191 filter->addMatchSetTo(*filterSet); 1192 } 1193 result.retainAll(*filterSet); 1194 if (deleteFilterSet) { 1195 delete filterSet; 1196 } 1197 } 1198 return result; 1199 } 1200 1201 void Transliterator::handleGetSourceSet(UnicodeSet& result) const { 1202 result.clear(); 1203 } 1204 1205 UnicodeSet& Transliterator::getTargetSet(UnicodeSet& result) const { 1206 return result.clear(); 1207 } 1208 1209 // For public consumption 1210 void U_EXPORT2 Transliterator::registerFactory(const UnicodeString& id, 1211 Transliterator::Factory factory, 1212 Transliterator::Token context) { 1213 Mutex lock(®istryMutex); 1214 UErrorCode ec = U_ZERO_ERROR; 1215 if (HAVE_REGISTRY(ec)) { 1216 _registerFactory(id, factory, context); 1217 } 1218 } 1219 1220 // To be called only by Transliterator subclasses that are called 1221 // to register themselves by initializeRegistry(). 1222 void Transliterator::_registerFactory(const UnicodeString& id, 1223 Transliterator::Factory factory, 1224 Transliterator::Token context) { 1225 UErrorCode ec = U_ZERO_ERROR; 1226 registry->put(id, factory, context, TRUE, ec); 1227 } 1228 1229 // To be called only by Transliterator subclasses that are called 1230 // to register themselves by initializeRegistry(). 1231 void Transliterator::_registerSpecialInverse(const UnicodeString& target, 1232 const UnicodeString& inverseTarget, 1233 UBool bidirectional) { 1234 UErrorCode status = U_ZERO_ERROR; 1235 TransliteratorIDParser::registerSpecialInverse(target, inverseTarget, bidirectional, status); 1236 } 1237 1238 /** 1239 * Registers a instance <tt>obj</tt> of a subclass of 1240 * <code>Transliterator</code> with the system. This object must 1241 * implement the <tt>clone()</tt> method. When 1242 * <tt>getInstance()</tt> is called with an ID string that is 1243 * equal to <tt>obj.getID()</tt>, then <tt>obj.clone()</tt> is 1244 * returned. 1245 * 1246 * @param obj an instance of subclass of 1247 * <code>Transliterator</code> that defines <tt>clone()</tt> 1248 * @see #getInstance 1249 * @see #unregister 1250 */ 1251 void U_EXPORT2 Transliterator::registerInstance(Transliterator* adoptedPrototype) { 1252 Mutex lock(®istryMutex); 1253 UErrorCode ec = U_ZERO_ERROR; 1254 if (HAVE_REGISTRY(ec)) { 1255 _registerInstance(adoptedPrototype); 1256 } 1257 } 1258 1259 void Transliterator::_registerInstance(Transliterator* adoptedPrototype) { 1260 UErrorCode ec = U_ZERO_ERROR; 1261 registry->put(adoptedPrototype, TRUE, ec); 1262 } 1263 1264 void U_EXPORT2 Transliterator::registerAlias(const UnicodeString& aliasID, 1265 const UnicodeString& realID) { 1266 Mutex lock(®istryMutex); 1267 UErrorCode ec = U_ZERO_ERROR; 1268 if (HAVE_REGISTRY(ec)) { 1269 _registerAlias(aliasID, realID); 1270 } 1271 } 1272 1273 void Transliterator::_registerAlias(const UnicodeString& aliasID, 1274 const UnicodeString& realID) { 1275 UErrorCode ec = U_ZERO_ERROR; 1276 registry->put(aliasID, realID, FALSE, TRUE, ec); 1277 } 1278 1279 /** 1280 * Unregisters a transliterator or class. This may be either 1281 * a system transliterator or a user transliterator or class. 1282 * 1283 * @param ID the ID of the transliterator or class 1284 * @see #registerInstance 1285 1286 */ 1287 void U_EXPORT2 Transliterator::unregister(const UnicodeString& ID) { 1288 Mutex lock(®istryMutex); 1289 UErrorCode ec = U_ZERO_ERROR; 1290 if (HAVE_REGISTRY(ec)) { 1291 registry->remove(ID); 1292 } 1293 } 1294 1295 /** 1296 * == OBSOLETE - remove in ICU 3.4 == 1297 * Return the number of IDs currently registered with the system. 1298 * To retrieve the actual IDs, call getAvailableID(i) with 1299 * i from 0 to countAvailableIDs() - 1. 1300 */ 1301 int32_t U_EXPORT2 Transliterator::countAvailableIDs(void) { 1302 int32_t retVal = 0; 1303 Mutex lock(®istryMutex); 1304 UErrorCode ec = U_ZERO_ERROR; 1305 if (HAVE_REGISTRY(ec)) { 1306 retVal = registry->countAvailableIDs(); 1307 } 1308 return retVal; 1309 } 1310 1311 /** 1312 * == OBSOLETE - remove in ICU 3.4 == 1313 * Return the index-th available ID. index must be between 0 1314 * and countAvailableIDs() - 1, inclusive. If index is out of 1315 * range, the result of getAvailableID(0) is returned. 1316 */ 1317 const UnicodeString& U_EXPORT2 Transliterator::getAvailableID(int32_t index) { 1318 const UnicodeString* result = NULL; 1319 umtx_lock(®istryMutex); 1320 UErrorCode ec = U_ZERO_ERROR; 1321 if (HAVE_REGISTRY(ec)) { 1322 result = ®istry->getAvailableID(index); 1323 } 1324 umtx_unlock(®istryMutex); 1325 U_ASSERT(result != NULL); // fail if no registry 1326 return *result; 1327 } 1328 1329 StringEnumeration* U_EXPORT2 Transliterator::getAvailableIDs(UErrorCode& ec) { 1330 if (U_FAILURE(ec)) return NULL; 1331 StringEnumeration* result = NULL; 1332 umtx_lock(®istryMutex); 1333 if (HAVE_REGISTRY(ec)) { 1334 result = registry->getAvailableIDs(); 1335 } 1336 umtx_unlock(®istryMutex); 1337 if (result == NULL) { 1338 ec = U_INTERNAL_TRANSLITERATOR_ERROR; 1339 } 1340 return result; 1341 } 1342 1343 int32_t U_EXPORT2 Transliterator::countAvailableSources(void) { 1344 Mutex lock(®istryMutex); 1345 UErrorCode ec = U_ZERO_ERROR; 1346 return HAVE_REGISTRY(ec) ? _countAvailableSources() : 0; 1347 } 1348 1349 UnicodeString& U_EXPORT2 Transliterator::getAvailableSource(int32_t index, 1350 UnicodeString& result) { 1351 Mutex lock(®istryMutex); 1352 UErrorCode ec = U_ZERO_ERROR; 1353 if (HAVE_REGISTRY(ec)) { 1354 _getAvailableSource(index, result); 1355 } 1356 return result; 1357 } 1358 1359 int32_t U_EXPORT2 Transliterator::countAvailableTargets(const UnicodeString& source) { 1360 Mutex lock(®istryMutex); 1361 UErrorCode ec = U_ZERO_ERROR; 1362 return HAVE_REGISTRY(ec) ? _countAvailableTargets(source) : 0; 1363 } 1364 1365 UnicodeString& U_EXPORT2 Transliterator::getAvailableTarget(int32_t index, 1366 const UnicodeString& source, 1367 UnicodeString& result) { 1368 Mutex lock(®istryMutex); 1369 UErrorCode ec = U_ZERO_ERROR; 1370 if (HAVE_REGISTRY(ec)) { 1371 _getAvailableTarget(index, source, result); 1372 } 1373 return result; 1374 } 1375 1376 int32_t U_EXPORT2 Transliterator::countAvailableVariants(const UnicodeString& source, 1377 const UnicodeString& target) { 1378 Mutex lock(®istryMutex); 1379 UErrorCode ec = U_ZERO_ERROR; 1380 return HAVE_REGISTRY(ec) ? _countAvailableVariants(source, target) : 0; 1381 } 1382 1383 UnicodeString& U_EXPORT2 Transliterator::getAvailableVariant(int32_t index, 1384 const UnicodeString& source, 1385 const UnicodeString& target, 1386 UnicodeString& result) { 1387 Mutex lock(®istryMutex); 1388 UErrorCode ec = U_ZERO_ERROR; 1389 if (HAVE_REGISTRY(ec)) { 1390 _getAvailableVariant(index, source, target, result); 1391 } 1392 return result; 1393 } 1394 1395 int32_t Transliterator::_countAvailableSources(void) { 1396 return registry->countAvailableSources(); 1397 } 1398 1399 UnicodeString& Transliterator::_getAvailableSource(int32_t index, 1400 UnicodeString& result) { 1401 return registry->getAvailableSource(index, result); 1402 } 1403 1404 int32_t Transliterator::_countAvailableTargets(const UnicodeString& source) { 1405 return registry->countAvailableTargets(source); 1406 } 1407 1408 UnicodeString& Transliterator::_getAvailableTarget(int32_t index, 1409 const UnicodeString& source, 1410 UnicodeString& result) { 1411 return registry->getAvailableTarget(index, source, result); 1412 } 1413 1414 int32_t Transliterator::_countAvailableVariants(const UnicodeString& source, 1415 const UnicodeString& target) { 1416 return registry->countAvailableVariants(source, target); 1417 } 1418 1419 UnicodeString& Transliterator::_getAvailableVariant(int32_t index, 1420 const UnicodeString& source, 1421 const UnicodeString& target, 1422 UnicodeString& result) { 1423 return registry->getAvailableVariant(index, source, target, result); 1424 } 1425 1426 #ifdef U_USE_DEPRECATED_TRANSLITERATOR_API 1427 1428 /** 1429 * Method for subclasses to use to obtain a character in the given 1430 * string, with filtering. 1431 * @deprecated the new architecture provides filtering at the top 1432 * level. This method will be removed Dec 31 2001. 1433 */ 1434 UChar Transliterator::filteredCharAt(const Replaceable& text, int32_t i) const { 1435 UChar c; 1436 const UnicodeFilter* localFilter = getFilter(); 1437 return (localFilter == 0) ? text.charAt(i) : 1438 (localFilter->contains(c = text.charAt(i)) ? c : (UChar)0xFFFE); 1439 } 1440 1441 #endif 1442 1443 /** 1444 * If the registry is initialized, return TRUE. If not, initialize it 1445 * and return TRUE. If the registry cannot be initialized, return 1446 * FALSE (rare). 1447 * 1448 * IMPORTANT: Upon entry, registryMutex must be LOCKED. The entire 1449 * initialization is done with the lock held. There is NO REASON to 1450 * unlock, since no other thread that is waiting on the registryMutex 1451 * cannot itself proceed until the registry is initialized. 1452 */ 1453 UBool Transliterator::initializeRegistry(UErrorCode &status) { 1454 if (registry != 0) { 1455 return TRUE; 1456 } 1457 1458 registry = new TransliteratorRegistry(status); 1459 if (registry == 0 || U_FAILURE(status)) { 1460 delete registry; 1461 registry = 0; 1462 return FALSE; // can't create registry, no recovery 1463 } 1464 1465 /* The following code parses the index table located in 1466 * icu/data/translit/root.txt. The index is an n x 4 table 1467 * that follows this format: 1468 * <id>{ 1469 * file{ 1470 * resource{"<resource>"} 1471 * direction{"<direction>"} 1472 * } 1473 * } 1474 * <id>{ 1475 * internal{ 1476 * resource{"<resource>"} 1477 * direction{"<direction"} 1478 * } 1479 * } 1480 * <id>{ 1481 * alias{"<getInstanceArg"} 1482 * } 1483 * <id> is the ID of the system transliterator being defined. These 1484 * are public IDs enumerated by Transliterator.getAvailableIDs(), 1485 * unless the second field is "internal". 1486 * 1487 * <resource> is a ResourceReader resource name. Currently these refer 1488 * to file names under com/ibm/text/resources. This string is passed 1489 * directly to ResourceReader, together with <encoding>. 1490 * 1491 * <direction> is either "FORWARD" or "REVERSE". 1492 * 1493 * <getInstanceArg> is a string to be passed directly to 1494 * Transliterator.getInstance(). The returned Transliterator object 1495 * then has its ID changed to <id> and is returned. 1496 * 1497 * The extra blank field on "alias" lines is to make the array square. 1498 */ 1499 //static const char translit_index[] = "translit_index"; 1500 1501 UResourceBundle *bundle, *transIDs, *colBund; 1502 bundle = ures_open(U_ICUDATA_TRANSLIT, NULL/*open default locale*/, &status); 1503 transIDs = ures_getByKey(bundle, RB_RULE_BASED_IDS, 0, &status); 1504 1505 int32_t row, maxRows; 1506 if (U_SUCCESS(status)) { 1507 maxRows = ures_getSize(transIDs); 1508 for (row = 0; row < maxRows; row++) { 1509 colBund = ures_getByIndex(transIDs, row, 0, &status); 1510 if (U_SUCCESS(status)) { 1511 UnicodeString id(ures_getKey(colBund), -1, US_INV); 1512 UResourceBundle* res = ures_getNextResource(colBund, NULL, &status); 1513 const char* typeStr = ures_getKey(res); 1514 UChar type; 1515 u_charsToUChars(typeStr, &type, 1); 1516 1517 if (U_SUCCESS(status)) { 1518 int32_t len = 0; 1519 const UChar *resString; 1520 switch (type) { 1521 case 0x66: // 'f' 1522 case 0x69: // 'i' 1523 // 'file' or 'internal'; 1524 // row[2]=resource, row[3]=direction 1525 { 1526 1527 resString = ures_getStringByKey(res, "resource", &len, &status); 1528 UBool visible = (type == 0x0066 /*f*/); 1529 UTransDirection dir = 1530 (ures_getUnicodeStringByKey(res, "direction", &status).charAt(0) == 1531 0x0046 /*F*/) ? 1532 UTRANS_FORWARD : UTRANS_REVERSE; 1533 registry->put(id, UnicodeString(TRUE, resString, len), dir, TRUE, visible, status); 1534 } 1535 break; 1536 case 0x61: // 'a' 1537 // 'alias'; row[2]=createInstance argument 1538 resString = ures_getString(res, &len, &status); 1539 registry->put(id, UnicodeString(TRUE, resString, len), TRUE, TRUE, status); 1540 break; 1541 } 1542 } 1543 ures_close(res); 1544 } 1545 ures_close(colBund); 1546 } 1547 } 1548 1549 ures_close(transIDs); 1550 ures_close(bundle); 1551 1552 // Manually add prototypes that the system knows about to the 1553 // cache. This is how new non-rule-based transliterators are 1554 // added to the system. 1555 1556 // This is to allow for null pointer check 1557 NullTransliterator* tempNullTranslit = new NullTransliterator(); 1558 LowercaseTransliterator* tempLowercaseTranslit = new LowercaseTransliterator(); 1559 UppercaseTransliterator* tempUppercaseTranslit = new UppercaseTransliterator(); 1560 TitlecaseTransliterator* tempTitlecaseTranslit = new TitlecaseTransliterator(); 1561 UnicodeNameTransliterator* tempUnicodeTranslit = new UnicodeNameTransliterator(); 1562 NameUnicodeTransliterator* tempNameUnicodeTranslit = new NameUnicodeTransliterator(); 1563 #if !UCONFIG_NO_BREAK_ITERATION 1564 // TODO: could or should these transliterators be referenced polymorphically once constructed? 1565 BreakTransliterator* tempBreakTranslit = new BreakTransliterator(); 1566 #endif 1567 // Check for null pointers 1568 if (tempNullTranslit == NULL || tempLowercaseTranslit == NULL || tempUppercaseTranslit == NULL || 1569 tempTitlecaseTranslit == NULL || tempUnicodeTranslit == NULL || 1570 #if !UCONFIG_NO_BREAK_ITERATION 1571 tempBreakTranslit == NULL || 1572 #endif 1573 tempNameUnicodeTranslit == NULL ) 1574 { 1575 delete tempNullTranslit; 1576 delete tempLowercaseTranslit; 1577 delete tempUppercaseTranslit; 1578 delete tempTitlecaseTranslit; 1579 delete tempUnicodeTranslit; 1580 delete tempNameUnicodeTranslit; 1581 #if !UCONFIG_NO_BREAK_ITERATION 1582 delete tempBreakTranslit; 1583 #endif 1584 // Since there was an error, remove registry 1585 delete registry; 1586 registry = NULL; 1587 1588 status = U_MEMORY_ALLOCATION_ERROR; 1589 return 0; 1590 } 1591 1592 registry->put(tempNullTranslit, TRUE, status); 1593 registry->put(tempLowercaseTranslit, TRUE, status); 1594 registry->put(tempUppercaseTranslit, TRUE, status); 1595 registry->put(tempTitlecaseTranslit, TRUE, status); 1596 registry->put(tempUnicodeTranslit, TRUE, status); 1597 registry->put(tempNameUnicodeTranslit, TRUE, status); 1598 #if !UCONFIG_NO_BREAK_ITERATION 1599 registry->put(tempBreakTranslit, FALSE, status); // FALSE means invisible. 1600 #endif 1601 1602 RemoveTransliterator::registerIDs(); // Must be within mutex 1603 EscapeTransliterator::registerIDs(); 1604 UnescapeTransliterator::registerIDs(); 1605 NormalizationTransliterator::registerIDs(); 1606 AnyTransliterator::registerIDs(); 1607 1608 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Null"), 1609 UNICODE_STRING_SIMPLE("Null"), FALSE); 1610 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Upper"), 1611 UNICODE_STRING_SIMPLE("Lower"), TRUE); 1612 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Title"), 1613 UNICODE_STRING_SIMPLE("Lower"), FALSE); 1614 1615 ucln_i18n_registerCleanup(UCLN_I18N_TRANSLITERATOR, utrans_transliterator_cleanup); 1616 1617 return TRUE; 1618 } 1619 1620 U_NAMESPACE_END 1621 1622 // Defined in ucln_in.h: 1623 1624 /** 1625 * Release all static memory held by transliterator. This will 1626 * necessarily invalidate any rule-based transliterators held by the 1627 * user, because RBTs hold pointers to common data objects. 1628 */ 1629 U_CFUNC UBool utrans_transliterator_cleanup(void) { 1630 U_NAMESPACE_USE 1631 TransliteratorIDParser::cleanup(); 1632 if (registry) { 1633 delete registry; 1634 registry = NULL; 1635 } 1636 return TRUE; 1637 } 1638 1639 #endif /* #if !UCONFIG_NO_TRANSLITERATION */ 1640 1641 //eof 1642