Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CGCall.h"
     16 #include "ABIInfo.h"
     17 #include "CGCXXABI.h"
     18 #include "CodeGenFunction.h"
     19 #include "CodeGenModule.h"
     20 #include "TargetInfo.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/DeclCXX.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/ADT/StringExtras.h"
     27 #include "llvm/IR/Attributes.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/InlineAsm.h"
     30 #include "llvm/MC/SubtargetFeature.h"
     31 #include "llvm/Support/CallSite.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 using namespace clang;
     34 using namespace CodeGen;
     35 
     36 /***/
     37 
     38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
     39   switch (CC) {
     40   default: return llvm::CallingConv::C;
     41   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
     42   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
     43   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
     44   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
     45   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
     46   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
     47   // TODO: add support for CC_X86Pascal to llvm
     48   }
     49 }
     50 
     51 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
     52 /// qualification.
     53 /// FIXME: address space qualification?
     54 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
     55   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
     56   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
     57 }
     58 
     59 /// Returns the canonical formal type of the given C++ method.
     60 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
     61   return MD->getType()->getCanonicalTypeUnqualified()
     62            .getAs<FunctionProtoType>();
     63 }
     64 
     65 /// Returns the "extra-canonicalized" return type, which discards
     66 /// qualifiers on the return type.  Codegen doesn't care about them,
     67 /// and it makes ABI code a little easier to be able to assume that
     68 /// all parameter and return types are top-level unqualified.
     69 static CanQualType GetReturnType(QualType RetTy) {
     70   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
     71 }
     72 
     73 /// Arrange the argument and result information for a value of the given
     74 /// unprototyped freestanding function type.
     75 const CGFunctionInfo &
     76 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
     77   // When translating an unprototyped function type, always use a
     78   // variadic type.
     79   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
     80                                  ArrayRef<CanQualType>(),
     81                                  FTNP->getExtInfo(),
     82                                  RequiredArgs(0));
     83 }
     84 
     85 /// Arrange the LLVM function layout for a value of the given function
     86 /// type, on top of any implicit parameters already stored.  Use the
     87 /// given ExtInfo instead of the ExtInfo from the function type.
     88 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
     89                                        SmallVectorImpl<CanQualType> &prefix,
     90                                              CanQual<FunctionProtoType> FTP,
     91                                               FunctionType::ExtInfo extInfo) {
     92   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
     93   // FIXME: Kill copy.
     94   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
     95     prefix.push_back(FTP->getArgType(i));
     96   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
     97   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
     98 }
     99 
    100 /// Arrange the argument and result information for a free function (i.e.
    101 /// not a C++ or ObjC instance method) of the given type.
    102 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
    103                                       SmallVectorImpl<CanQualType> &prefix,
    104                                             CanQual<FunctionProtoType> FTP) {
    105   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
    106 }
    107 
    108 /// Given the formal ext-info of a C++ instance method, adjust it
    109 /// according to the C++ ABI in effect.
    110 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
    111                                 FunctionType::ExtInfo &extInfo,
    112                                 bool isVariadic) {
    113   if (extInfo.getCC() == CC_Default) {
    114     CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
    115     extInfo = extInfo.withCallingConv(CC);
    116   }
    117 }
    118 
    119 /// Arrange the argument and result information for a free function (i.e.
    120 /// not a C++ or ObjC instance method) of the given type.
    121 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
    122                                       SmallVectorImpl<CanQualType> &prefix,
    123                                             CanQual<FunctionProtoType> FTP) {
    124   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    125   adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
    126   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
    127 }
    128 
    129 /// Arrange the argument and result information for a value of the
    130 /// given freestanding function type.
    131 const CGFunctionInfo &
    132 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
    133   SmallVector<CanQualType, 16> argTypes;
    134   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
    135 }
    136 
    137 static CallingConv getCallingConventionForDecl(const Decl *D) {
    138   // Set the appropriate calling convention for the Function.
    139   if (D->hasAttr<StdCallAttr>())
    140     return CC_X86StdCall;
    141 
    142   if (D->hasAttr<FastCallAttr>())
    143     return CC_X86FastCall;
    144 
    145   if (D->hasAttr<ThisCallAttr>())
    146     return CC_X86ThisCall;
    147 
    148   if (D->hasAttr<PascalAttr>())
    149     return CC_X86Pascal;
    150 
    151   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
    152     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
    153 
    154   if (D->hasAttr<PnaclCallAttr>())
    155     return CC_PnaclCall;
    156 
    157   if (D->hasAttr<IntelOclBiccAttr>())
    158     return CC_IntelOclBicc;
    159 
    160   return CC_C;
    161 }
    162 
    163 /// Arrange the argument and result information for a call to an
    164 /// unknown C++ non-static member function of the given abstract type.
    165 /// The member function must be an ordinary function, i.e. not a
    166 /// constructor or destructor.
    167 const CGFunctionInfo &
    168 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
    169                                    const FunctionProtoType *FTP) {
    170   SmallVector<CanQualType, 16> argTypes;
    171 
    172   // Add the 'this' pointer.
    173   argTypes.push_back(GetThisType(Context, RD));
    174 
    175   return ::arrangeCXXMethodType(*this, argTypes,
    176               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
    177 }
    178 
    179 /// Arrange the argument and result information for a declaration or
    180 /// definition of the given C++ non-static member function.  The
    181 /// member function must be an ordinary function, i.e. not a
    182 /// constructor or destructor.
    183 const CGFunctionInfo &
    184 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
    185   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
    186   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
    187 
    188   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
    189 
    190   if (MD->isInstance()) {
    191     // The abstract case is perfectly fine.
    192     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
    193   }
    194 
    195   return arrangeFreeFunctionType(prototype);
    196 }
    197 
    198 /// Arrange the argument and result information for a declaration
    199 /// or definition to the given constructor variant.
    200 const CGFunctionInfo &
    201 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
    202                                                CXXCtorType ctorKind) {
    203   SmallVector<CanQualType, 16> argTypes;
    204   argTypes.push_back(GetThisType(Context, D->getParent()));
    205   CanQualType resultType = Context.VoidTy;
    206 
    207   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
    208 
    209   CanQual<FunctionProtoType> FTP = GetFormalType(D);
    210 
    211   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
    212 
    213   // Add the formal parameters.
    214   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
    215     argTypes.push_back(FTP->getArgType(i));
    216 
    217   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    218   adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
    219   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
    220 }
    221 
    222 /// Arrange the argument and result information for a declaration,
    223 /// definition, or call to the given destructor variant.  It so
    224 /// happens that all three cases produce the same information.
    225 const CGFunctionInfo &
    226 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
    227                                    CXXDtorType dtorKind) {
    228   SmallVector<CanQualType, 2> argTypes;
    229   argTypes.push_back(GetThisType(Context, D->getParent()));
    230   CanQualType resultType = Context.VoidTy;
    231 
    232   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
    233 
    234   CanQual<FunctionProtoType> FTP = GetFormalType(D);
    235   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
    236   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
    237 
    238   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    239   adjustCXXMethodInfo(*this, extInfo, false);
    240   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
    241                                  RequiredArgs::All);
    242 }
    243 
    244 /// Arrange the argument and result information for the declaration or
    245 /// definition of the given function.
    246 const CGFunctionInfo &
    247 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
    248   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
    249     if (MD->isInstance())
    250       return arrangeCXXMethodDeclaration(MD);
    251 
    252   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
    253 
    254   assert(isa<FunctionType>(FTy));
    255 
    256   // When declaring a function without a prototype, always use a
    257   // non-variadic type.
    258   if (isa<FunctionNoProtoType>(FTy)) {
    259     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
    260     return arrangeLLVMFunctionInfo(noProto->getResultType(),
    261                                    ArrayRef<CanQualType>(),
    262                                    noProto->getExtInfo(),
    263                                    RequiredArgs::All);
    264   }
    265 
    266   assert(isa<FunctionProtoType>(FTy));
    267   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
    268 }
    269 
    270 /// Arrange the argument and result information for the declaration or
    271 /// definition of an Objective-C method.
    272 const CGFunctionInfo &
    273 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
    274   // It happens that this is the same as a call with no optional
    275   // arguments, except also using the formal 'self' type.
    276   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
    277 }
    278 
    279 /// Arrange the argument and result information for the function type
    280 /// through which to perform a send to the given Objective-C method,
    281 /// using the given receiver type.  The receiver type is not always
    282 /// the 'self' type of the method or even an Objective-C pointer type.
    283 /// This is *not* the right method for actually performing such a
    284 /// message send, due to the possibility of optional arguments.
    285 const CGFunctionInfo &
    286 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
    287                                               QualType receiverType) {
    288   SmallVector<CanQualType, 16> argTys;
    289   argTys.push_back(Context.getCanonicalParamType(receiverType));
    290   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
    291   // FIXME: Kill copy?
    292   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
    293          e = MD->param_end(); i != e; ++i) {
    294     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
    295   }
    296 
    297   FunctionType::ExtInfo einfo;
    298   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
    299 
    300   if (getContext().getLangOpts().ObjCAutoRefCount &&
    301       MD->hasAttr<NSReturnsRetainedAttr>())
    302     einfo = einfo.withProducesResult(true);
    303 
    304   RequiredArgs required =
    305     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
    306 
    307   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
    308                                  einfo, required);
    309 }
    310 
    311 const CGFunctionInfo &
    312 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
    313   // FIXME: Do we need to handle ObjCMethodDecl?
    314   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    315 
    316   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
    317     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
    318 
    319   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
    320     return arrangeCXXDestructor(DD, GD.getDtorType());
    321 
    322   return arrangeFunctionDeclaration(FD);
    323 }
    324 
    325 /// Arrange a call as unto a free function, except possibly with an
    326 /// additional number of formal parameters considered required.
    327 static const CGFunctionInfo &
    328 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
    329                             const CallArgList &args,
    330                             const FunctionType *fnType,
    331                             unsigned numExtraRequiredArgs) {
    332   assert(args.size() >= numExtraRequiredArgs);
    333 
    334   // In most cases, there are no optional arguments.
    335   RequiredArgs required = RequiredArgs::All;
    336 
    337   // If we have a variadic prototype, the required arguments are the
    338   // extra prefix plus the arguments in the prototype.
    339   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
    340     if (proto->isVariadic())
    341       required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
    342 
    343   // If we don't have a prototype at all, but we're supposed to
    344   // explicitly use the variadic convention for unprototyped calls,
    345   // treat all of the arguments as required but preserve the nominal
    346   // possibility of variadics.
    347   } else if (CGT.CGM.getTargetCodeGenInfo()
    348                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
    349     required = RequiredArgs(args.size());
    350   }
    351 
    352   return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
    353                                      fnType->getExtInfo(), required);
    354 }
    355 
    356 /// Figure out the rules for calling a function with the given formal
    357 /// type using the given arguments.  The arguments are necessary
    358 /// because the function might be unprototyped, in which case it's
    359 /// target-dependent in crazy ways.
    360 const CGFunctionInfo &
    361 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
    362                                       const FunctionType *fnType) {
    363   return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
    364 }
    365 
    366 /// A block function call is essentially a free-function call with an
    367 /// extra implicit argument.
    368 const CGFunctionInfo &
    369 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
    370                                        const FunctionType *fnType) {
    371   return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
    372 }
    373 
    374 const CGFunctionInfo &
    375 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
    376                                       const CallArgList &args,
    377                                       FunctionType::ExtInfo info,
    378                                       RequiredArgs required) {
    379   // FIXME: Kill copy.
    380   SmallVector<CanQualType, 16> argTypes;
    381   for (CallArgList::const_iterator i = args.begin(), e = args.end();
    382        i != e; ++i)
    383     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
    384   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
    385                                  required);
    386 }
    387 
    388 /// Arrange a call to a C++ method, passing the given arguments.
    389 const CGFunctionInfo &
    390 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
    391                                    const FunctionProtoType *FPT,
    392                                    RequiredArgs required) {
    393   // FIXME: Kill copy.
    394   SmallVector<CanQualType, 16> argTypes;
    395   for (CallArgList::const_iterator i = args.begin(), e = args.end();
    396        i != e; ++i)
    397     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
    398 
    399   FunctionType::ExtInfo info = FPT->getExtInfo();
    400   adjustCXXMethodInfo(*this, info, FPT->isVariadic());
    401   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
    402                                  argTypes, info, required);
    403 }
    404 
    405 const CGFunctionInfo &
    406 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
    407                                          const FunctionArgList &args,
    408                                          const FunctionType::ExtInfo &info,
    409                                          bool isVariadic) {
    410   // FIXME: Kill copy.
    411   SmallVector<CanQualType, 16> argTypes;
    412   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
    413        i != e; ++i)
    414     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
    415 
    416   RequiredArgs required =
    417     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
    418   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
    419                                  required);
    420 }
    421 
    422 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
    423   return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
    424                                  FunctionType::ExtInfo(), RequiredArgs::All);
    425 }
    426 
    427 /// Arrange the argument and result information for an abstract value
    428 /// of a given function type.  This is the method which all of the
    429 /// above functions ultimately defer to.
    430 const CGFunctionInfo &
    431 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
    432                                       ArrayRef<CanQualType> argTypes,
    433                                       FunctionType::ExtInfo info,
    434                                       RequiredArgs required) {
    435 #ifndef NDEBUG
    436   for (ArrayRef<CanQualType>::const_iterator
    437          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
    438     assert(I->isCanonicalAsParam());
    439 #endif
    440 
    441   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
    442 
    443   // Lookup or create unique function info.
    444   llvm::FoldingSetNodeID ID;
    445   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
    446 
    447   void *insertPos = 0;
    448   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
    449   if (FI)
    450     return *FI;
    451 
    452   // Construct the function info.  We co-allocate the ArgInfos.
    453   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
    454   FunctionInfos.InsertNode(FI, insertPos);
    455 
    456   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
    457   assert(inserted && "Recursively being processed?");
    458 
    459   // Compute ABI information.
    460   getABIInfo().computeInfo(*FI);
    461 
    462   // Loop over all of the computed argument and return value info.  If any of
    463   // them are direct or extend without a specified coerce type, specify the
    464   // default now.
    465   ABIArgInfo &retInfo = FI->getReturnInfo();
    466   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
    467     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
    468 
    469   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
    470        I != E; ++I)
    471     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
    472       I->info.setCoerceToType(ConvertType(I->type));
    473 
    474   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
    475   assert(erased && "Not in set?");
    476 
    477   return *FI;
    478 }
    479 
    480 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
    481                                        const FunctionType::ExtInfo &info,
    482                                        CanQualType resultType,
    483                                        ArrayRef<CanQualType> argTypes,
    484                                        RequiredArgs required) {
    485   void *buffer = operator new(sizeof(CGFunctionInfo) +
    486                               sizeof(ArgInfo) * (argTypes.size() + 1));
    487   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
    488   FI->CallingConvention = llvmCC;
    489   FI->EffectiveCallingConvention = llvmCC;
    490   FI->ASTCallingConvention = info.getCC();
    491   FI->NoReturn = info.getNoReturn();
    492   FI->ReturnsRetained = info.getProducesResult();
    493   FI->Required = required;
    494   FI->HasRegParm = info.getHasRegParm();
    495   FI->RegParm = info.getRegParm();
    496   FI->NumArgs = argTypes.size();
    497   FI->getArgsBuffer()[0].type = resultType;
    498   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
    499     FI->getArgsBuffer()[i + 1].type = argTypes[i];
    500   return FI;
    501 }
    502 
    503 /***/
    504 
    505 void CodeGenTypes::GetExpandedTypes(QualType type,
    506                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
    507   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
    508     uint64_t NumElts = AT->getSize().getZExtValue();
    509     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
    510       GetExpandedTypes(AT->getElementType(), expandedTypes);
    511   } else if (const RecordType *RT = type->getAs<RecordType>()) {
    512     const RecordDecl *RD = RT->getDecl();
    513     assert(!RD->hasFlexibleArrayMember() &&
    514            "Cannot expand structure with flexible array.");
    515     if (RD->isUnion()) {
    516       // Unions can be here only in degenerative cases - all the fields are same
    517       // after flattening. Thus we have to use the "largest" field.
    518       const FieldDecl *LargestFD = 0;
    519       CharUnits UnionSize = CharUnits::Zero();
    520 
    521       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    522            i != e; ++i) {
    523         const FieldDecl *FD = *i;
    524         assert(!FD->isBitField() &&
    525                "Cannot expand structure with bit-field members.");
    526         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
    527         if (UnionSize < FieldSize) {
    528           UnionSize = FieldSize;
    529           LargestFD = FD;
    530         }
    531       }
    532       if (LargestFD)
    533         GetExpandedTypes(LargestFD->getType(), expandedTypes);
    534     } else {
    535       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    536            i != e; ++i) {
    537         assert(!i->isBitField() &&
    538                "Cannot expand structure with bit-field members.");
    539         GetExpandedTypes(i->getType(), expandedTypes);
    540       }
    541     }
    542   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
    543     llvm::Type *EltTy = ConvertType(CT->getElementType());
    544     expandedTypes.push_back(EltTy);
    545     expandedTypes.push_back(EltTy);
    546   } else
    547     expandedTypes.push_back(ConvertType(type));
    548 }
    549 
    550 llvm::Function::arg_iterator
    551 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
    552                                     llvm::Function::arg_iterator AI) {
    553   assert(LV.isSimple() &&
    554          "Unexpected non-simple lvalue during struct expansion.");
    555 
    556   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
    557     unsigned NumElts = AT->getSize().getZExtValue();
    558     QualType EltTy = AT->getElementType();
    559     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
    560       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
    561       LValue LV = MakeAddrLValue(EltAddr, EltTy);
    562       AI = ExpandTypeFromArgs(EltTy, LV, AI);
    563     }
    564   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
    565     RecordDecl *RD = RT->getDecl();
    566     if (RD->isUnion()) {
    567       // Unions can be here only in degenerative cases - all the fields are same
    568       // after flattening. Thus we have to use the "largest" field.
    569       const FieldDecl *LargestFD = 0;
    570       CharUnits UnionSize = CharUnits::Zero();
    571 
    572       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    573            i != e; ++i) {
    574         const FieldDecl *FD = *i;
    575         assert(!FD->isBitField() &&
    576                "Cannot expand structure with bit-field members.");
    577         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
    578         if (UnionSize < FieldSize) {
    579           UnionSize = FieldSize;
    580           LargestFD = FD;
    581         }
    582       }
    583       if (LargestFD) {
    584         // FIXME: What are the right qualifiers here?
    585         LValue SubLV = EmitLValueForField(LV, LargestFD);
    586         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
    587       }
    588     } else {
    589       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    590            i != e; ++i) {
    591         FieldDecl *FD = *i;
    592         QualType FT = FD->getType();
    593 
    594         // FIXME: What are the right qualifiers here?
    595         LValue SubLV = EmitLValueForField(LV, FD);
    596         AI = ExpandTypeFromArgs(FT, SubLV, AI);
    597       }
    598     }
    599   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
    600     QualType EltTy = CT->getElementType();
    601     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
    602     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
    603     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
    604     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
    605   } else {
    606     EmitStoreThroughLValue(RValue::get(AI), LV);
    607     ++AI;
    608   }
    609 
    610   return AI;
    611 }
    612 
    613 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
    614 /// accessing some number of bytes out of it, try to gep into the struct to get
    615 /// at its inner goodness.  Dive as deep as possible without entering an element
    616 /// with an in-memory size smaller than DstSize.
    617 static llvm::Value *
    618 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
    619                                    llvm::StructType *SrcSTy,
    620                                    uint64_t DstSize, CodeGenFunction &CGF) {
    621   // We can't dive into a zero-element struct.
    622   if (SrcSTy->getNumElements() == 0) return SrcPtr;
    623 
    624   llvm::Type *FirstElt = SrcSTy->getElementType(0);
    625 
    626   // If the first elt is at least as large as what we're looking for, or if the
    627   // first element is the same size as the whole struct, we can enter it.
    628   uint64_t FirstEltSize =
    629     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
    630   if (FirstEltSize < DstSize &&
    631       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
    632     return SrcPtr;
    633 
    634   // GEP into the first element.
    635   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
    636 
    637   // If the first element is a struct, recurse.
    638   llvm::Type *SrcTy =
    639     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    640   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
    641     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    642 
    643   return SrcPtr;
    644 }
    645 
    646 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
    647 /// are either integers or pointers.  This does a truncation of the value if it
    648 /// is too large or a zero extension if it is too small.
    649 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
    650                                              llvm::Type *Ty,
    651                                              CodeGenFunction &CGF) {
    652   if (Val->getType() == Ty)
    653     return Val;
    654 
    655   if (isa<llvm::PointerType>(Val->getType())) {
    656     // If this is Pointer->Pointer avoid conversion to and from int.
    657     if (isa<llvm::PointerType>(Ty))
    658       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
    659 
    660     // Convert the pointer to an integer so we can play with its width.
    661     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
    662   }
    663 
    664   llvm::Type *DestIntTy = Ty;
    665   if (isa<llvm::PointerType>(DestIntTy))
    666     DestIntTy = CGF.IntPtrTy;
    667 
    668   if (Val->getType() != DestIntTy)
    669     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
    670 
    671   if (isa<llvm::PointerType>(Ty))
    672     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
    673   return Val;
    674 }
    675 
    676 
    677 
    678 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
    679 /// a pointer to an object of type \arg Ty.
    680 ///
    681 /// This safely handles the case when the src type is smaller than the
    682 /// destination type; in this situation the values of bits which not
    683 /// present in the src are undefined.
    684 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
    685                                       llvm::Type *Ty,
    686                                       CodeGenFunction &CGF) {
    687   llvm::Type *SrcTy =
    688     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    689 
    690   // If SrcTy and Ty are the same, just do a load.
    691   if (SrcTy == Ty)
    692     return CGF.Builder.CreateLoad(SrcPtr);
    693 
    694   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
    695 
    696   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
    697     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    698     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    699   }
    700 
    701   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
    702 
    703   // If the source and destination are integer or pointer types, just do an
    704   // extension or truncation to the desired type.
    705   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
    706       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
    707     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
    708     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
    709   }
    710 
    711   // If load is legal, just bitcast the src pointer.
    712   if (SrcSize >= DstSize) {
    713     // Generally SrcSize is never greater than DstSize, since this means we are
    714     // losing bits. However, this can happen in cases where the structure has
    715     // additional padding, for example due to a user specified alignment.
    716     //
    717     // FIXME: Assert that we aren't truncating non-padding bits when have access
    718     // to that information.
    719     llvm::Value *Casted =
    720       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
    721     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    722     // FIXME: Use better alignment / avoid requiring aligned load.
    723     Load->setAlignment(1);
    724     return Load;
    725   }
    726 
    727   // Otherwise do coercion through memory. This is stupid, but
    728   // simple.
    729   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
    730   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
    731   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
    732   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
    733   // FIXME: Use better alignment.
    734   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
    735       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
    736       1, false);
    737   return CGF.Builder.CreateLoad(Tmp);
    738 }
    739 
    740 // Function to store a first-class aggregate into memory.  We prefer to
    741 // store the elements rather than the aggregate to be more friendly to
    742 // fast-isel.
    743 // FIXME: Do we need to recurse here?
    744 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
    745                           llvm::Value *DestPtr, bool DestIsVolatile,
    746                           bool LowAlignment) {
    747   // Prefer scalar stores to first-class aggregate stores.
    748   if (llvm::StructType *STy =
    749         dyn_cast<llvm::StructType>(Val->getType())) {
    750     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    751       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
    752       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
    753       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
    754                                                     DestIsVolatile);
    755       if (LowAlignment)
    756         SI->setAlignment(1);
    757     }
    758   } else {
    759     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
    760     if (LowAlignment)
    761       SI->setAlignment(1);
    762   }
    763 }
    764 
    765 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
    766 /// where the source and destination may have different types.
    767 ///
    768 /// This safely handles the case when the src type is larger than the
    769 /// destination type; the upper bits of the src will be lost.
    770 static void CreateCoercedStore(llvm::Value *Src,
    771                                llvm::Value *DstPtr,
    772                                bool DstIsVolatile,
    773                                CodeGenFunction &CGF) {
    774   llvm::Type *SrcTy = Src->getType();
    775   llvm::Type *DstTy =
    776     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
    777   if (SrcTy == DstTy) {
    778     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
    779     return;
    780   }
    781 
    782   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
    783 
    784   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
    785     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
    786     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
    787   }
    788 
    789   // If the source and destination are integer or pointer types, just do an
    790   // extension or truncation to the desired type.
    791   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
    792       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
    793     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
    794     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
    795     return;
    796   }
    797 
    798   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
    799 
    800   // If store is legal, just bitcast the src pointer.
    801   if (SrcSize <= DstSize) {
    802     llvm::Value *Casted =
    803       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
    804     // FIXME: Use better alignment / avoid requiring aligned store.
    805     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
    806   } else {
    807     // Otherwise do coercion through memory. This is stupid, but
    808     // simple.
    809 
    810     // Generally SrcSize is never greater than DstSize, since this means we are
    811     // losing bits. However, this can happen in cases where the structure has
    812     // additional padding, for example due to a user specified alignment.
    813     //
    814     // FIXME: Assert that we aren't truncating non-padding bits when have access
    815     // to that information.
    816     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
    817     CGF.Builder.CreateStore(Src, Tmp);
    818     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
    819     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
    820     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
    821     // FIXME: Use better alignment.
    822     CGF.Builder.CreateMemCpy(DstCasted, Casted,
    823         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
    824         1, false);
    825   }
    826 }
    827 
    828 /***/
    829 
    830 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
    831   return FI.getReturnInfo().isIndirect();
    832 }
    833 
    834 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
    835   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
    836     switch (BT->getKind()) {
    837     default:
    838       return false;
    839     case BuiltinType::Float:
    840       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
    841     case BuiltinType::Double:
    842       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
    843     case BuiltinType::LongDouble:
    844       return getContext().getTargetInfo().useObjCFPRetForRealType(
    845         TargetInfo::LongDouble);
    846     }
    847   }
    848 
    849   return false;
    850 }
    851 
    852 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
    853   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
    854     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
    855       if (BT->getKind() == BuiltinType::LongDouble)
    856         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
    857     }
    858   }
    859 
    860   return false;
    861 }
    862 
    863 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
    864   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
    865   return GetFunctionType(FI);
    866 }
    867 
    868 llvm::FunctionType *
    869 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
    870 
    871   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
    872   assert(Inserted && "Recursively being processed?");
    873 
    874   SmallVector<llvm::Type*, 8> argTypes;
    875   llvm::Type *resultType = 0;
    876 
    877   const ABIArgInfo &retAI = FI.getReturnInfo();
    878   switch (retAI.getKind()) {
    879   case ABIArgInfo::Expand:
    880     llvm_unreachable("Invalid ABI kind for return argument");
    881 
    882   case ABIArgInfo::Extend:
    883   case ABIArgInfo::Direct:
    884     resultType = retAI.getCoerceToType();
    885     break;
    886 
    887   case ABIArgInfo::Indirect: {
    888     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
    889     resultType = llvm::Type::getVoidTy(getLLVMContext());
    890 
    891     QualType ret = FI.getReturnType();
    892     llvm::Type *ty = ConvertType(ret);
    893     unsigned addressSpace = Context.getTargetAddressSpace(ret);
    894     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
    895     break;
    896   }
    897 
    898   case ABIArgInfo::Ignore:
    899     resultType = llvm::Type::getVoidTy(getLLVMContext());
    900     break;
    901   }
    902 
    903   // Add in all of the required arguments.
    904   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
    905   if (FI.isVariadic()) {
    906     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
    907   } else {
    908     ie = FI.arg_end();
    909   }
    910   for (; it != ie; ++it) {
    911     const ABIArgInfo &argAI = it->info;
    912 
    913     // Insert a padding type to ensure proper alignment.
    914     if (llvm::Type *PaddingType = argAI.getPaddingType())
    915       argTypes.push_back(PaddingType);
    916 
    917     switch (argAI.getKind()) {
    918     case ABIArgInfo::Ignore:
    919       break;
    920 
    921     case ABIArgInfo::Indirect: {
    922       // indirect arguments are always on the stack, which is addr space #0.
    923       llvm::Type *LTy = ConvertTypeForMem(it->type);
    924       argTypes.push_back(LTy->getPointerTo());
    925       break;
    926     }
    927 
    928     case ABIArgInfo::Extend:
    929     case ABIArgInfo::Direct: {
    930       // If the coerce-to type is a first class aggregate, flatten it.  Either
    931       // way is semantically identical, but fast-isel and the optimizer
    932       // generally likes scalar values better than FCAs.
    933       llvm::Type *argType = argAI.getCoerceToType();
    934       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
    935         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
    936           argTypes.push_back(st->getElementType(i));
    937       } else {
    938         argTypes.push_back(argType);
    939       }
    940       break;
    941     }
    942 
    943     case ABIArgInfo::Expand:
    944       GetExpandedTypes(it->type, argTypes);
    945       break;
    946     }
    947   }
    948 
    949   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
    950   assert(Erased && "Not in set?");
    951 
    952   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
    953 }
    954 
    955 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
    956   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    957   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
    958 
    959   if (!isFuncTypeConvertible(FPT))
    960     return llvm::StructType::get(getLLVMContext());
    961 
    962   const CGFunctionInfo *Info;
    963   if (isa<CXXDestructorDecl>(MD))
    964     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
    965   else
    966     Info = &arrangeCXXMethodDeclaration(MD);
    967   return GetFunctionType(*Info);
    968 }
    969 
    970 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
    971                                            const Decl *TargetDecl,
    972                                            AttributeListType &PAL,
    973                                            unsigned &CallingConv,
    974                                            bool AttrOnCallSite) {
    975   llvm::AttrBuilder FuncAttrs;
    976   llvm::AttrBuilder RetAttrs;
    977 
    978   CallingConv = FI.getEffectiveCallingConvention();
    979 
    980   if (FI.isNoReturn())
    981     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
    982 
    983   // FIXME: handle sseregparm someday...
    984   if (TargetDecl) {
    985     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
    986       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
    987     if (TargetDecl->hasAttr<NoThrowAttr>())
    988       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
    989     if (TargetDecl->hasAttr<NoReturnAttr>())
    990       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
    991 
    992     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
    993       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
    994       if (FPT && FPT->isNothrow(getContext()))
    995         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
    996       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
    997       // These attributes are not inherited by overloads.
    998       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
    999       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
   1000         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1001     }
   1002 
   1003     // 'const' and 'pure' attribute functions are also nounwind.
   1004     if (TargetDecl->hasAttr<ConstAttr>()) {
   1005       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
   1006       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1007     } else if (TargetDecl->hasAttr<PureAttr>()) {
   1008       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
   1009       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1010     }
   1011     if (TargetDecl->hasAttr<MallocAttr>())
   1012       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
   1013   }
   1014 
   1015   if (CodeGenOpts.OptimizeSize)
   1016     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
   1017   if (CodeGenOpts.OptimizeSize == 2)
   1018     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
   1019   if (CodeGenOpts.DisableRedZone)
   1020     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
   1021   if (CodeGenOpts.NoImplicitFloat)
   1022     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
   1023 
   1024   if (AttrOnCallSite) {
   1025     // Attributes that should go on the call site only.
   1026     if (!CodeGenOpts.SimplifyLibCalls)
   1027       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
   1028   } else {
   1029     // Attributes that should go on the function, but not the call site.
   1030     if (!CodeGenOpts.DisableFPElim) {
   1031       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
   1032       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
   1033     } else if (CodeGenOpts.OmitLeafFramePointer) {
   1034       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
   1035       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
   1036     } else {
   1037       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
   1038       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
   1039     }
   1040 
   1041     FuncAttrs.addAttribute("less-precise-fpmad",
   1042                            CodeGenOpts.LessPreciseFPMAD ? "true" : "false");
   1043     FuncAttrs.addAttribute("no-infs-fp-math",
   1044                            CodeGenOpts.NoInfsFPMath ? "true" : "false");
   1045     FuncAttrs.addAttribute("no-nans-fp-math",
   1046                            CodeGenOpts.NoNaNsFPMath ? "true" : "false");
   1047     FuncAttrs.addAttribute("unsafe-fp-math",
   1048                            CodeGenOpts.UnsafeFPMath ? "true" : "false");
   1049     FuncAttrs.addAttribute("use-soft-float",
   1050                            CodeGenOpts.SoftFloat ? "true" : "false");
   1051   }
   1052 
   1053   QualType RetTy = FI.getReturnType();
   1054   unsigned Index = 1;
   1055   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1056   switch (RetAI.getKind()) {
   1057   case ABIArgInfo::Extend:
   1058    if (RetTy->hasSignedIntegerRepresentation())
   1059      RetAttrs.addAttribute(llvm::Attribute::SExt);
   1060    else if (RetTy->hasUnsignedIntegerRepresentation())
   1061      RetAttrs.addAttribute(llvm::Attribute::ZExt);
   1062     break;
   1063   case ABIArgInfo::Direct:
   1064   case ABIArgInfo::Ignore:
   1065     break;
   1066 
   1067   case ABIArgInfo::Indirect: {
   1068     llvm::AttrBuilder SRETAttrs;
   1069     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
   1070     if (RetAI.getInReg())
   1071       SRETAttrs.addAttribute(llvm::Attribute::InReg);
   1072     PAL.push_back(llvm::
   1073                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
   1074 
   1075     ++Index;
   1076     // sret disables readnone and readonly
   1077     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1078       .removeAttribute(llvm::Attribute::ReadNone);
   1079     break;
   1080   }
   1081 
   1082   case ABIArgInfo::Expand:
   1083     llvm_unreachable("Invalid ABI kind for return argument");
   1084   }
   1085 
   1086   if (RetAttrs.hasAttributes())
   1087     PAL.push_back(llvm::
   1088                   AttributeSet::get(getLLVMContext(),
   1089                                     llvm::AttributeSet::ReturnIndex,
   1090                                     RetAttrs));
   1091 
   1092   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
   1093          ie = FI.arg_end(); it != ie; ++it) {
   1094     QualType ParamType = it->type;
   1095     const ABIArgInfo &AI = it->info;
   1096     llvm::AttrBuilder Attrs;
   1097 
   1098     if (AI.getPaddingType()) {
   1099       if (AI.getPaddingInReg())
   1100         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
   1101                                               llvm::Attribute::InReg));
   1102       // Increment Index if there is padding.
   1103       ++Index;
   1104     }
   1105 
   1106     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
   1107     // have the corresponding parameter variable.  It doesn't make
   1108     // sense to do it here because parameters are so messed up.
   1109     switch (AI.getKind()) {
   1110     case ABIArgInfo::Extend:
   1111       if (ParamType->isSignedIntegerOrEnumerationType())
   1112         Attrs.addAttribute(llvm::Attribute::SExt);
   1113       else if (ParamType->isUnsignedIntegerOrEnumerationType())
   1114         Attrs.addAttribute(llvm::Attribute::ZExt);
   1115       // FALL THROUGH
   1116     case ABIArgInfo::Direct:
   1117       if (AI.getInReg())
   1118         Attrs.addAttribute(llvm::Attribute::InReg);
   1119 
   1120       // FIXME: handle sseregparm someday...
   1121 
   1122       if (llvm::StructType *STy =
   1123           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
   1124         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
   1125         if (Attrs.hasAttributes())
   1126           for (unsigned I = 0; I < Extra; ++I)
   1127             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
   1128                                                   Attrs));
   1129         Index += Extra;
   1130       }
   1131       break;
   1132 
   1133     case ABIArgInfo::Indirect:
   1134       if (AI.getInReg())
   1135         Attrs.addAttribute(llvm::Attribute::InReg);
   1136 
   1137       if (AI.getIndirectByVal())
   1138         Attrs.addAttribute(llvm::Attribute::ByVal);
   1139 
   1140       Attrs.addAlignmentAttr(AI.getIndirectAlign());
   1141 
   1142       // byval disables readnone and readonly.
   1143       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1144         .removeAttribute(llvm::Attribute::ReadNone);
   1145       break;
   1146 
   1147     case ABIArgInfo::Ignore:
   1148       // Skip increment, no matching LLVM parameter.
   1149       continue;
   1150 
   1151     case ABIArgInfo::Expand: {
   1152       SmallVector<llvm::Type*, 8> types;
   1153       // FIXME: This is rather inefficient. Do we ever actually need to do
   1154       // anything here? The result should be just reconstructed on the other
   1155       // side, so extension should be a non-issue.
   1156       getTypes().GetExpandedTypes(ParamType, types);
   1157       Index += types.size();
   1158       continue;
   1159     }
   1160     }
   1161 
   1162     if (Attrs.hasAttributes())
   1163       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
   1164     ++Index;
   1165   }
   1166   if (FuncAttrs.hasAttributes())
   1167     PAL.push_back(llvm::
   1168                   AttributeSet::get(getLLVMContext(),
   1169                                     llvm::AttributeSet::FunctionIndex,
   1170                                     FuncAttrs));
   1171 }
   1172 
   1173 /// An argument came in as a promoted argument; demote it back to its
   1174 /// declared type.
   1175 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
   1176                                          const VarDecl *var,
   1177                                          llvm::Value *value) {
   1178   llvm::Type *varType = CGF.ConvertType(var->getType());
   1179 
   1180   // This can happen with promotions that actually don't change the
   1181   // underlying type, like the enum promotions.
   1182   if (value->getType() == varType) return value;
   1183 
   1184   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
   1185          && "unexpected promotion type");
   1186 
   1187   if (isa<llvm::IntegerType>(varType))
   1188     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
   1189 
   1190   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
   1191 }
   1192 
   1193 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
   1194                                          llvm::Function *Fn,
   1195                                          const FunctionArgList &Args) {
   1196   // If this is an implicit-return-zero function, go ahead and
   1197   // initialize the return value.  TODO: it might be nice to have
   1198   // a more general mechanism for this that didn't require synthesized
   1199   // return statements.
   1200   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
   1201     if (FD->hasImplicitReturnZero()) {
   1202       QualType RetTy = FD->getResultType().getUnqualifiedType();
   1203       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
   1204       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
   1205       Builder.CreateStore(Zero, ReturnValue);
   1206     }
   1207   }
   1208 
   1209   // FIXME: We no longer need the types from FunctionArgList; lift up and
   1210   // simplify.
   1211 
   1212   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
   1213   llvm::Function::arg_iterator AI = Fn->arg_begin();
   1214 
   1215   // Name the struct return argument.
   1216   if (CGM.ReturnTypeUsesSRet(FI)) {
   1217     AI->setName("agg.result");
   1218     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1219                                         AI->getArgNo() + 1,
   1220                                         llvm::Attribute::NoAlias));
   1221     ++AI;
   1222   }
   1223 
   1224   assert(FI.arg_size() == Args.size() &&
   1225          "Mismatch between function signature & arguments.");
   1226   unsigned ArgNo = 1;
   1227   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
   1228   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
   1229        i != e; ++i, ++info_it, ++ArgNo) {
   1230     const VarDecl *Arg = *i;
   1231     QualType Ty = info_it->type;
   1232     const ABIArgInfo &ArgI = info_it->info;
   1233 
   1234     bool isPromoted =
   1235       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
   1236 
   1237     // Skip the dummy padding argument.
   1238     if (ArgI.getPaddingType())
   1239       ++AI;
   1240 
   1241     switch (ArgI.getKind()) {
   1242     case ABIArgInfo::Indirect: {
   1243       llvm::Value *V = AI;
   1244 
   1245       if (!hasScalarEvaluationKind(Ty)) {
   1246         // Aggregates and complex variables are accessed by reference.  All we
   1247         // need to do is realign the value, if requested
   1248         if (ArgI.getIndirectRealign()) {
   1249           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
   1250 
   1251           // Copy from the incoming argument pointer to the temporary with the
   1252           // appropriate alignment.
   1253           //
   1254           // FIXME: We should have a common utility for generating an aggregate
   1255           // copy.
   1256           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
   1257           CharUnits Size = getContext().getTypeSizeInChars(Ty);
   1258           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
   1259           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
   1260           Builder.CreateMemCpy(Dst,
   1261                                Src,
   1262                                llvm::ConstantInt::get(IntPtrTy,
   1263                                                       Size.getQuantity()),
   1264                                ArgI.getIndirectAlign(),
   1265                                false);
   1266           V = AlignedTemp;
   1267         }
   1268       } else {
   1269         // Load scalar value from indirect argument.
   1270         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
   1271         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
   1272 
   1273         if (isPromoted)
   1274           V = emitArgumentDemotion(*this, Arg, V);
   1275       }
   1276       EmitParmDecl(*Arg, V, ArgNo);
   1277       break;
   1278     }
   1279 
   1280     case ABIArgInfo::Extend:
   1281     case ABIArgInfo::Direct: {
   1282 
   1283       // If we have the trivial case, handle it with no muss and fuss.
   1284       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
   1285           ArgI.getCoerceToType() == ConvertType(Ty) &&
   1286           ArgI.getDirectOffset() == 0) {
   1287         assert(AI != Fn->arg_end() && "Argument mismatch!");
   1288         llvm::Value *V = AI;
   1289 
   1290         if (Arg->getType().isRestrictQualified())
   1291           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1292                                               AI->getArgNo() + 1,
   1293                                               llvm::Attribute::NoAlias));
   1294 
   1295         // Ensure the argument is the correct type.
   1296         if (V->getType() != ArgI.getCoerceToType())
   1297           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
   1298 
   1299         if (isPromoted)
   1300           V = emitArgumentDemotion(*this, Arg, V);
   1301 
   1302         // Because of merging of function types from multiple decls it is
   1303         // possible for the type of an argument to not match the corresponding
   1304         // type in the function type. Since we are codegening the callee
   1305         // in here, add a cast to the argument type.
   1306         llvm::Type *LTy = ConvertType(Arg->getType());
   1307         if (V->getType() != LTy)
   1308           V = Builder.CreateBitCast(V, LTy);
   1309 
   1310         EmitParmDecl(*Arg, V, ArgNo);
   1311         break;
   1312       }
   1313 
   1314       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
   1315 
   1316       // The alignment we need to use is the max of the requested alignment for
   1317       // the argument plus the alignment required by our access code below.
   1318       unsigned AlignmentToUse =
   1319         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
   1320       AlignmentToUse = std::max(AlignmentToUse,
   1321                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
   1322 
   1323       Alloca->setAlignment(AlignmentToUse);
   1324       llvm::Value *V = Alloca;
   1325       llvm::Value *Ptr = V;    // Pointer to store into.
   1326 
   1327       // If the value is offset in memory, apply the offset now.
   1328       if (unsigned Offs = ArgI.getDirectOffset()) {
   1329         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
   1330         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
   1331         Ptr = Builder.CreateBitCast(Ptr,
   1332                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
   1333       }
   1334 
   1335       // If the coerce-to type is a first class aggregate, we flatten it and
   1336       // pass the elements. Either way is semantically identical, but fast-isel
   1337       // and the optimizer generally likes scalar values better than FCAs.
   1338       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
   1339       if (STy && STy->getNumElements() > 1) {
   1340         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
   1341         llvm::Type *DstTy =
   1342           cast<llvm::PointerType>(Ptr->getType())->getElementType();
   1343         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
   1344 
   1345         if (SrcSize <= DstSize) {
   1346           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
   1347 
   1348           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1349             assert(AI != Fn->arg_end() && "Argument mismatch!");
   1350             AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1351             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
   1352             Builder.CreateStore(AI++, EltPtr);
   1353           }
   1354         } else {
   1355           llvm::AllocaInst *TempAlloca =
   1356             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
   1357           TempAlloca->setAlignment(AlignmentToUse);
   1358           llvm::Value *TempV = TempAlloca;
   1359 
   1360           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1361             assert(AI != Fn->arg_end() && "Argument mismatch!");
   1362             AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1363             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
   1364             Builder.CreateStore(AI++, EltPtr);
   1365           }
   1366 
   1367           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
   1368         }
   1369       } else {
   1370         // Simple case, just do a coerced store of the argument into the alloca.
   1371         assert(AI != Fn->arg_end() && "Argument mismatch!");
   1372         AI->setName(Arg->getName() + ".coerce");
   1373         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
   1374       }
   1375 
   1376 
   1377       // Match to what EmitParmDecl is expecting for this type.
   1378       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
   1379         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
   1380         if (isPromoted)
   1381           V = emitArgumentDemotion(*this, Arg, V);
   1382       }
   1383       EmitParmDecl(*Arg, V, ArgNo);
   1384       continue;  // Skip ++AI increment, already done.
   1385     }
   1386 
   1387     case ABIArgInfo::Expand: {
   1388       // If this structure was expanded into multiple arguments then
   1389       // we need to create a temporary and reconstruct it from the
   1390       // arguments.
   1391       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
   1392       CharUnits Align = getContext().getDeclAlign(Arg);
   1393       Alloca->setAlignment(Align.getQuantity());
   1394       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
   1395       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
   1396       EmitParmDecl(*Arg, Alloca, ArgNo);
   1397 
   1398       // Name the arguments used in expansion and increment AI.
   1399       unsigned Index = 0;
   1400       for (; AI != End; ++AI, ++Index)
   1401         AI->setName(Arg->getName() + "." + Twine(Index));
   1402       continue;
   1403     }
   1404 
   1405     case ABIArgInfo::Ignore:
   1406       // Initialize the local variable appropriately.
   1407       if (!hasScalarEvaluationKind(Ty))
   1408         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
   1409       else
   1410         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
   1411                      ArgNo);
   1412 
   1413       // Skip increment, no matching LLVM parameter.
   1414       continue;
   1415     }
   1416 
   1417     ++AI;
   1418   }
   1419   assert(AI == Fn->arg_end() && "Argument mismatch!");
   1420 }
   1421 
   1422 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
   1423   while (insn->use_empty()) {
   1424     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
   1425     if (!bitcast) return;
   1426 
   1427     // This is "safe" because we would have used a ConstantExpr otherwise.
   1428     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
   1429     bitcast->eraseFromParent();
   1430   }
   1431 }
   1432 
   1433 /// Try to emit a fused autorelease of a return result.
   1434 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
   1435                                                     llvm::Value *result) {
   1436   // We must be immediately followed the cast.
   1437   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
   1438   if (BB->empty()) return 0;
   1439   if (&BB->back() != result) return 0;
   1440 
   1441   llvm::Type *resultType = result->getType();
   1442 
   1443   // result is in a BasicBlock and is therefore an Instruction.
   1444   llvm::Instruction *generator = cast<llvm::Instruction>(result);
   1445 
   1446   SmallVector<llvm::Instruction*,4> insnsToKill;
   1447 
   1448   // Look for:
   1449   //  %generator = bitcast %type1* %generator2 to %type2*
   1450   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
   1451     // We would have emitted this as a constant if the operand weren't
   1452     // an Instruction.
   1453     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
   1454 
   1455     // Require the generator to be immediately followed by the cast.
   1456     if (generator->getNextNode() != bitcast)
   1457       return 0;
   1458 
   1459     insnsToKill.push_back(bitcast);
   1460   }
   1461 
   1462   // Look for:
   1463   //   %generator = call i8* @objc_retain(i8* %originalResult)
   1464   // or
   1465   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
   1466   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
   1467   if (!call) return 0;
   1468 
   1469   bool doRetainAutorelease;
   1470 
   1471   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
   1472     doRetainAutorelease = true;
   1473   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
   1474                                           .objc_retainAutoreleasedReturnValue) {
   1475     doRetainAutorelease = false;
   1476 
   1477     // If we emitted an assembly marker for this call (and the
   1478     // ARCEntrypoints field should have been set if so), go looking
   1479     // for that call.  If we can't find it, we can't do this
   1480     // optimization.  But it should always be the immediately previous
   1481     // instruction, unless we needed bitcasts around the call.
   1482     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
   1483       llvm::Instruction *prev = call->getPrevNode();
   1484       assert(prev);
   1485       if (isa<llvm::BitCastInst>(prev)) {
   1486         prev = prev->getPrevNode();
   1487         assert(prev);
   1488       }
   1489       assert(isa<llvm::CallInst>(prev));
   1490       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
   1491                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
   1492       insnsToKill.push_back(prev);
   1493     }
   1494   } else {
   1495     return 0;
   1496   }
   1497 
   1498   result = call->getArgOperand(0);
   1499   insnsToKill.push_back(call);
   1500 
   1501   // Keep killing bitcasts, for sanity.  Note that we no longer care
   1502   // about precise ordering as long as there's exactly one use.
   1503   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
   1504     if (!bitcast->hasOneUse()) break;
   1505     insnsToKill.push_back(bitcast);
   1506     result = bitcast->getOperand(0);
   1507   }
   1508 
   1509   // Delete all the unnecessary instructions, from latest to earliest.
   1510   for (SmallVectorImpl<llvm::Instruction*>::iterator
   1511          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
   1512     (*i)->eraseFromParent();
   1513 
   1514   // Do the fused retain/autorelease if we were asked to.
   1515   if (doRetainAutorelease)
   1516     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
   1517 
   1518   // Cast back to the result type.
   1519   return CGF.Builder.CreateBitCast(result, resultType);
   1520 }
   1521 
   1522 /// If this is a +1 of the value of an immutable 'self', remove it.
   1523 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
   1524                                           llvm::Value *result) {
   1525   // This is only applicable to a method with an immutable 'self'.
   1526   const ObjCMethodDecl *method =
   1527     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
   1528   if (!method) return 0;
   1529   const VarDecl *self = method->getSelfDecl();
   1530   if (!self->getType().isConstQualified()) return 0;
   1531 
   1532   // Look for a retain call.
   1533   llvm::CallInst *retainCall =
   1534     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
   1535   if (!retainCall ||
   1536       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
   1537     return 0;
   1538 
   1539   // Look for an ordinary load of 'self'.
   1540   llvm::Value *retainedValue = retainCall->getArgOperand(0);
   1541   llvm::LoadInst *load =
   1542     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
   1543   if (!load || load->isAtomic() || load->isVolatile() ||
   1544       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
   1545     return 0;
   1546 
   1547   // Okay!  Burn it all down.  This relies for correctness on the
   1548   // assumption that the retain is emitted as part of the return and
   1549   // that thereafter everything is used "linearly".
   1550   llvm::Type *resultType = result->getType();
   1551   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
   1552   assert(retainCall->use_empty());
   1553   retainCall->eraseFromParent();
   1554   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
   1555 
   1556   return CGF.Builder.CreateBitCast(load, resultType);
   1557 }
   1558 
   1559 /// Emit an ARC autorelease of the result of a function.
   1560 ///
   1561 /// \return the value to actually return from the function
   1562 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
   1563                                             llvm::Value *result) {
   1564   // If we're returning 'self', kill the initial retain.  This is a
   1565   // heuristic attempt to "encourage correctness" in the really unfortunate
   1566   // case where we have a return of self during a dealloc and we desperately
   1567   // need to avoid the possible autorelease.
   1568   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
   1569     return self;
   1570 
   1571   // At -O0, try to emit a fused retain/autorelease.
   1572   if (CGF.shouldUseFusedARCCalls())
   1573     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
   1574       return fused;
   1575 
   1576   return CGF.EmitARCAutoreleaseReturnValue(result);
   1577 }
   1578 
   1579 /// Heuristically search for a dominating store to the return-value slot.
   1580 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
   1581   // If there are multiple uses of the return-value slot, just check
   1582   // for something immediately preceding the IP.  Sometimes this can
   1583   // happen with how we generate implicit-returns; it can also happen
   1584   // with noreturn cleanups.
   1585   if (!CGF.ReturnValue->hasOneUse()) {
   1586     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   1587     if (IP->empty()) return 0;
   1588     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
   1589     if (!store) return 0;
   1590     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
   1591     assert(!store->isAtomic() && !store->isVolatile()); // see below
   1592     return store;
   1593   }
   1594 
   1595   llvm::StoreInst *store =
   1596     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
   1597   if (!store) return 0;
   1598 
   1599   // These aren't actually possible for non-coerced returns, and we
   1600   // only care about non-coerced returns on this code path.
   1601   assert(!store->isAtomic() && !store->isVolatile());
   1602 
   1603   // Now do a first-and-dirty dominance check: just walk up the
   1604   // single-predecessors chain from the current insertion point.
   1605   llvm::BasicBlock *StoreBB = store->getParent();
   1606   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   1607   while (IP != StoreBB) {
   1608     if (!(IP = IP->getSinglePredecessor()))
   1609       return 0;
   1610   }
   1611 
   1612   // Okay, the store's basic block dominates the insertion point; we
   1613   // can do our thing.
   1614   return store;
   1615 }
   1616 
   1617 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
   1618   // Functions with no result always return void.
   1619   if (ReturnValue == 0) {
   1620     Builder.CreateRetVoid();
   1621     return;
   1622   }
   1623 
   1624   llvm::DebugLoc RetDbgLoc;
   1625   llvm::Value *RV = 0;
   1626   QualType RetTy = FI.getReturnType();
   1627   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1628 
   1629   switch (RetAI.getKind()) {
   1630   case ABIArgInfo::Indirect: {
   1631     switch (getEvaluationKind(RetTy)) {
   1632     case TEK_Complex: {
   1633       ComplexPairTy RT =
   1634         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
   1635       EmitStoreOfComplex(RT,
   1636                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
   1637                          /*isInit*/ true);
   1638       break;
   1639     }
   1640     case TEK_Aggregate:
   1641       // Do nothing; aggregrates get evaluated directly into the destination.
   1642       break;
   1643     case TEK_Scalar:
   1644       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
   1645                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
   1646                         /*isInit*/ true);
   1647       break;
   1648     }
   1649     break;
   1650   }
   1651 
   1652   case ABIArgInfo::Extend:
   1653   case ABIArgInfo::Direct:
   1654     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
   1655         RetAI.getDirectOffset() == 0) {
   1656       // The internal return value temp always will have pointer-to-return-type
   1657       // type, just do a load.
   1658 
   1659       // If there is a dominating store to ReturnValue, we can elide
   1660       // the load, zap the store, and usually zap the alloca.
   1661       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
   1662         // Get the stored value and nuke the now-dead store.
   1663         RetDbgLoc = SI->getDebugLoc();
   1664         RV = SI->getValueOperand();
   1665         SI->eraseFromParent();
   1666 
   1667         // If that was the only use of the return value, nuke it as well now.
   1668         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
   1669           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
   1670           ReturnValue = 0;
   1671         }
   1672 
   1673       // Otherwise, we have to do a simple load.
   1674       } else {
   1675         RV = Builder.CreateLoad(ReturnValue);
   1676       }
   1677     } else {
   1678       llvm::Value *V = ReturnValue;
   1679       // If the value is offset in memory, apply the offset now.
   1680       if (unsigned Offs = RetAI.getDirectOffset()) {
   1681         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
   1682         V = Builder.CreateConstGEP1_32(V, Offs);
   1683         V = Builder.CreateBitCast(V,
   1684                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   1685       }
   1686 
   1687       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
   1688     }
   1689 
   1690     // In ARC, end functions that return a retainable type with a call
   1691     // to objc_autoreleaseReturnValue.
   1692     if (AutoreleaseResult) {
   1693       assert(getLangOpts().ObjCAutoRefCount &&
   1694              !FI.isReturnsRetained() &&
   1695              RetTy->isObjCRetainableType());
   1696       RV = emitAutoreleaseOfResult(*this, RV);
   1697     }
   1698 
   1699     break;
   1700 
   1701   case ABIArgInfo::Ignore:
   1702     break;
   1703 
   1704   case ABIArgInfo::Expand:
   1705     llvm_unreachable("Invalid ABI kind for return argument");
   1706   }
   1707 
   1708   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
   1709   if (!RetDbgLoc.isUnknown())
   1710     Ret->setDebugLoc(RetDbgLoc);
   1711 }
   1712 
   1713 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
   1714                                           const VarDecl *param) {
   1715   // StartFunction converted the ABI-lowered parameter(s) into a
   1716   // local alloca.  We need to turn that into an r-value suitable
   1717   // for EmitCall.
   1718   llvm::Value *local = GetAddrOfLocalVar(param);
   1719 
   1720   QualType type = param->getType();
   1721 
   1722   // For the most part, we just need to load the alloca, except:
   1723   // 1) aggregate r-values are actually pointers to temporaries, and
   1724   // 2) references to non-scalars are pointers directly to the aggregate.
   1725   // I don't know why references to scalars are different here.
   1726   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
   1727     if (!hasScalarEvaluationKind(ref->getPointeeType()))
   1728       return args.add(RValue::getAggregate(local), type);
   1729 
   1730     // Locals which are references to scalars are represented
   1731     // with allocas holding the pointer.
   1732     return args.add(RValue::get(Builder.CreateLoad(local)), type);
   1733   }
   1734 
   1735   args.add(convertTempToRValue(local, type), type);
   1736 }
   1737 
   1738 static bool isProvablyNull(llvm::Value *addr) {
   1739   return isa<llvm::ConstantPointerNull>(addr);
   1740 }
   1741 
   1742 static bool isProvablyNonNull(llvm::Value *addr) {
   1743   return isa<llvm::AllocaInst>(addr);
   1744 }
   1745 
   1746 /// Emit the actual writing-back of a writeback.
   1747 static void emitWriteback(CodeGenFunction &CGF,
   1748                           const CallArgList::Writeback &writeback) {
   1749   llvm::Value *srcAddr = writeback.Address;
   1750   assert(!isProvablyNull(srcAddr) &&
   1751          "shouldn't have writeback for provably null argument");
   1752 
   1753   llvm::BasicBlock *contBB = 0;
   1754 
   1755   // If the argument wasn't provably non-null, we need to null check
   1756   // before doing the store.
   1757   bool provablyNonNull = isProvablyNonNull(srcAddr);
   1758   if (!provablyNonNull) {
   1759     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
   1760     contBB = CGF.createBasicBlock("icr.done");
   1761 
   1762     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   1763     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
   1764     CGF.EmitBlock(writebackBB);
   1765   }
   1766 
   1767   // Load the value to writeback.
   1768   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
   1769 
   1770   // Cast it back, in case we're writing an id to a Foo* or something.
   1771   value = CGF.Builder.CreateBitCast(value,
   1772                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
   1773                             "icr.writeback-cast");
   1774 
   1775   // Perform the writeback.
   1776   QualType srcAddrType = writeback.AddressType;
   1777   CGF.EmitStoreThroughLValue(RValue::get(value),
   1778                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
   1779 
   1780   // Jump to the continuation block.
   1781   if (!provablyNonNull)
   1782     CGF.EmitBlock(contBB);
   1783 }
   1784 
   1785 static void emitWritebacks(CodeGenFunction &CGF,
   1786                            const CallArgList &args) {
   1787   for (CallArgList::writeback_iterator
   1788          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
   1789     emitWriteback(CGF, *i);
   1790 }
   1791 
   1792 /// Emit an argument that's being passed call-by-writeback.  That is,
   1793 /// we are passing the address of
   1794 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
   1795                              const ObjCIndirectCopyRestoreExpr *CRE) {
   1796   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
   1797 
   1798   // The dest and src types don't necessarily match in LLVM terms
   1799   // because of the crazy ObjC compatibility rules.
   1800 
   1801   llvm::PointerType *destType =
   1802     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
   1803 
   1804   // If the address is a constant null, just pass the appropriate null.
   1805   if (isProvablyNull(srcAddr)) {
   1806     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
   1807              CRE->getType());
   1808     return;
   1809   }
   1810 
   1811   QualType srcAddrType =
   1812     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
   1813 
   1814   // Create the temporary.
   1815   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
   1816                                            "icr.temp");
   1817   // Loading an l-value can introduce a cleanup if the l-value is __weak,
   1818   // and that cleanup will be conditional if we can't prove that the l-value
   1819   // isn't null, so we need to register a dominating point so that the cleanups
   1820   // system will make valid IR.
   1821   CodeGenFunction::ConditionalEvaluation condEval(CGF);
   1822 
   1823   // Zero-initialize it if we're not doing a copy-initialization.
   1824   bool shouldCopy = CRE->shouldCopy();
   1825   if (!shouldCopy) {
   1826     llvm::Value *null =
   1827       llvm::ConstantPointerNull::get(
   1828         cast<llvm::PointerType>(destType->getElementType()));
   1829     CGF.Builder.CreateStore(null, temp);
   1830   }
   1831 
   1832   llvm::BasicBlock *contBB = 0;
   1833 
   1834   // If the address is *not* known to be non-null, we need to switch.
   1835   llvm::Value *finalArgument;
   1836 
   1837   bool provablyNonNull = isProvablyNonNull(srcAddr);
   1838   if (provablyNonNull) {
   1839     finalArgument = temp;
   1840   } else {
   1841     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   1842 
   1843     finalArgument = CGF.Builder.CreateSelect(isNull,
   1844                                    llvm::ConstantPointerNull::get(destType),
   1845                                              temp, "icr.argument");
   1846 
   1847     // If we need to copy, then the load has to be conditional, which
   1848     // means we need control flow.
   1849     if (shouldCopy) {
   1850       contBB = CGF.createBasicBlock("icr.cont");
   1851       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
   1852       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
   1853       CGF.EmitBlock(copyBB);
   1854       condEval.begin(CGF);
   1855     }
   1856   }
   1857 
   1858   // Perform a copy if necessary.
   1859   if (shouldCopy) {
   1860     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
   1861     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
   1862     assert(srcRV.isScalar());
   1863 
   1864     llvm::Value *src = srcRV.getScalarVal();
   1865     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
   1866                                     "icr.cast");
   1867 
   1868     // Use an ordinary store, not a store-to-lvalue.
   1869     CGF.Builder.CreateStore(src, temp);
   1870   }
   1871 
   1872   // Finish the control flow if we needed it.
   1873   if (shouldCopy && !provablyNonNull) {
   1874     CGF.EmitBlock(contBB);
   1875     condEval.end(CGF);
   1876   }
   1877 
   1878   args.addWriteback(srcAddr, srcAddrType, temp);
   1879   args.add(RValue::get(finalArgument), CRE->getType());
   1880 }
   1881 
   1882 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
   1883                                   QualType type) {
   1884   if (const ObjCIndirectCopyRestoreExpr *CRE
   1885         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
   1886     assert(getLangOpts().ObjCAutoRefCount);
   1887     assert(getContext().hasSameType(E->getType(), type));
   1888     return emitWritebackArg(*this, args, CRE);
   1889   }
   1890 
   1891   assert(type->isReferenceType() == E->isGLValue() &&
   1892          "reference binding to unmaterialized r-value!");
   1893 
   1894   if (E->isGLValue()) {
   1895     assert(E->getObjectKind() == OK_Ordinary);
   1896     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
   1897                     type);
   1898   }
   1899 
   1900   if (hasAggregateEvaluationKind(type) &&
   1901       isa<ImplicitCastExpr>(E) &&
   1902       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
   1903     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
   1904     assert(L.isSimple());
   1905     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
   1906     return;
   1907   }
   1908 
   1909   args.add(EmitAnyExprToTemp(E), type);
   1910 }
   1911 
   1912 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   1913 // optimizer it can aggressively ignore unwind edges.
   1914 void
   1915 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
   1916   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
   1917       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
   1918     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
   1919                       CGM.getNoObjCARCExceptionsMetadata());
   1920 }
   1921 
   1922 /// Emits a call to the given no-arguments nounwind runtime function.
   1923 llvm::CallInst *
   1924 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
   1925                                          const llvm::Twine &name) {
   1926   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
   1927 }
   1928 
   1929 /// Emits a call to the given nounwind runtime function.
   1930 llvm::CallInst *
   1931 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
   1932                                          ArrayRef<llvm::Value*> args,
   1933                                          const llvm::Twine &name) {
   1934   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
   1935   call->setDoesNotThrow();
   1936   return call;
   1937 }
   1938 
   1939 /// Emits a simple call (never an invoke) to the given no-arguments
   1940 /// runtime function.
   1941 llvm::CallInst *
   1942 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
   1943                                  const llvm::Twine &name) {
   1944   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
   1945 }
   1946 
   1947 /// Emits a simple call (never an invoke) to the given runtime
   1948 /// function.
   1949 llvm::CallInst *
   1950 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
   1951                                  ArrayRef<llvm::Value*> args,
   1952                                  const llvm::Twine &name) {
   1953   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
   1954   call->setCallingConv(getRuntimeCC());
   1955   return call;
   1956 }
   1957 
   1958 /// Emits a call or invoke to the given noreturn runtime function.
   1959 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
   1960                                                ArrayRef<llvm::Value*> args) {
   1961   if (getInvokeDest()) {
   1962     llvm::InvokeInst *invoke =
   1963       Builder.CreateInvoke(callee,
   1964                            getUnreachableBlock(),
   1965                            getInvokeDest(),
   1966                            args);
   1967     invoke->setDoesNotReturn();
   1968     invoke->setCallingConv(getRuntimeCC());
   1969   } else {
   1970     llvm::CallInst *call = Builder.CreateCall(callee, args);
   1971     call->setDoesNotReturn();
   1972     call->setCallingConv(getRuntimeCC());
   1973     Builder.CreateUnreachable();
   1974   }
   1975 }
   1976 
   1977 /// Emits a call or invoke instruction to the given nullary runtime
   1978 /// function.
   1979 llvm::CallSite
   1980 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
   1981                                          const Twine &name) {
   1982   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
   1983 }
   1984 
   1985 /// Emits a call or invoke instruction to the given runtime function.
   1986 llvm::CallSite
   1987 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
   1988                                          ArrayRef<llvm::Value*> args,
   1989                                          const Twine &name) {
   1990   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
   1991   callSite.setCallingConv(getRuntimeCC());
   1992   return callSite;
   1993 }
   1994 
   1995 llvm::CallSite
   1996 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   1997                                   const Twine &Name) {
   1998   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
   1999 }
   2000 
   2001 /// Emits a call or invoke instruction to the given function, depending
   2002 /// on the current state of the EH stack.
   2003 llvm::CallSite
   2004 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   2005                                   ArrayRef<llvm::Value *> Args,
   2006                                   const Twine &Name) {
   2007   llvm::BasicBlock *InvokeDest = getInvokeDest();
   2008 
   2009   llvm::Instruction *Inst;
   2010   if (!InvokeDest)
   2011     Inst = Builder.CreateCall(Callee, Args, Name);
   2012   else {
   2013     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
   2014     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
   2015     EmitBlock(ContBB);
   2016   }
   2017 
   2018   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   2019   // optimizer it can aggressively ignore unwind edges.
   2020   if (CGM.getLangOpts().ObjCAutoRefCount)
   2021     AddObjCARCExceptionMetadata(Inst);
   2022 
   2023   return Inst;
   2024 }
   2025 
   2026 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
   2027                             llvm::FunctionType *FTy) {
   2028   if (ArgNo < FTy->getNumParams())
   2029     assert(Elt->getType() == FTy->getParamType(ArgNo));
   2030   else
   2031     assert(FTy->isVarArg());
   2032   ++ArgNo;
   2033 }
   2034 
   2035 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
   2036                                        SmallVector<llvm::Value*,16> &Args,
   2037                                        llvm::FunctionType *IRFuncTy) {
   2038   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   2039     unsigned NumElts = AT->getSize().getZExtValue();
   2040     QualType EltTy = AT->getElementType();
   2041     llvm::Value *Addr = RV.getAggregateAddr();
   2042     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
   2043       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
   2044       RValue EltRV = convertTempToRValue(EltAddr, EltTy);
   2045       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
   2046     }
   2047   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2048     RecordDecl *RD = RT->getDecl();
   2049     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
   2050     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
   2051 
   2052     if (RD->isUnion()) {
   2053       const FieldDecl *LargestFD = 0;
   2054       CharUnits UnionSize = CharUnits::Zero();
   2055 
   2056       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2057            i != e; ++i) {
   2058         const FieldDecl *FD = *i;
   2059         assert(!FD->isBitField() &&
   2060                "Cannot expand structure with bit-field members.");
   2061         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
   2062         if (UnionSize < FieldSize) {
   2063           UnionSize = FieldSize;
   2064           LargestFD = FD;
   2065         }
   2066       }
   2067       if (LargestFD) {
   2068         RValue FldRV = EmitRValueForField(LV, LargestFD);
   2069         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
   2070       }
   2071     } else {
   2072       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2073            i != e; ++i) {
   2074         FieldDecl *FD = *i;
   2075 
   2076         RValue FldRV = EmitRValueForField(LV, FD);
   2077         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
   2078       }
   2079     }
   2080   } else if (Ty->isAnyComplexType()) {
   2081     ComplexPairTy CV = RV.getComplexVal();
   2082     Args.push_back(CV.first);
   2083     Args.push_back(CV.second);
   2084   } else {
   2085     assert(RV.isScalar() &&
   2086            "Unexpected non-scalar rvalue during struct expansion.");
   2087 
   2088     // Insert a bitcast as needed.
   2089     llvm::Value *V = RV.getScalarVal();
   2090     if (Args.size() < IRFuncTy->getNumParams() &&
   2091         V->getType() != IRFuncTy->getParamType(Args.size()))
   2092       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
   2093 
   2094     Args.push_back(V);
   2095   }
   2096 }
   2097 
   2098 
   2099 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
   2100                                  llvm::Value *Callee,
   2101                                  ReturnValueSlot ReturnValue,
   2102                                  const CallArgList &CallArgs,
   2103                                  const Decl *TargetDecl,
   2104                                  llvm::Instruction **callOrInvoke) {
   2105   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
   2106   SmallVector<llvm::Value*, 16> Args;
   2107 
   2108   // Handle struct-return functions by passing a pointer to the
   2109   // location that we would like to return into.
   2110   QualType RetTy = CallInfo.getReturnType();
   2111   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
   2112 
   2113   // IRArgNo - Keep track of the argument number in the callee we're looking at.
   2114   unsigned IRArgNo = 0;
   2115   llvm::FunctionType *IRFuncTy =
   2116     cast<llvm::FunctionType>(
   2117                   cast<llvm::PointerType>(Callee->getType())->getElementType());
   2118 
   2119   // If the call returns a temporary with struct return, create a temporary
   2120   // alloca to hold the result, unless one is given to us.
   2121   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
   2122     llvm::Value *Value = ReturnValue.getValue();
   2123     if (!Value)
   2124       Value = CreateMemTemp(RetTy);
   2125     Args.push_back(Value);
   2126     checkArgMatches(Value, IRArgNo, IRFuncTy);
   2127   }
   2128 
   2129   assert(CallInfo.arg_size() == CallArgs.size() &&
   2130          "Mismatch between function signature & arguments.");
   2131   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
   2132   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
   2133        I != E; ++I, ++info_it) {
   2134     const ABIArgInfo &ArgInfo = info_it->info;
   2135     RValue RV = I->RV;
   2136 
   2137     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
   2138 
   2139     // Insert a padding argument to ensure proper alignment.
   2140     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
   2141       Args.push_back(llvm::UndefValue::get(PaddingType));
   2142       ++IRArgNo;
   2143     }
   2144 
   2145     switch (ArgInfo.getKind()) {
   2146     case ABIArgInfo::Indirect: {
   2147       if (RV.isScalar() || RV.isComplex()) {
   2148         // Make a temporary alloca to pass the argument.
   2149         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   2150         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
   2151           AI->setAlignment(ArgInfo.getIndirectAlign());
   2152         Args.push_back(AI);
   2153 
   2154         LValue argLV =
   2155           MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
   2156 
   2157         if (RV.isScalar())
   2158           EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
   2159         else
   2160           EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
   2161 
   2162         // Validate argument match.
   2163         checkArgMatches(AI, IRArgNo, IRFuncTy);
   2164       } else {
   2165         // We want to avoid creating an unnecessary temporary+copy here;
   2166         // however, we need one in three cases:
   2167         // 1. If the argument is not byval, and we are required to copy the
   2168         //    source.  (This case doesn't occur on any common architecture.)
   2169         // 2. If the argument is byval, RV is not sufficiently aligned, and
   2170         //    we cannot force it to be sufficiently aligned.
   2171         // 3. If the argument is byval, but RV is located in an address space
   2172         //    different than that of the argument (0).
   2173         llvm::Value *Addr = RV.getAggregateAddr();
   2174         unsigned Align = ArgInfo.getIndirectAlign();
   2175         const llvm::DataLayout *TD = &CGM.getDataLayout();
   2176         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
   2177         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
   2178           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
   2179         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
   2180             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
   2181              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
   2182              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
   2183           // Create an aligned temporary, and copy to it.
   2184           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   2185           if (Align > AI->getAlignment())
   2186             AI->setAlignment(Align);
   2187           Args.push_back(AI);
   2188           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
   2189 
   2190           // Validate argument match.
   2191           checkArgMatches(AI, IRArgNo, IRFuncTy);
   2192         } else {
   2193           // Skip the extra memcpy call.
   2194           Args.push_back(Addr);
   2195 
   2196           // Validate argument match.
   2197           checkArgMatches(Addr, IRArgNo, IRFuncTy);
   2198         }
   2199       }
   2200       break;
   2201     }
   2202 
   2203     case ABIArgInfo::Ignore:
   2204       break;
   2205 
   2206     case ABIArgInfo::Extend:
   2207     case ABIArgInfo::Direct: {
   2208       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
   2209           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
   2210           ArgInfo.getDirectOffset() == 0) {
   2211         llvm::Value *V;
   2212         if (RV.isScalar())
   2213           V = RV.getScalarVal();
   2214         else
   2215           V = Builder.CreateLoad(RV.getAggregateAddr());
   2216 
   2217         // If the argument doesn't match, perform a bitcast to coerce it.  This
   2218         // can happen due to trivial type mismatches.
   2219         if (IRArgNo < IRFuncTy->getNumParams() &&
   2220             V->getType() != IRFuncTy->getParamType(IRArgNo))
   2221           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
   2222         Args.push_back(V);
   2223 
   2224         checkArgMatches(V, IRArgNo, IRFuncTy);
   2225         break;
   2226       }
   2227 
   2228       // FIXME: Avoid the conversion through memory if possible.
   2229       llvm::Value *SrcPtr;
   2230       if (RV.isScalar() || RV.isComplex()) {
   2231         SrcPtr = CreateMemTemp(I->Ty, "coerce");
   2232         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
   2233         if (RV.isScalar()) {
   2234           EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
   2235         } else {
   2236           EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
   2237         }
   2238       } else
   2239         SrcPtr = RV.getAggregateAddr();
   2240 
   2241       // If the value is offset in memory, apply the offset now.
   2242       if (unsigned Offs = ArgInfo.getDirectOffset()) {
   2243         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
   2244         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
   2245         SrcPtr = Builder.CreateBitCast(SrcPtr,
   2246                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
   2247 
   2248       }
   2249 
   2250       // If the coerce-to type is a first class aggregate, we flatten it and
   2251       // pass the elements. Either way is semantically identical, but fast-isel
   2252       // and the optimizer generally likes scalar values better than FCAs.
   2253       if (llvm::StructType *STy =
   2254             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
   2255         llvm::Type *SrcTy =
   2256           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
   2257         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
   2258         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
   2259 
   2260         // If the source type is smaller than the destination type of the
   2261         // coerce-to logic, copy the source value into a temp alloca the size
   2262         // of the destination type to allow loading all of it. The bits past
   2263         // the source value are left undef.
   2264         if (SrcSize < DstSize) {
   2265           llvm::AllocaInst *TempAlloca
   2266             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
   2267           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
   2268           SrcPtr = TempAlloca;
   2269         } else {
   2270           SrcPtr = Builder.CreateBitCast(SrcPtr,
   2271                                          llvm::PointerType::getUnqual(STy));
   2272         }
   2273 
   2274         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2275           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
   2276           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
   2277           // We don't know what we're loading from.
   2278           LI->setAlignment(1);
   2279           Args.push_back(LI);
   2280 
   2281           // Validate argument match.
   2282           checkArgMatches(LI, IRArgNo, IRFuncTy);
   2283         }
   2284       } else {
   2285         // In the simple case, just pass the coerced loaded value.
   2286         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
   2287                                          *this));
   2288 
   2289         // Validate argument match.
   2290         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
   2291       }
   2292 
   2293       break;
   2294     }
   2295 
   2296     case ABIArgInfo::Expand:
   2297       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
   2298       IRArgNo = Args.size();
   2299       break;
   2300     }
   2301   }
   2302 
   2303   // If the callee is a bitcast of a function to a varargs pointer to function
   2304   // type, check to see if we can remove the bitcast.  This handles some cases
   2305   // with unprototyped functions.
   2306   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
   2307     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
   2308       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
   2309       llvm::FunctionType *CurFT =
   2310         cast<llvm::FunctionType>(CurPT->getElementType());
   2311       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
   2312 
   2313       if (CE->getOpcode() == llvm::Instruction::BitCast &&
   2314           ActualFT->getReturnType() == CurFT->getReturnType() &&
   2315           ActualFT->getNumParams() == CurFT->getNumParams() &&
   2316           ActualFT->getNumParams() == Args.size() &&
   2317           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
   2318         bool ArgsMatch = true;
   2319         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
   2320           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
   2321             ArgsMatch = false;
   2322             break;
   2323           }
   2324 
   2325         // Strip the cast if we can get away with it.  This is a nice cleanup,
   2326         // but also allows us to inline the function at -O0 if it is marked
   2327         // always_inline.
   2328         if (ArgsMatch)
   2329           Callee = CalleeF;
   2330       }
   2331     }
   2332 
   2333   unsigned CallingConv;
   2334   CodeGen::AttributeListType AttributeList;
   2335   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
   2336                              CallingConv, true);
   2337   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
   2338                                                      AttributeList);
   2339 
   2340   llvm::BasicBlock *InvokeDest = 0;
   2341   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
   2342                           llvm::Attribute::NoUnwind))
   2343     InvokeDest = getInvokeDest();
   2344 
   2345   llvm::CallSite CS;
   2346   if (!InvokeDest) {
   2347     CS = Builder.CreateCall(Callee, Args);
   2348   } else {
   2349     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
   2350     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
   2351     EmitBlock(Cont);
   2352   }
   2353   if (callOrInvoke)
   2354     *callOrInvoke = CS.getInstruction();
   2355 
   2356   CS.setAttributes(Attrs);
   2357   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
   2358 
   2359   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   2360   // optimizer it can aggressively ignore unwind edges.
   2361   if (CGM.getLangOpts().ObjCAutoRefCount)
   2362     AddObjCARCExceptionMetadata(CS.getInstruction());
   2363 
   2364   // If the call doesn't return, finish the basic block and clear the
   2365   // insertion point; this allows the rest of IRgen to discard
   2366   // unreachable code.
   2367   if (CS.doesNotReturn()) {
   2368     Builder.CreateUnreachable();
   2369     Builder.ClearInsertionPoint();
   2370 
   2371     // FIXME: For now, emit a dummy basic block because expr emitters in
   2372     // generally are not ready to handle emitting expressions at unreachable
   2373     // points.
   2374     EnsureInsertPoint();
   2375 
   2376     // Return a reasonable RValue.
   2377     return GetUndefRValue(RetTy);
   2378   }
   2379 
   2380   llvm::Instruction *CI = CS.getInstruction();
   2381   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
   2382     CI->setName("call");
   2383 
   2384   // Emit any writebacks immediately.  Arguably this should happen
   2385   // after any return-value munging.
   2386   if (CallArgs.hasWritebacks())
   2387     emitWritebacks(*this, CallArgs);
   2388 
   2389   switch (RetAI.getKind()) {
   2390   case ABIArgInfo::Indirect:
   2391     return convertTempToRValue(Args[0], RetTy);
   2392 
   2393   case ABIArgInfo::Ignore:
   2394     // If we are ignoring an argument that had a result, make sure to
   2395     // construct the appropriate return value for our caller.
   2396     return GetUndefRValue(RetTy);
   2397 
   2398   case ABIArgInfo::Extend:
   2399   case ABIArgInfo::Direct: {
   2400     llvm::Type *RetIRTy = ConvertType(RetTy);
   2401     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
   2402       switch (getEvaluationKind(RetTy)) {
   2403       case TEK_Complex: {
   2404         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
   2405         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
   2406         return RValue::getComplex(std::make_pair(Real, Imag));
   2407       }
   2408       case TEK_Aggregate: {
   2409         llvm::Value *DestPtr = ReturnValue.getValue();
   2410         bool DestIsVolatile = ReturnValue.isVolatile();
   2411 
   2412         if (!DestPtr) {
   2413           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
   2414           DestIsVolatile = false;
   2415         }
   2416         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
   2417         return RValue::getAggregate(DestPtr);
   2418       }
   2419       case TEK_Scalar: {
   2420         // If the argument doesn't match, perform a bitcast to coerce it.  This
   2421         // can happen due to trivial type mismatches.
   2422         llvm::Value *V = CI;
   2423         if (V->getType() != RetIRTy)
   2424           V = Builder.CreateBitCast(V, RetIRTy);
   2425         return RValue::get(V);
   2426       }
   2427       }
   2428       llvm_unreachable("bad evaluation kind");
   2429     }
   2430 
   2431     llvm::Value *DestPtr = ReturnValue.getValue();
   2432     bool DestIsVolatile = ReturnValue.isVolatile();
   2433 
   2434     if (!DestPtr) {
   2435       DestPtr = CreateMemTemp(RetTy, "coerce");
   2436       DestIsVolatile = false;
   2437     }
   2438 
   2439     // If the value is offset in memory, apply the offset now.
   2440     llvm::Value *StorePtr = DestPtr;
   2441     if (unsigned Offs = RetAI.getDirectOffset()) {
   2442       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
   2443       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
   2444       StorePtr = Builder.CreateBitCast(StorePtr,
   2445                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   2446     }
   2447     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
   2448 
   2449     return convertTempToRValue(DestPtr, RetTy);
   2450   }
   2451 
   2452   case ABIArgInfo::Expand:
   2453     llvm_unreachable("Invalid ABI kind for return argument");
   2454   }
   2455 
   2456   llvm_unreachable("Unhandled ABIArgInfo::Kind");
   2457 }
   2458 
   2459 /* VarArg handling */
   2460 
   2461 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
   2462   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
   2463 }
   2464