Home | History | Annotate | Download | only in Scalar
      1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements sparse conditional constant propagation and merging:
     11 //
     12 // Specifically, this:
     13 //   * Assumes values are constant unless proven otherwise
     14 //   * Assumes BasicBlocks are dead unless proven otherwise
     15 //   * Proves values to be constant, and replaces them with constants
     16 //   * Proves conditional branches to be unconditional
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "sccp"
     21 #include "llvm/Transforms/Scalar.h"
     22 #include "llvm/ADT/DenseMap.h"
     23 #include "llvm/ADT/DenseSet.h"
     24 #include "llvm/ADT/PointerIntPair.h"
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/ADT/Statistic.h"
     28 #include "llvm/Analysis/ConstantFolding.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/DerivedTypes.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/InstVisitor.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/CallSite.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include "llvm/Target/TargetLibraryInfo.h"
     40 #include "llvm/Transforms/IPO.h"
     41 #include "llvm/Transforms/Utils/Local.h"
     42 #include <algorithm>
     43 using namespace llvm;
     44 
     45 STATISTIC(NumInstRemoved, "Number of instructions removed");
     46 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
     47 
     48 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
     49 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
     50 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
     51 
     52 namespace {
     53 /// LatticeVal class - This class represents the different lattice values that
     54 /// an LLVM value may occupy.  It is a simple class with value semantics.
     55 ///
     56 class LatticeVal {
     57   enum LatticeValueTy {
     58     /// undefined - This LLVM Value has no known value yet.
     59     undefined,
     60 
     61     /// constant - This LLVM Value has a specific constant value.
     62     constant,
     63 
     64     /// forcedconstant - This LLVM Value was thought to be undef until
     65     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
     66     /// with another (different) constant, it goes to overdefined, instead of
     67     /// asserting.
     68     forcedconstant,
     69 
     70     /// overdefined - This instruction is not known to be constant, and we know
     71     /// it has a value.
     72     overdefined
     73   };
     74 
     75   /// Val: This stores the current lattice value along with the Constant* for
     76   /// the constant if this is a 'constant' or 'forcedconstant' value.
     77   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
     78 
     79   LatticeValueTy getLatticeValue() const {
     80     return Val.getInt();
     81   }
     82 
     83 public:
     84   LatticeVal() : Val(0, undefined) {}
     85 
     86   bool isUndefined() const { return getLatticeValue() == undefined; }
     87   bool isConstant() const {
     88     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
     89   }
     90   bool isOverdefined() const { return getLatticeValue() == overdefined; }
     91 
     92   Constant *getConstant() const {
     93     assert(isConstant() && "Cannot get the constant of a non-constant!");
     94     return Val.getPointer();
     95   }
     96 
     97   /// markOverdefined - Return true if this is a change in status.
     98   bool markOverdefined() {
     99     if (isOverdefined())
    100       return false;
    101 
    102     Val.setInt(overdefined);
    103     return true;
    104   }
    105 
    106   /// markConstant - Return true if this is a change in status.
    107   bool markConstant(Constant *V) {
    108     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
    109       assert(getConstant() == V && "Marking constant with different value");
    110       return false;
    111     }
    112 
    113     if (isUndefined()) {
    114       Val.setInt(constant);
    115       assert(V && "Marking constant with NULL");
    116       Val.setPointer(V);
    117     } else {
    118       assert(getLatticeValue() == forcedconstant &&
    119              "Cannot move from overdefined to constant!");
    120       // Stay at forcedconstant if the constant is the same.
    121       if (V == getConstant()) return false;
    122 
    123       // Otherwise, we go to overdefined.  Assumptions made based on the
    124       // forced value are possibly wrong.  Assuming this is another constant
    125       // could expose a contradiction.
    126       Val.setInt(overdefined);
    127     }
    128     return true;
    129   }
    130 
    131   /// getConstantInt - If this is a constant with a ConstantInt value, return it
    132   /// otherwise return null.
    133   ConstantInt *getConstantInt() const {
    134     if (isConstant())
    135       return dyn_cast<ConstantInt>(getConstant());
    136     return 0;
    137   }
    138 
    139   void markForcedConstant(Constant *V) {
    140     assert(isUndefined() && "Can't force a defined value!");
    141     Val.setInt(forcedconstant);
    142     Val.setPointer(V);
    143   }
    144 };
    145 } // end anonymous namespace.
    146 
    147 
    148 namespace {
    149 
    150 //===----------------------------------------------------------------------===//
    151 //
    152 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
    153 /// Constant Propagation.
    154 ///
    155 class SCCPSolver : public InstVisitor<SCCPSolver> {
    156   const DataLayout *TD;
    157   const TargetLibraryInfo *TLI;
    158   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
    159   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
    160 
    161   /// StructValueState - This maintains ValueState for values that have
    162   /// StructType, for example for formal arguments, calls, insertelement, etc.
    163   ///
    164   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
    165 
    166   /// GlobalValue - If we are tracking any values for the contents of a global
    167   /// variable, we keep a mapping from the constant accessor to the element of
    168   /// the global, to the currently known value.  If the value becomes
    169   /// overdefined, it's entry is simply removed from this map.
    170   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
    171 
    172   /// TrackedRetVals - If we are tracking arguments into and the return
    173   /// value out of a function, it will have an entry in this map, indicating
    174   /// what the known return value for the function is.
    175   DenseMap<Function*, LatticeVal> TrackedRetVals;
    176 
    177   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
    178   /// that return multiple values.
    179   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
    180 
    181   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
    182   /// represented here for efficient lookup.
    183   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
    184 
    185   /// TrackingIncomingArguments - This is the set of functions for whose
    186   /// arguments we make optimistic assumptions about and try to prove as
    187   /// constants.
    188   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
    189 
    190   /// The reason for two worklists is that overdefined is the lowest state
    191   /// on the lattice, and moving things to overdefined as fast as possible
    192   /// makes SCCP converge much faster.
    193   ///
    194   /// By having a separate worklist, we accomplish this because everything
    195   /// possibly overdefined will become overdefined at the soonest possible
    196   /// point.
    197   SmallVector<Value*, 64> OverdefinedInstWorkList;
    198   SmallVector<Value*, 64> InstWorkList;
    199 
    200 
    201   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
    202 
    203   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    204   /// PHI nodes retriggered.
    205   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
    206   DenseSet<Edge> KnownFeasibleEdges;
    207 public:
    208   SCCPSolver(const DataLayout *td, const TargetLibraryInfo *tli)
    209     : TD(td), TLI(tli) {}
    210 
    211   /// MarkBlockExecutable - This method can be used by clients to mark all of
    212   /// the blocks that are known to be intrinsically live in the processed unit.
    213   ///
    214   /// This returns true if the block was not considered live before.
    215   bool MarkBlockExecutable(BasicBlock *BB) {
    216     if (!BBExecutable.insert(BB)) return false;
    217     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
    218     BBWorkList.push_back(BB);  // Add the block to the work list!
    219     return true;
    220   }
    221 
    222   /// TrackValueOfGlobalVariable - Clients can use this method to
    223   /// inform the SCCPSolver that it should track loads and stores to the
    224   /// specified global variable if it can.  This is only legal to call if
    225   /// performing Interprocedural SCCP.
    226   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    227     // We only track the contents of scalar globals.
    228     if (GV->getType()->getElementType()->isSingleValueType()) {
    229       LatticeVal &IV = TrackedGlobals[GV];
    230       if (!isa<UndefValue>(GV->getInitializer()))
    231         IV.markConstant(GV->getInitializer());
    232     }
    233   }
    234 
    235   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
    236   /// and out of the specified function (which cannot have its address taken),
    237   /// this method must be called.
    238   void AddTrackedFunction(Function *F) {
    239     // Add an entry, F -> undef.
    240     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    241       MRVFunctionsTracked.insert(F);
    242       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    243         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
    244                                                      LatticeVal()));
    245     } else
    246       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
    247   }
    248 
    249   void AddArgumentTrackedFunction(Function *F) {
    250     TrackingIncomingArguments.insert(F);
    251   }
    252 
    253   /// Solve - Solve for constants and executable blocks.
    254   ///
    255   void Solve();
    256 
    257   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
    258   /// that branches on undef values cannot reach any of their successors.
    259   /// However, this is not a safe assumption.  After we solve dataflow, this
    260   /// method should be use to handle this.  If this returns true, the solver
    261   /// should be rerun.
    262   bool ResolvedUndefsIn(Function &F);
    263 
    264   bool isBlockExecutable(BasicBlock *BB) const {
    265     return BBExecutable.count(BB);
    266   }
    267 
    268   LatticeVal getLatticeValueFor(Value *V) const {
    269     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
    270     assert(I != ValueState.end() && "V is not in valuemap!");
    271     return I->second;
    272   }
    273 
    274   /// getTrackedRetVals - Get the inferred return value map.
    275   ///
    276   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
    277     return TrackedRetVals;
    278   }
    279 
    280   /// getTrackedGlobals - Get and return the set of inferred initializers for
    281   /// global variables.
    282   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    283     return TrackedGlobals;
    284   }
    285 
    286   void markOverdefined(Value *V) {
    287     assert(!V->getType()->isStructTy() && "Should use other method");
    288     markOverdefined(ValueState[V], V);
    289   }
    290 
    291   /// markAnythingOverdefined - Mark the specified value overdefined.  This
    292   /// works with both scalars and structs.
    293   void markAnythingOverdefined(Value *V) {
    294     if (StructType *STy = dyn_cast<StructType>(V->getType()))
    295       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    296         markOverdefined(getStructValueState(V, i), V);
    297     else
    298       markOverdefined(V);
    299   }
    300 
    301 private:
    302   // markConstant - Make a value be marked as "constant".  If the value
    303   // is not already a constant, add it to the instruction work list so that
    304   // the users of the instruction are updated later.
    305   //
    306   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    307     if (!IV.markConstant(C)) return;
    308     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    309     if (IV.isOverdefined())
    310       OverdefinedInstWorkList.push_back(V);
    311     else
    312       InstWorkList.push_back(V);
    313   }
    314 
    315   void markConstant(Value *V, Constant *C) {
    316     assert(!V->getType()->isStructTy() && "Should use other method");
    317     markConstant(ValueState[V], V, C);
    318   }
    319 
    320   void markForcedConstant(Value *V, Constant *C) {
    321     assert(!V->getType()->isStructTy() && "Should use other method");
    322     LatticeVal &IV = ValueState[V];
    323     IV.markForcedConstant(C);
    324     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    325     if (IV.isOverdefined())
    326       OverdefinedInstWorkList.push_back(V);
    327     else
    328       InstWorkList.push_back(V);
    329   }
    330 
    331 
    332   // markOverdefined - Make a value be marked as "overdefined". If the
    333   // value is not already overdefined, add it to the overdefined instruction
    334   // work list so that the users of the instruction are updated later.
    335   void markOverdefined(LatticeVal &IV, Value *V) {
    336     if (!IV.markOverdefined()) return;
    337 
    338     DEBUG(dbgs() << "markOverdefined: ";
    339           if (Function *F = dyn_cast<Function>(V))
    340             dbgs() << "Function '" << F->getName() << "'\n";
    341           else
    342             dbgs() << *V << '\n');
    343     // Only instructions go on the work list
    344     OverdefinedInstWorkList.push_back(V);
    345   }
    346 
    347   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    348     if (IV.isOverdefined() || MergeWithV.isUndefined())
    349       return;  // Noop.
    350     if (MergeWithV.isOverdefined())
    351       markOverdefined(IV, V);
    352     else if (IV.isUndefined())
    353       markConstant(IV, V, MergeWithV.getConstant());
    354     else if (IV.getConstant() != MergeWithV.getConstant())
    355       markOverdefined(IV, V);
    356   }
    357 
    358   void mergeInValue(Value *V, LatticeVal MergeWithV) {
    359     assert(!V->getType()->isStructTy() && "Should use other method");
    360     mergeInValue(ValueState[V], V, MergeWithV);
    361   }
    362 
    363 
    364   /// getValueState - Return the LatticeVal object that corresponds to the
    365   /// value.  This function handles the case when the value hasn't been seen yet
    366   /// by properly seeding constants etc.
    367   LatticeVal &getValueState(Value *V) {
    368     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
    369 
    370     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
    371       ValueState.insert(std::make_pair(V, LatticeVal()));
    372     LatticeVal &LV = I.first->second;
    373 
    374     if (!I.second)
    375       return LV;  // Common case, already in the map.
    376 
    377     if (Constant *C = dyn_cast<Constant>(V)) {
    378       // Undef values remain undefined.
    379       if (!isa<UndefValue>(V))
    380         LV.markConstant(C);          // Constants are constant
    381     }
    382 
    383     // All others are underdefined by default.
    384     return LV;
    385   }
    386 
    387   /// getStructValueState - Return the LatticeVal object that corresponds to the
    388   /// value/field pair.  This function handles the case when the value hasn't
    389   /// been seen yet by properly seeding constants etc.
    390   LatticeVal &getStructValueState(Value *V, unsigned i) {
    391     assert(V->getType()->isStructTy() && "Should use getValueState");
    392     assert(i < cast<StructType>(V->getType())->getNumElements() &&
    393            "Invalid element #");
    394 
    395     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
    396               bool> I = StructValueState.insert(
    397                         std::make_pair(std::make_pair(V, i), LatticeVal()));
    398     LatticeVal &LV = I.first->second;
    399 
    400     if (!I.second)
    401       return LV;  // Common case, already in the map.
    402 
    403     if (Constant *C = dyn_cast<Constant>(V)) {
    404       Constant *Elt = C->getAggregateElement(i);
    405 
    406       if (Elt == 0)
    407         LV.markOverdefined();      // Unknown sort of constant.
    408       else if (isa<UndefValue>(Elt))
    409         ; // Undef values remain undefined.
    410       else
    411         LV.markConstant(Elt);      // Constants are constant.
    412     }
    413 
    414     // All others are underdefined by default.
    415     return LV;
    416   }
    417 
    418 
    419   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    420   /// work list if it is not already executable.
    421   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    422     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    423       return;  // This edge is already known to be executable!
    424 
    425     if (!MarkBlockExecutable(Dest)) {
    426       // If the destination is already executable, we just made an *edge*
    427       // feasible that wasn't before.  Revisit the PHI nodes in the block
    428       // because they have potentially new operands.
    429       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    430             << " -> " << Dest->getName() << "\n");
    431 
    432       PHINode *PN;
    433       for (BasicBlock::iterator I = Dest->begin();
    434            (PN = dyn_cast<PHINode>(I)); ++I)
    435         visitPHINode(*PN);
    436     }
    437   }
    438 
    439   // getFeasibleSuccessors - Return a vector of booleans to indicate which
    440   // successors are reachable from a given terminator instruction.
    441   //
    442   void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
    443 
    444   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    445   // block to the 'To' basic block is currently feasible.
    446   //
    447   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
    448 
    449   // OperandChangedState - This method is invoked on all of the users of an
    450   // instruction that was just changed state somehow.  Based on this
    451   // information, we need to update the specified user of this instruction.
    452   //
    453   void OperandChangedState(Instruction *I) {
    454     if (BBExecutable.count(I->getParent()))   // Inst is executable?
    455       visit(*I);
    456   }
    457 
    458 private:
    459   friend class InstVisitor<SCCPSolver>;
    460 
    461   // visit implementations - Something changed in this instruction.  Either an
    462   // operand made a transition, or the instruction is newly executable.  Change
    463   // the value type of I to reflect these changes if appropriate.
    464   void visitPHINode(PHINode &I);
    465 
    466   // Terminators
    467   void visitReturnInst(ReturnInst &I);
    468   void visitTerminatorInst(TerminatorInst &TI);
    469 
    470   void visitCastInst(CastInst &I);
    471   void visitSelectInst(SelectInst &I);
    472   void visitBinaryOperator(Instruction &I);
    473   void visitCmpInst(CmpInst &I);
    474   void visitExtractElementInst(ExtractElementInst &I);
    475   void visitInsertElementInst(InsertElementInst &I);
    476   void visitShuffleVectorInst(ShuffleVectorInst &I);
    477   void visitExtractValueInst(ExtractValueInst &EVI);
    478   void visitInsertValueInst(InsertValueInst &IVI);
    479   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
    480 
    481   // Instructions that cannot be folded away.
    482   void visitStoreInst     (StoreInst &I);
    483   void visitLoadInst      (LoadInst &I);
    484   void visitGetElementPtrInst(GetElementPtrInst &I);
    485   void visitCallInst      (CallInst &I) {
    486     visitCallSite(&I);
    487   }
    488   void visitInvokeInst    (InvokeInst &II) {
    489     visitCallSite(&II);
    490     visitTerminatorInst(II);
    491   }
    492   void visitCallSite      (CallSite CS);
    493   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
    494   void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
    495   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
    496   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
    497   void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); }
    498   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
    499   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
    500   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
    501 
    502   void visitInstruction(Instruction &I) {
    503     // If a new instruction is added to LLVM that we don't handle.
    504     dbgs() << "SCCP: Don't know how to handle: " << I;
    505     markAnythingOverdefined(&I);   // Just in case
    506   }
    507 };
    508 
    509 } // end anonymous namespace
    510 
    511 
    512 // getFeasibleSuccessors - Return a vector of booleans to indicate which
    513 // successors are reachable from a given terminator instruction.
    514 //
    515 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
    516                                        SmallVector<bool, 16> &Succs) {
    517   Succs.resize(TI.getNumSuccessors());
    518   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    519     if (BI->isUnconditional()) {
    520       Succs[0] = true;
    521       return;
    522     }
    523 
    524     LatticeVal BCValue = getValueState(BI->getCondition());
    525     ConstantInt *CI = BCValue.getConstantInt();
    526     if (CI == 0) {
    527       // Overdefined condition variables, and branches on unfoldable constant
    528       // conditions, mean the branch could go either way.
    529       if (!BCValue.isUndefined())
    530         Succs[0] = Succs[1] = true;
    531       return;
    532     }
    533 
    534     // Constant condition variables mean the branch can only go a single way.
    535     Succs[CI->isZero()] = true;
    536     return;
    537   }
    538 
    539   if (isa<InvokeInst>(TI)) {
    540     // Invoke instructions successors are always executable.
    541     Succs[0] = Succs[1] = true;
    542     return;
    543   }
    544 
    545   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    546     if (!SI->getNumCases()) {
    547       Succs[0] = true;
    548       return;
    549     }
    550     LatticeVal SCValue = getValueState(SI->getCondition());
    551     ConstantInt *CI = SCValue.getConstantInt();
    552 
    553     if (CI == 0) {   // Overdefined or undefined condition?
    554       // All destinations are executable!
    555       if (!SCValue.isUndefined())
    556         Succs.assign(TI.getNumSuccessors(), true);
    557       return;
    558     }
    559 
    560     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
    561     return;
    562   }
    563 
    564   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    565   if (isa<IndirectBrInst>(&TI)) {
    566     // Just mark all destinations executable!
    567     Succs.assign(TI.getNumSuccessors(), true);
    568     return;
    569   }
    570 
    571 #ifndef NDEBUG
    572   dbgs() << "Unknown terminator instruction: " << TI << '\n';
    573 #endif
    574   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    575 }
    576 
    577 
    578 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    579 // block to the 'To' basic block is currently feasible.
    580 //
    581 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
    582   assert(BBExecutable.count(To) && "Dest should always be alive!");
    583 
    584   // Make sure the source basic block is executable!!
    585   if (!BBExecutable.count(From)) return false;
    586 
    587   // Check to make sure this edge itself is actually feasible now.
    588   TerminatorInst *TI = From->getTerminator();
    589   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    590     if (BI->isUnconditional())
    591       return true;
    592 
    593     LatticeVal BCValue = getValueState(BI->getCondition());
    594 
    595     // Overdefined condition variables mean the branch could go either way,
    596     // undef conditions mean that neither edge is feasible yet.
    597     ConstantInt *CI = BCValue.getConstantInt();
    598     if (CI == 0)
    599       return !BCValue.isUndefined();
    600 
    601     // Constant condition variables mean the branch can only go a single way.
    602     return BI->getSuccessor(CI->isZero()) == To;
    603   }
    604 
    605   // Invoke instructions successors are always executable.
    606   if (isa<InvokeInst>(TI))
    607     return true;
    608 
    609   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    610     if (SI->getNumCases() < 1)
    611       return true;
    612 
    613     LatticeVal SCValue = getValueState(SI->getCondition());
    614     ConstantInt *CI = SCValue.getConstantInt();
    615 
    616     if (CI == 0)
    617       return !SCValue.isUndefined();
    618 
    619     return SI->findCaseValue(CI).getCaseSuccessor() == To;
    620   }
    621 
    622   // Just mark all destinations executable!
    623   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    624   if (isa<IndirectBrInst>(TI))
    625     return true;
    626 
    627 #ifndef NDEBUG
    628   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
    629 #endif
    630   llvm_unreachable(0);
    631 }
    632 
    633 // visit Implementations - Something changed in this instruction, either an
    634 // operand made a transition, or the instruction is newly executable.  Change
    635 // the value type of I to reflect these changes if appropriate.  This method
    636 // makes sure to do the following actions:
    637 //
    638 // 1. If a phi node merges two constants in, and has conflicting value coming
    639 //    from different branches, or if the PHI node merges in an overdefined
    640 //    value, then the PHI node becomes overdefined.
    641 // 2. If a phi node merges only constants in, and they all agree on value, the
    642 //    PHI node becomes a constant value equal to that.
    643 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
    644 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
    645 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
    646 // 6. If a conditional branch has a value that is constant, make the selected
    647 //    destination executable
    648 // 7. If a conditional branch has a value that is overdefined, make all
    649 //    successors executable.
    650 //
    651 void SCCPSolver::visitPHINode(PHINode &PN) {
    652   // If this PN returns a struct, just mark the result overdefined.
    653   // TODO: We could do a lot better than this if code actually uses this.
    654   if (PN.getType()->isStructTy())
    655     return markAnythingOverdefined(&PN);
    656 
    657   if (getValueState(&PN).isOverdefined())
    658     return;  // Quick exit
    659 
    660   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
    661   // and slow us down a lot.  Just mark them overdefined.
    662   if (PN.getNumIncomingValues() > 64)
    663     return markOverdefined(&PN);
    664 
    665   // Look at all of the executable operands of the PHI node.  If any of them
    666   // are overdefined, the PHI becomes overdefined as well.  If they are all
    667   // constant, and they agree with each other, the PHI becomes the identical
    668   // constant.  If they are constant and don't agree, the PHI is overdefined.
    669   // If there are no executable operands, the PHI remains undefined.
    670   //
    671   Constant *OperandVal = 0;
    672   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    673     LatticeVal IV = getValueState(PN.getIncomingValue(i));
    674     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
    675 
    676     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
    677       continue;
    678 
    679     if (IV.isOverdefined())    // PHI node becomes overdefined!
    680       return markOverdefined(&PN);
    681 
    682     if (OperandVal == 0) {   // Grab the first value.
    683       OperandVal = IV.getConstant();
    684       continue;
    685     }
    686 
    687     // There is already a reachable operand.  If we conflict with it,
    688     // then the PHI node becomes overdefined.  If we agree with it, we
    689     // can continue on.
    690 
    691     // Check to see if there are two different constants merging, if so, the PHI
    692     // node is overdefined.
    693     if (IV.getConstant() != OperandVal)
    694       return markOverdefined(&PN);
    695   }
    696 
    697   // If we exited the loop, this means that the PHI node only has constant
    698   // arguments that agree with each other(and OperandVal is the constant) or
    699   // OperandVal is null because there are no defined incoming arguments.  If
    700   // this is the case, the PHI remains undefined.
    701   //
    702   if (OperandVal)
    703     markConstant(&PN, OperandVal);      // Acquire operand value
    704 }
    705 
    706 void SCCPSolver::visitReturnInst(ReturnInst &I) {
    707   if (I.getNumOperands() == 0) return;  // ret void
    708 
    709   Function *F = I.getParent()->getParent();
    710   Value *ResultOp = I.getOperand(0);
    711 
    712   // If we are tracking the return value of this function, merge it in.
    713   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    714     DenseMap<Function*, LatticeVal>::iterator TFRVI =
    715       TrackedRetVals.find(F);
    716     if (TFRVI != TrackedRetVals.end()) {
    717       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
    718       return;
    719     }
    720   }
    721 
    722   // Handle functions that return multiple values.
    723   if (!TrackedMultipleRetVals.empty()) {
    724     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
    725       if (MRVFunctionsTracked.count(F))
    726         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    727           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
    728                        getStructValueState(ResultOp, i));
    729 
    730   }
    731 }
    732 
    733 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
    734   SmallVector<bool, 16> SuccFeasible;
    735   getFeasibleSuccessors(TI, SuccFeasible);
    736 
    737   BasicBlock *BB = TI.getParent();
    738 
    739   // Mark all feasible successors executable.
    740   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    741     if (SuccFeasible[i])
    742       markEdgeExecutable(BB, TI.getSuccessor(i));
    743 }
    744 
    745 void SCCPSolver::visitCastInst(CastInst &I) {
    746   LatticeVal OpSt = getValueState(I.getOperand(0));
    747   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    748     markOverdefined(&I);
    749   else if (OpSt.isConstant())        // Propagate constant value
    750     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
    751                                            OpSt.getConstant(), I.getType()));
    752 }
    753 
    754 
    755 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
    756   // If this returns a struct, mark all elements over defined, we don't track
    757   // structs in structs.
    758   if (EVI.getType()->isStructTy())
    759     return markAnythingOverdefined(&EVI);
    760 
    761   // If this is extracting from more than one level of struct, we don't know.
    762   if (EVI.getNumIndices() != 1)
    763     return markOverdefined(&EVI);
    764 
    765   Value *AggVal = EVI.getAggregateOperand();
    766   if (AggVal->getType()->isStructTy()) {
    767     unsigned i = *EVI.idx_begin();
    768     LatticeVal EltVal = getStructValueState(AggVal, i);
    769     mergeInValue(getValueState(&EVI), &EVI, EltVal);
    770   } else {
    771     // Otherwise, must be extracting from an array.
    772     return markOverdefined(&EVI);
    773   }
    774 }
    775 
    776 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
    777   StructType *STy = dyn_cast<StructType>(IVI.getType());
    778   if (STy == 0)
    779     return markOverdefined(&IVI);
    780 
    781   // If this has more than one index, we can't handle it, drive all results to
    782   // undef.
    783   if (IVI.getNumIndices() != 1)
    784     return markAnythingOverdefined(&IVI);
    785 
    786   Value *Aggr = IVI.getAggregateOperand();
    787   unsigned Idx = *IVI.idx_begin();
    788 
    789   // Compute the result based on what we're inserting.
    790   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    791     // This passes through all values that aren't the inserted element.
    792     if (i != Idx) {
    793       LatticeVal EltVal = getStructValueState(Aggr, i);
    794       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
    795       continue;
    796     }
    797 
    798     Value *Val = IVI.getInsertedValueOperand();
    799     if (Val->getType()->isStructTy())
    800       // We don't track structs in structs.
    801       markOverdefined(getStructValueState(&IVI, i), &IVI);
    802     else {
    803       LatticeVal InVal = getValueState(Val);
    804       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    805     }
    806   }
    807 }
    808 
    809 void SCCPSolver::visitSelectInst(SelectInst &I) {
    810   // If this select returns a struct, just mark the result overdefined.
    811   // TODO: We could do a lot better than this if code actually uses this.
    812   if (I.getType()->isStructTy())
    813     return markAnythingOverdefined(&I);
    814 
    815   LatticeVal CondValue = getValueState(I.getCondition());
    816   if (CondValue.isUndefined())
    817     return;
    818 
    819   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    820     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    821     mergeInValue(&I, getValueState(OpVal));
    822     return;
    823   }
    824 
    825   // Otherwise, the condition is overdefined or a constant we can't evaluate.
    826   // See if we can produce something better than overdefined based on the T/F
    827   // value.
    828   LatticeVal TVal = getValueState(I.getTrueValue());
    829   LatticeVal FVal = getValueState(I.getFalseValue());
    830 
    831   // select ?, C, C -> C.
    832   if (TVal.isConstant() && FVal.isConstant() &&
    833       TVal.getConstant() == FVal.getConstant())
    834     return markConstant(&I, FVal.getConstant());
    835 
    836   if (TVal.isUndefined())   // select ?, undef, X -> X.
    837     return mergeInValue(&I, FVal);
    838   if (FVal.isUndefined())   // select ?, X, undef -> X.
    839     return mergeInValue(&I, TVal);
    840   markOverdefined(&I);
    841 }
    842 
    843 // Handle Binary Operators.
    844 void SCCPSolver::visitBinaryOperator(Instruction &I) {
    845   LatticeVal V1State = getValueState(I.getOperand(0));
    846   LatticeVal V2State = getValueState(I.getOperand(1));
    847 
    848   LatticeVal &IV = ValueState[&I];
    849   if (IV.isOverdefined()) return;
    850 
    851   if (V1State.isConstant() && V2State.isConstant())
    852     return markConstant(IV, &I,
    853                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
    854                                           V2State.getConstant()));
    855 
    856   // If something is undef, wait for it to resolve.
    857   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    858     return;
    859 
    860   // Otherwise, one of our operands is overdefined.  Try to produce something
    861   // better than overdefined with some tricks.
    862 
    863   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    864   // operand is overdefined.
    865   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
    866     LatticeVal *NonOverdefVal = 0;
    867     if (!V1State.isOverdefined())
    868       NonOverdefVal = &V1State;
    869     else if (!V2State.isOverdefined())
    870       NonOverdefVal = &V2State;
    871 
    872     if (NonOverdefVal) {
    873       if (NonOverdefVal->isUndefined()) {
    874         // Could annihilate value.
    875         if (I.getOpcode() == Instruction::And)
    876           markConstant(IV, &I, Constant::getNullValue(I.getType()));
    877         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
    878           markConstant(IV, &I, Constant::getAllOnesValue(PT));
    879         else
    880           markConstant(IV, &I,
    881                        Constant::getAllOnesValue(I.getType()));
    882         return;
    883       }
    884 
    885       if (I.getOpcode() == Instruction::And) {
    886         // X and 0 = 0
    887         if (NonOverdefVal->getConstant()->isNullValue())
    888           return markConstant(IV, &I, NonOverdefVal->getConstant());
    889       } else {
    890         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
    891           if (CI->isAllOnesValue())     // X or -1 = -1
    892             return markConstant(IV, &I, NonOverdefVal->getConstant());
    893       }
    894     }
    895   }
    896 
    897 
    898   markOverdefined(&I);
    899 }
    900 
    901 // Handle ICmpInst instruction.
    902 void SCCPSolver::visitCmpInst(CmpInst &I) {
    903   LatticeVal V1State = getValueState(I.getOperand(0));
    904   LatticeVal V2State = getValueState(I.getOperand(1));
    905 
    906   LatticeVal &IV = ValueState[&I];
    907   if (IV.isOverdefined()) return;
    908 
    909   if (V1State.isConstant() && V2State.isConstant())
    910     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
    911                                                          V1State.getConstant(),
    912                                                         V2State.getConstant()));
    913 
    914   // If operands are still undefined, wait for it to resolve.
    915   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    916     return;
    917 
    918   markOverdefined(&I);
    919 }
    920 
    921 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
    922   // TODO : SCCP does not handle vectors properly.
    923   return markOverdefined(&I);
    924 
    925 #if 0
    926   LatticeVal &ValState = getValueState(I.getOperand(0));
    927   LatticeVal &IdxState = getValueState(I.getOperand(1));
    928 
    929   if (ValState.isOverdefined() || IdxState.isOverdefined())
    930     markOverdefined(&I);
    931   else if(ValState.isConstant() && IdxState.isConstant())
    932     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
    933                                                      IdxState.getConstant()));
    934 #endif
    935 }
    936 
    937 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
    938   // TODO : SCCP does not handle vectors properly.
    939   return markOverdefined(&I);
    940 #if 0
    941   LatticeVal &ValState = getValueState(I.getOperand(0));
    942   LatticeVal &EltState = getValueState(I.getOperand(1));
    943   LatticeVal &IdxState = getValueState(I.getOperand(2));
    944 
    945   if (ValState.isOverdefined() || EltState.isOverdefined() ||
    946       IdxState.isOverdefined())
    947     markOverdefined(&I);
    948   else if(ValState.isConstant() && EltState.isConstant() &&
    949           IdxState.isConstant())
    950     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
    951                                                     EltState.getConstant(),
    952                                                     IdxState.getConstant()));
    953   else if (ValState.isUndefined() && EltState.isConstant() &&
    954            IdxState.isConstant())
    955     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
    956                                                    EltState.getConstant(),
    957                                                    IdxState.getConstant()));
    958 #endif
    959 }
    960 
    961 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
    962   // TODO : SCCP does not handle vectors properly.
    963   return markOverdefined(&I);
    964 #if 0
    965   LatticeVal &V1State   = getValueState(I.getOperand(0));
    966   LatticeVal &V2State   = getValueState(I.getOperand(1));
    967   LatticeVal &MaskState = getValueState(I.getOperand(2));
    968 
    969   if (MaskState.isUndefined() ||
    970       (V1State.isUndefined() && V2State.isUndefined()))
    971     return;  // Undefined output if mask or both inputs undefined.
    972 
    973   if (V1State.isOverdefined() || V2State.isOverdefined() ||
    974       MaskState.isOverdefined()) {
    975     markOverdefined(&I);
    976   } else {
    977     // A mix of constant/undef inputs.
    978     Constant *V1 = V1State.isConstant() ?
    979         V1State.getConstant() : UndefValue::get(I.getType());
    980     Constant *V2 = V2State.isConstant() ?
    981         V2State.getConstant() : UndefValue::get(I.getType());
    982     Constant *Mask = MaskState.isConstant() ?
    983       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
    984     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
    985   }
    986 #endif
    987 }
    988 
    989 // Handle getelementptr instructions.  If all operands are constants then we
    990 // can turn this into a getelementptr ConstantExpr.
    991 //
    992 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
    993   if (ValueState[&I].isOverdefined()) return;
    994 
    995   SmallVector<Constant*, 8> Operands;
    996   Operands.reserve(I.getNumOperands());
    997 
    998   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    999     LatticeVal State = getValueState(I.getOperand(i));
   1000     if (State.isUndefined())
   1001       return;  // Operands are not resolved yet.
   1002 
   1003     if (State.isOverdefined())
   1004       return markOverdefined(&I);
   1005 
   1006     assert(State.isConstant() && "Unknown state!");
   1007     Operands.push_back(State.getConstant());
   1008   }
   1009 
   1010   Constant *Ptr = Operands[0];
   1011   ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
   1012   markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
   1013 }
   1014 
   1015 void SCCPSolver::visitStoreInst(StoreInst &SI) {
   1016   // If this store is of a struct, ignore it.
   1017   if (SI.getOperand(0)->getType()->isStructTy())
   1018     return;
   1019 
   1020   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
   1021     return;
   1022 
   1023   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
   1024   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
   1025   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
   1026 
   1027   // Get the value we are storing into the global, then merge it.
   1028   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
   1029   if (I->second.isOverdefined())
   1030     TrackedGlobals.erase(I);      // No need to keep tracking this!
   1031 }
   1032 
   1033 
   1034 // Handle load instructions.  If the operand is a constant pointer to a constant
   1035 // global, we can replace the load with the loaded constant value!
   1036 void SCCPSolver::visitLoadInst(LoadInst &I) {
   1037   // If this load is of a struct, just mark the result overdefined.
   1038   if (I.getType()->isStructTy())
   1039     return markAnythingOverdefined(&I);
   1040 
   1041   LatticeVal PtrVal = getValueState(I.getOperand(0));
   1042   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
   1043 
   1044   LatticeVal &IV = ValueState[&I];
   1045   if (IV.isOverdefined()) return;
   1046 
   1047   if (!PtrVal.isConstant() || I.isVolatile())
   1048     return markOverdefined(IV, &I);
   1049 
   1050   Constant *Ptr = PtrVal.getConstant();
   1051 
   1052   // load null -> null
   1053   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
   1054     return markConstant(IV, &I, Constant::getNullValue(I.getType()));
   1055 
   1056   // Transform load (constant global) into the value loaded.
   1057   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   1058     if (!TrackedGlobals.empty()) {
   1059       // If we are tracking this global, merge in the known value for it.
   1060       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
   1061         TrackedGlobals.find(GV);
   1062       if (It != TrackedGlobals.end()) {
   1063         mergeInValue(IV, &I, It->second);
   1064         return;
   1065       }
   1066     }
   1067   }
   1068 
   1069   // Transform load from a constant into a constant if possible.
   1070   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
   1071     return markConstant(IV, &I, C);
   1072 
   1073   // Otherwise we cannot say for certain what value this load will produce.
   1074   // Bail out.
   1075   markOverdefined(IV, &I);
   1076 }
   1077 
   1078 void SCCPSolver::visitCallSite(CallSite CS) {
   1079   Function *F = CS.getCalledFunction();
   1080   Instruction *I = CS.getInstruction();
   1081 
   1082   // The common case is that we aren't tracking the callee, either because we
   1083   // are not doing interprocedural analysis or the callee is indirect, or is
   1084   // external.  Handle these cases first.
   1085   if (F == 0 || F->isDeclaration()) {
   1086 CallOverdefined:
   1087     // Void return and not tracking callee, just bail.
   1088     if (I->getType()->isVoidTy()) return;
   1089 
   1090     // Otherwise, if we have a single return value case, and if the function is
   1091     // a declaration, maybe we can constant fold it.
   1092     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
   1093         canConstantFoldCallTo(F)) {
   1094 
   1095       SmallVector<Constant*, 8> Operands;
   1096       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
   1097            AI != E; ++AI) {
   1098         LatticeVal State = getValueState(*AI);
   1099 
   1100         if (State.isUndefined())
   1101           return;  // Operands are not resolved yet.
   1102         if (State.isOverdefined())
   1103           return markOverdefined(I);
   1104         assert(State.isConstant() && "Unknown state!");
   1105         Operands.push_back(State.getConstant());
   1106       }
   1107 
   1108       // If we can constant fold this, mark the result of the call as a
   1109       // constant.
   1110       if (Constant *C = ConstantFoldCall(F, Operands, TLI))
   1111         return markConstant(I, C);
   1112     }
   1113 
   1114     // Otherwise, we don't know anything about this call, mark it overdefined.
   1115     return markAnythingOverdefined(I);
   1116   }
   1117 
   1118   // If this is a local function that doesn't have its address taken, mark its
   1119   // entry block executable and merge in the actual arguments to the call into
   1120   // the formal arguments of the function.
   1121   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
   1122     MarkBlockExecutable(F->begin());
   1123 
   1124     // Propagate information from this call site into the callee.
   1125     CallSite::arg_iterator CAI = CS.arg_begin();
   1126     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1127          AI != E; ++AI, ++CAI) {
   1128       // If this argument is byval, and if the function is not readonly, there
   1129       // will be an implicit copy formed of the input aggregate.
   1130       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
   1131         markOverdefined(AI);
   1132         continue;
   1133       }
   1134 
   1135       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
   1136         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1137           LatticeVal CallArg = getStructValueState(*CAI, i);
   1138           mergeInValue(getStructValueState(AI, i), AI, CallArg);
   1139         }
   1140       } else {
   1141         mergeInValue(AI, getValueState(*CAI));
   1142       }
   1143     }
   1144   }
   1145 
   1146   // If this is a single/zero retval case, see if we're tracking the function.
   1147   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
   1148     if (!MRVFunctionsTracked.count(F))
   1149       goto CallOverdefined;  // Not tracking this callee.
   1150 
   1151     // If we are tracking this callee, propagate the result of the function
   1152     // into this call site.
   1153     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1154       mergeInValue(getStructValueState(I, i), I,
   1155                    TrackedMultipleRetVals[std::make_pair(F, i)]);
   1156   } else {
   1157     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
   1158     if (TFRVI == TrackedRetVals.end())
   1159       goto CallOverdefined;  // Not tracking this callee.
   1160 
   1161     // If so, propagate the return value of the callee into this call result.
   1162     mergeInValue(I, TFRVI->second);
   1163   }
   1164 }
   1165 
   1166 void SCCPSolver::Solve() {
   1167   // Process the work lists until they are empty!
   1168   while (!BBWorkList.empty() || !InstWorkList.empty() ||
   1169          !OverdefinedInstWorkList.empty()) {
   1170     // Process the overdefined instruction's work list first, which drives other
   1171     // things to overdefined more quickly.
   1172     while (!OverdefinedInstWorkList.empty()) {
   1173       Value *I = OverdefinedInstWorkList.pop_back_val();
   1174 
   1175       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
   1176 
   1177       // "I" got into the work list because it either made the transition from
   1178       // bottom to constant, or to overdefined.
   1179       //
   1180       // Anything on this worklist that is overdefined need not be visited
   1181       // since all of its users will have already been marked as overdefined
   1182       // Update all of the users of this instruction's value.
   1183       //
   1184       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1185            UI != E; ++UI)
   1186         if (Instruction *I = dyn_cast<Instruction>(*UI))
   1187           OperandChangedState(I);
   1188     }
   1189 
   1190     // Process the instruction work list.
   1191     while (!InstWorkList.empty()) {
   1192       Value *I = InstWorkList.pop_back_val();
   1193 
   1194       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
   1195 
   1196       // "I" got into the work list because it made the transition from undef to
   1197       // constant.
   1198       //
   1199       // Anything on this worklist that is overdefined need not be visited
   1200       // since all of its users will have already been marked as overdefined.
   1201       // Update all of the users of this instruction's value.
   1202       //
   1203       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
   1204         for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1205              UI != E; ++UI)
   1206           if (Instruction *I = dyn_cast<Instruction>(*UI))
   1207             OperandChangedState(I);
   1208     }
   1209 
   1210     // Process the basic block work list.
   1211     while (!BBWorkList.empty()) {
   1212       BasicBlock *BB = BBWorkList.back();
   1213       BBWorkList.pop_back();
   1214 
   1215       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
   1216 
   1217       // Notify all instructions in this basic block that they are newly
   1218       // executable.
   1219       visit(BB);
   1220     }
   1221   }
   1222 }
   1223 
   1224 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
   1225 /// that branches on undef values cannot reach any of their successors.
   1226 /// However, this is not a safe assumption.  After we solve dataflow, this
   1227 /// method should be use to handle this.  If this returns true, the solver
   1228 /// should be rerun.
   1229 ///
   1230 /// This method handles this by finding an unresolved branch and marking it one
   1231 /// of the edges from the block as being feasible, even though the condition
   1232 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
   1233 /// CFG and only slightly pessimizes the analysis results (by marking one,
   1234 /// potentially infeasible, edge feasible).  This cannot usefully modify the
   1235 /// constraints on the condition of the branch, as that would impact other users
   1236 /// of the value.
   1237 ///
   1238 /// This scan also checks for values that use undefs, whose results are actually
   1239 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
   1240 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
   1241 /// even if X isn't defined.
   1242 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
   1243   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1244     if (!BBExecutable.count(BB))
   1245       continue;
   1246 
   1247     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1248       // Look for instructions which produce undef values.
   1249       if (I->getType()->isVoidTy()) continue;
   1250 
   1251       if (StructType *STy = dyn_cast<StructType>(I->getType())) {
   1252         // Only a few things that can be structs matter for undef.
   1253 
   1254         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
   1255         if (CallSite CS = CallSite(I))
   1256           if (Function *F = CS.getCalledFunction())
   1257             if (MRVFunctionsTracked.count(F))
   1258               continue;
   1259 
   1260         // extractvalue and insertvalue don't need to be marked; they are
   1261         // tracked as precisely as their operands.
   1262         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
   1263           continue;
   1264 
   1265         // Send the results of everything else to overdefined.  We could be
   1266         // more precise than this but it isn't worth bothering.
   1267         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1268           LatticeVal &LV = getStructValueState(I, i);
   1269           if (LV.isUndefined())
   1270             markOverdefined(LV, I);
   1271         }
   1272         continue;
   1273       }
   1274 
   1275       LatticeVal &LV = getValueState(I);
   1276       if (!LV.isUndefined()) continue;
   1277 
   1278       // extractvalue is safe; check here because the argument is a struct.
   1279       if (isa<ExtractValueInst>(I))
   1280         continue;
   1281 
   1282       // Compute the operand LatticeVals, for convenience below.
   1283       // Anything taking a struct is conservatively assumed to require
   1284       // overdefined markings.
   1285       if (I->getOperand(0)->getType()->isStructTy()) {
   1286         markOverdefined(I);
   1287         return true;
   1288       }
   1289       LatticeVal Op0LV = getValueState(I->getOperand(0));
   1290       LatticeVal Op1LV;
   1291       if (I->getNumOperands() == 2) {
   1292         if (I->getOperand(1)->getType()->isStructTy()) {
   1293           markOverdefined(I);
   1294           return true;
   1295         }
   1296 
   1297         Op1LV = getValueState(I->getOperand(1));
   1298       }
   1299       // If this is an instructions whose result is defined even if the input is
   1300       // not fully defined, propagate the information.
   1301       Type *ITy = I->getType();
   1302       switch (I->getOpcode()) {
   1303       case Instruction::Add:
   1304       case Instruction::Sub:
   1305       case Instruction::Trunc:
   1306       case Instruction::FPTrunc:
   1307       case Instruction::BitCast:
   1308         break; // Any undef -> undef
   1309       case Instruction::FSub:
   1310       case Instruction::FAdd:
   1311       case Instruction::FMul:
   1312       case Instruction::FDiv:
   1313       case Instruction::FRem:
   1314         // Floating-point binary operation: be conservative.
   1315         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1316           markForcedConstant(I, Constant::getNullValue(ITy));
   1317         else
   1318           markOverdefined(I);
   1319         return true;
   1320       case Instruction::ZExt:
   1321       case Instruction::SExt:
   1322       case Instruction::FPToUI:
   1323       case Instruction::FPToSI:
   1324       case Instruction::FPExt:
   1325       case Instruction::PtrToInt:
   1326       case Instruction::IntToPtr:
   1327       case Instruction::SIToFP:
   1328       case Instruction::UIToFP:
   1329         // undef -> 0; some outputs are impossible
   1330         markForcedConstant(I, Constant::getNullValue(ITy));
   1331         return true;
   1332       case Instruction::Mul:
   1333       case Instruction::And:
   1334         // Both operands undef -> undef
   1335         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1336           break;
   1337         // undef * X -> 0.   X could be zero.
   1338         // undef & X -> 0.   X could be zero.
   1339         markForcedConstant(I, Constant::getNullValue(ITy));
   1340         return true;
   1341 
   1342       case Instruction::Or:
   1343         // Both operands undef -> undef
   1344         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1345           break;
   1346         // undef | X -> -1.   X could be -1.
   1347         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1348         return true;
   1349 
   1350       case Instruction::Xor:
   1351         // undef ^ undef -> 0; strictly speaking, this is not strictly
   1352         // necessary, but we try to be nice to people who expect this
   1353         // behavior in simple cases
   1354         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
   1355           markForcedConstant(I, Constant::getNullValue(ITy));
   1356           return true;
   1357         }
   1358         // undef ^ X -> undef
   1359         break;
   1360 
   1361       case Instruction::SDiv:
   1362       case Instruction::UDiv:
   1363       case Instruction::SRem:
   1364       case Instruction::URem:
   1365         // X / undef -> undef.  No change.
   1366         // X % undef -> undef.  No change.
   1367         if (Op1LV.isUndefined()) break;
   1368 
   1369         // undef / X -> 0.   X could be maxint.
   1370         // undef % X -> 0.   X could be 1.
   1371         markForcedConstant(I, Constant::getNullValue(ITy));
   1372         return true;
   1373 
   1374       case Instruction::AShr:
   1375         // X >>a undef -> undef.
   1376         if (Op1LV.isUndefined()) break;
   1377 
   1378         // undef >>a X -> all ones
   1379         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1380         return true;
   1381       case Instruction::LShr:
   1382       case Instruction::Shl:
   1383         // X << undef -> undef.
   1384         // X >> undef -> undef.
   1385         if (Op1LV.isUndefined()) break;
   1386 
   1387         // undef << X -> 0
   1388         // undef >> X -> 0
   1389         markForcedConstant(I, Constant::getNullValue(ITy));
   1390         return true;
   1391       case Instruction::Select:
   1392         Op1LV = getValueState(I->getOperand(1));
   1393         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
   1394         if (Op0LV.isUndefined()) {
   1395           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
   1396             Op1LV = getValueState(I->getOperand(2));
   1397         } else if (Op1LV.isUndefined()) {
   1398           // c ? undef : undef -> undef.  No change.
   1399           Op1LV = getValueState(I->getOperand(2));
   1400           if (Op1LV.isUndefined())
   1401             break;
   1402           // Otherwise, c ? undef : x -> x.
   1403         } else {
   1404           // Leave Op1LV as Operand(1)'s LatticeValue.
   1405         }
   1406 
   1407         if (Op1LV.isConstant())
   1408           markForcedConstant(I, Op1LV.getConstant());
   1409         else
   1410           markOverdefined(I);
   1411         return true;
   1412       case Instruction::Load:
   1413         // A load here means one of two things: a load of undef from a global,
   1414         // a load from an unknown pointer.  Either way, having it return undef
   1415         // is okay.
   1416         break;
   1417       case Instruction::ICmp:
   1418         // X == undef -> undef.  Other comparisons get more complicated.
   1419         if (cast<ICmpInst>(I)->isEquality())
   1420           break;
   1421         markOverdefined(I);
   1422         return true;
   1423       case Instruction::Call:
   1424       case Instruction::Invoke: {
   1425         // There are two reasons a call can have an undef result
   1426         // 1. It could be tracked.
   1427         // 2. It could be constant-foldable.
   1428         // Because of the way we solve return values, tracked calls must
   1429         // never be marked overdefined in ResolvedUndefsIn.
   1430         if (Function *F = CallSite(I).getCalledFunction())
   1431           if (TrackedRetVals.count(F))
   1432             break;
   1433 
   1434         // If the call is constant-foldable, we mark it overdefined because
   1435         // we do not know what return values are valid.
   1436         markOverdefined(I);
   1437         return true;
   1438       }
   1439       default:
   1440         // If we don't know what should happen here, conservatively mark it
   1441         // overdefined.
   1442         markOverdefined(I);
   1443         return true;
   1444       }
   1445     }
   1446 
   1447     // Check to see if we have a branch or switch on an undefined value.  If so
   1448     // we force the branch to go one way or the other to make the successor
   1449     // values live.  It doesn't really matter which way we force it.
   1450     TerminatorInst *TI = BB->getTerminator();
   1451     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1452       if (!BI->isConditional()) continue;
   1453       if (!getValueState(BI->getCondition()).isUndefined())
   1454         continue;
   1455 
   1456       // If the input to SCCP is actually branch on undef, fix the undef to
   1457       // false.
   1458       if (isa<UndefValue>(BI->getCondition())) {
   1459         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
   1460         markEdgeExecutable(BB, TI->getSuccessor(1));
   1461         return true;
   1462       }
   1463 
   1464       // Otherwise, it is a branch on a symbolic value which is currently
   1465       // considered to be undef.  Handle this by forcing the input value to the
   1466       // branch to false.
   1467       markForcedConstant(BI->getCondition(),
   1468                          ConstantInt::getFalse(TI->getContext()));
   1469       return true;
   1470     }
   1471 
   1472     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1473       if (!SI->getNumCases())
   1474         continue;
   1475       if (!getValueState(SI->getCondition()).isUndefined())
   1476         continue;
   1477 
   1478       // If the input to SCCP is actually switch on undef, fix the undef to
   1479       // the first constant.
   1480       if (isa<UndefValue>(SI->getCondition())) {
   1481         SI->setCondition(SI->case_begin().getCaseValue());
   1482         markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
   1483         return true;
   1484       }
   1485 
   1486       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
   1487       return true;
   1488     }
   1489   }
   1490 
   1491   return false;
   1492 }
   1493 
   1494 
   1495 namespace {
   1496   //===--------------------------------------------------------------------===//
   1497   //
   1498   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
   1499   /// Sparse Conditional Constant Propagator.
   1500   ///
   1501   struct SCCP : public FunctionPass {
   1502     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   1503       AU.addRequired<TargetLibraryInfo>();
   1504     }
   1505     static char ID; // Pass identification, replacement for typeid
   1506     SCCP() : FunctionPass(ID) {
   1507       initializeSCCPPass(*PassRegistry::getPassRegistry());
   1508     }
   1509 
   1510     // runOnFunction - Run the Sparse Conditional Constant Propagation
   1511     // algorithm, and return true if the function was modified.
   1512     //
   1513     bool runOnFunction(Function &F);
   1514   };
   1515 } // end anonymous namespace
   1516 
   1517 char SCCP::ID = 0;
   1518 INITIALIZE_PASS(SCCP, "sccp",
   1519                 "Sparse Conditional Constant Propagation", false, false)
   1520 
   1521 // createSCCPPass - This is the public interface to this file.
   1522 FunctionPass *llvm::createSCCPPass() {
   1523   return new SCCP();
   1524 }
   1525 
   1526 static void DeleteInstructionInBlock(BasicBlock *BB) {
   1527   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   1528   ++NumDeadBlocks;
   1529 
   1530   // Check to see if there are non-terminating instructions to delete.
   1531   if (isa<TerminatorInst>(BB->begin()))
   1532     return;
   1533 
   1534   // Delete the instructions backwards, as it has a reduced likelihood of having
   1535   // to update as many def-use and use-def chains.
   1536   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1537   while (EndInst != BB->begin()) {
   1538     // Delete the next to last instruction.
   1539     BasicBlock::iterator I = EndInst;
   1540     Instruction *Inst = --I;
   1541     if (!Inst->use_empty())
   1542       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1543     if (isa<LandingPadInst>(Inst)) {
   1544       EndInst = Inst;
   1545       continue;
   1546     }
   1547     BB->getInstList().erase(Inst);
   1548     ++NumInstRemoved;
   1549   }
   1550 }
   1551 
   1552 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
   1553 // and return true if the function was modified.
   1554 //
   1555 bool SCCP::runOnFunction(Function &F) {
   1556   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
   1557   const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
   1558   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
   1559   SCCPSolver Solver(TD, TLI);
   1560 
   1561   // Mark the first block of the function as being executable.
   1562   Solver.MarkBlockExecutable(F.begin());
   1563 
   1564   // Mark all arguments to the function as being overdefined.
   1565   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
   1566     Solver.markAnythingOverdefined(AI);
   1567 
   1568   // Solve for constants.
   1569   bool ResolvedUndefs = true;
   1570   while (ResolvedUndefs) {
   1571     Solver.Solve();
   1572     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
   1573     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
   1574   }
   1575 
   1576   bool MadeChanges = false;
   1577 
   1578   // If we decided that there are basic blocks that are dead in this function,
   1579   // delete their contents now.  Note that we cannot actually delete the blocks,
   1580   // as we cannot modify the CFG of the function.
   1581 
   1582   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1583     if (!Solver.isBlockExecutable(BB)) {
   1584       DeleteInstructionInBlock(BB);
   1585       MadeChanges = true;
   1586       continue;
   1587     }
   1588 
   1589     // Iterate over all of the instructions in a function, replacing them with
   1590     // constants if we have found them to be of constant values.
   1591     //
   1592     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1593       Instruction *Inst = BI++;
   1594       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
   1595         continue;
   1596 
   1597       // TODO: Reconstruct structs from their elements.
   1598       if (Inst->getType()->isStructTy())
   1599         continue;
   1600 
   1601       LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1602       if (IV.isOverdefined())
   1603         continue;
   1604 
   1605       Constant *Const = IV.isConstant()
   1606         ? IV.getConstant() : UndefValue::get(Inst->getType());
   1607       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
   1608 
   1609       // Replaces all of the uses of a variable with uses of the constant.
   1610       Inst->replaceAllUsesWith(Const);
   1611 
   1612       // Delete the instruction.
   1613       Inst->eraseFromParent();
   1614 
   1615       // Hey, we just changed something!
   1616       MadeChanges = true;
   1617       ++NumInstRemoved;
   1618     }
   1619   }
   1620 
   1621   return MadeChanges;
   1622 }
   1623 
   1624 namespace {
   1625   //===--------------------------------------------------------------------===//
   1626   //
   1627   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
   1628   /// Constant Propagation.
   1629   ///
   1630   struct IPSCCP : public ModulePass {
   1631     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   1632       AU.addRequired<TargetLibraryInfo>();
   1633     }
   1634     static char ID;
   1635     IPSCCP() : ModulePass(ID) {
   1636       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
   1637     }
   1638     bool runOnModule(Module &M);
   1639   };
   1640 } // end anonymous namespace
   1641 
   1642 char IPSCCP::ID = 0;
   1643 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
   1644                 "Interprocedural Sparse Conditional Constant Propagation",
   1645                 false, false)
   1646 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
   1647 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
   1648                 "Interprocedural Sparse Conditional Constant Propagation",
   1649                 false, false)
   1650 
   1651 // createIPSCCPPass - This is the public interface to this file.
   1652 ModulePass *llvm::createIPSCCPPass() {
   1653   return new IPSCCP();
   1654 }
   1655 
   1656 
   1657 static bool AddressIsTaken(const GlobalValue *GV) {
   1658   // Delete any dead constantexpr klingons.
   1659   GV->removeDeadConstantUsers();
   1660 
   1661   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
   1662        UI != E; ++UI) {
   1663     const User *U = *UI;
   1664     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1665       if (SI->getOperand(0) == GV || SI->isVolatile())
   1666         return true;  // Storing addr of GV.
   1667     } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
   1668       // Make sure we are calling the function, not passing the address.
   1669       ImmutableCallSite CS(cast<Instruction>(U));
   1670       if (!CS.isCallee(UI))
   1671         return true;
   1672     } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1673       if (LI->isVolatile())
   1674         return true;
   1675     } else if (isa<BlockAddress>(U)) {
   1676       // blockaddress doesn't take the address of the function, it takes addr
   1677       // of label.
   1678     } else {
   1679       return true;
   1680     }
   1681   }
   1682   return false;
   1683 }
   1684 
   1685 bool IPSCCP::runOnModule(Module &M) {
   1686   const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
   1687   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
   1688   SCCPSolver Solver(TD, TLI);
   1689 
   1690   // AddressTakenFunctions - This set keeps track of the address-taken functions
   1691   // that are in the input.  As IPSCCP runs through and simplifies code,
   1692   // functions that were address taken can end up losing their
   1693   // address-taken-ness.  Because of this, we keep track of their addresses from
   1694   // the first pass so we can use them for the later simplification pass.
   1695   SmallPtrSet<Function*, 32> AddressTakenFunctions;
   1696 
   1697   // Loop over all functions, marking arguments to those with their addresses
   1698   // taken or that are external as overdefined.
   1699   //
   1700   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1701     if (F->isDeclaration())
   1702       continue;
   1703 
   1704     // If this is a strong or ODR definition of this function, then we can
   1705     // propagate information about its result into callsites of it.
   1706     if (!F->mayBeOverridden())
   1707       Solver.AddTrackedFunction(F);
   1708 
   1709     // If this function only has direct calls that we can see, we can track its
   1710     // arguments and return value aggressively, and can assume it is not called
   1711     // unless we see evidence to the contrary.
   1712     if (F->hasLocalLinkage()) {
   1713       if (AddressIsTaken(F))
   1714         AddressTakenFunctions.insert(F);
   1715       else {
   1716         Solver.AddArgumentTrackedFunction(F);
   1717         continue;
   1718       }
   1719     }
   1720 
   1721     // Assume the function is called.
   1722     Solver.MarkBlockExecutable(F->begin());
   1723 
   1724     // Assume nothing about the incoming arguments.
   1725     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1726          AI != E; ++AI)
   1727       Solver.markAnythingOverdefined(AI);
   1728   }
   1729 
   1730   // Loop over global variables.  We inform the solver about any internal global
   1731   // variables that do not have their 'addresses taken'.  If they don't have
   1732   // their addresses taken, we can propagate constants through them.
   1733   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
   1734        G != E; ++G)
   1735     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
   1736       Solver.TrackValueOfGlobalVariable(G);
   1737 
   1738   // Solve for constants.
   1739   bool ResolvedUndefs = true;
   1740   while (ResolvedUndefs) {
   1741     Solver.Solve();
   1742 
   1743     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
   1744     ResolvedUndefs = false;
   1745     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
   1746       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
   1747   }
   1748 
   1749   bool MadeChanges = false;
   1750 
   1751   // Iterate over all of the instructions in the module, replacing them with
   1752   // constants if we have found them to be of constant values.
   1753   //
   1754   SmallVector<BasicBlock*, 512> BlocksToErase;
   1755 
   1756   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1757     if (Solver.isBlockExecutable(F->begin())) {
   1758       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1759            AI != E; ++AI) {
   1760         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
   1761 
   1762         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1763         // result is a constant and replace it entirely if so.
   1764 
   1765         LatticeVal IV = Solver.getLatticeValueFor(AI);
   1766         if (IV.isOverdefined()) continue;
   1767 
   1768         Constant *CST = IV.isConstant() ?
   1769         IV.getConstant() : UndefValue::get(AI->getType());
   1770         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
   1771 
   1772         // Replaces all of the uses of a variable with uses of the
   1773         // constant.
   1774         AI->replaceAllUsesWith(CST);
   1775         ++IPNumArgsElimed;
   1776       }
   1777     }
   1778 
   1779     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
   1780       if (!Solver.isBlockExecutable(BB)) {
   1781         DeleteInstructionInBlock(BB);
   1782         MadeChanges = true;
   1783 
   1784         TerminatorInst *TI = BB->getTerminator();
   1785         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
   1786           BasicBlock *Succ = TI->getSuccessor(i);
   1787           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
   1788             TI->getSuccessor(i)->removePredecessor(BB);
   1789         }
   1790         if (!TI->use_empty())
   1791           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
   1792         TI->eraseFromParent();
   1793 
   1794         if (&*BB != &F->front())
   1795           BlocksToErase.push_back(BB);
   1796         else
   1797           new UnreachableInst(M.getContext(), BB);
   1798         continue;
   1799       }
   1800 
   1801       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1802         Instruction *Inst = BI++;
   1803         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
   1804           continue;
   1805 
   1806         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1807         // result is a constant and replace it entirely if so.
   1808 
   1809         LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1810         if (IV.isOverdefined())
   1811           continue;
   1812 
   1813         Constant *Const = IV.isConstant()
   1814           ? IV.getConstant() : UndefValue::get(Inst->getType());
   1815         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
   1816 
   1817         // Replaces all of the uses of a variable with uses of the
   1818         // constant.
   1819         Inst->replaceAllUsesWith(Const);
   1820 
   1821         // Delete the instruction.
   1822         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
   1823           Inst->eraseFromParent();
   1824 
   1825         // Hey, we just changed something!
   1826         MadeChanges = true;
   1827         ++IPNumInstRemoved;
   1828       }
   1829     }
   1830 
   1831     // Now that all instructions in the function are constant folded, erase dead
   1832     // blocks, because we can now use ConstantFoldTerminator to get rid of
   1833     // in-edges.
   1834     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
   1835       // If there are any PHI nodes in this successor, drop entries for BB now.
   1836       BasicBlock *DeadBB = BlocksToErase[i];
   1837       for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
   1838            UI != UE; ) {
   1839         // Grab the user and then increment the iterator early, as the user
   1840         // will be deleted. Step past all adjacent uses from the same user.
   1841         Instruction *I = dyn_cast<Instruction>(*UI);
   1842         do { ++UI; } while (UI != UE && *UI == I);
   1843 
   1844         // Ignore blockaddress users; BasicBlock's dtor will handle them.
   1845         if (!I) continue;
   1846 
   1847         bool Folded = ConstantFoldTerminator(I->getParent());
   1848         if (!Folded) {
   1849           // The constant folder may not have been able to fold the terminator
   1850           // if this is a branch or switch on undef.  Fold it manually as a
   1851           // branch to the first successor.
   1852 #ifndef NDEBUG
   1853           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1854             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
   1855                    "Branch should be foldable!");
   1856           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   1857             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
   1858           } else {
   1859             llvm_unreachable("Didn't fold away reference to block!");
   1860           }
   1861 #endif
   1862 
   1863           // Make this an uncond branch to the first successor.
   1864           TerminatorInst *TI = I->getParent()->getTerminator();
   1865           BranchInst::Create(TI->getSuccessor(0), TI);
   1866 
   1867           // Remove entries in successor phi nodes to remove edges.
   1868           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
   1869             TI->getSuccessor(i)->removePredecessor(TI->getParent());
   1870 
   1871           // Remove the old terminator.
   1872           TI->eraseFromParent();
   1873         }
   1874       }
   1875 
   1876       // Finally, delete the basic block.
   1877       F->getBasicBlockList().erase(DeadBB);
   1878     }
   1879     BlocksToErase.clear();
   1880   }
   1881 
   1882   // If we inferred constant or undef return values for a function, we replaced
   1883   // all call uses with the inferred value.  This means we don't need to bother
   1884   // actually returning anything from the function.  Replace all return
   1885   // instructions with return undef.
   1886   //
   1887   // Do this in two stages: first identify the functions we should process, then
   1888   // actually zap their returns.  This is important because we can only do this
   1889   // if the address of the function isn't taken.  In cases where a return is the
   1890   // last use of a function, the order of processing functions would affect
   1891   // whether other functions are optimizable.
   1892   SmallVector<ReturnInst*, 8> ReturnsToZap;
   1893 
   1894   // TODO: Process multiple value ret instructions also.
   1895   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
   1896   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
   1897        E = RV.end(); I != E; ++I) {
   1898     Function *F = I->first;
   1899     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
   1900       continue;
   1901 
   1902     // We can only do this if we know that nothing else can call the function.
   1903     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
   1904       continue;
   1905 
   1906     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
   1907       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
   1908         if (!isa<UndefValue>(RI->getOperand(0)))
   1909           ReturnsToZap.push_back(RI);
   1910   }
   1911 
   1912   // Zap all returns which we've identified as zap to change.
   1913   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
   1914     Function *F = ReturnsToZap[i]->getParent()->getParent();
   1915     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
   1916   }
   1917 
   1918   // If we inferred constant or undef values for globals variables, we can
   1919   // delete the global and any stores that remain to it.
   1920   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
   1921   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
   1922          E = TG.end(); I != E; ++I) {
   1923     GlobalVariable *GV = I->first;
   1924     assert(!I->second.isOverdefined() &&
   1925            "Overdefined values should have been taken out of the map!");
   1926     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
   1927     while (!GV->use_empty()) {
   1928       StoreInst *SI = cast<StoreInst>(GV->use_back());
   1929       SI->eraseFromParent();
   1930     }
   1931     M.getGlobalList().erase(GV);
   1932     ++IPNumGlobalConst;
   1933   }
   1934 
   1935   return MadeChanges;
   1936 }
   1937