Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //
     31 // A simple implementation of N-dimensional dual numbers, for automatically
     32 // computing exact derivatives of functions.
     33 //
     34 // While a complete treatment of the mechanics of automatic differentation is
     35 // beyond the scope of this header (see
     36 // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
     37 // basic idea is to extend normal arithmetic with an extra element, "e," often
     38 // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
     39 // numbers are extensions of the real numbers analogous to complex numbers:
     40 // whereas complex numbers augment the reals by introducing an imaginary unit i
     41 // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
     42 // that e^2 = 0. Dual numbers have two components: the "real" component and the
     43 // "infinitesimal" component, generally written as x + y*e. Surprisingly, this
     44 // leads to a convenient method for computing exact derivatives without needing
     45 // to manipulate complicated symbolic expressions.
     46 //
     47 // For example, consider the function
     48 //
     49 //   f(x) = x^2 ,
     50 //
     51 // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
     52 // Next, augument 10 with an infinitesimal to get:
     53 //
     54 //   f(10 + e) = (10 + e)^2
     55 //             = 100 + 2 * 10 * e + e^2
     56 //             = 100 + 20 * e       -+-
     57 //                     --            |
     58 //                     |             +--- This is zero, since e^2 = 0
     59 //                     |
     60 //                     +----------------- This is df/dx!
     61 //
     62 // Note that the derivative of f with respect to x is simply the infinitesimal
     63 // component of the value of f(x + e). So, in order to take the derivative of
     64 // any function, it is only necessary to replace the numeric "object" used in
     65 // the function with one extended with infinitesimals. The class Jet, defined in
     66 // this header, is one such example of this, where substitution is done with
     67 // templates.
     68 //
     69 // To handle derivatives of functions taking multiple arguments, different
     70 // infinitesimals are used, one for each variable to take the derivative of. For
     71 // example, consider a scalar function of two scalar parameters x and y:
     72 //
     73 //   f(x, y) = x^2 + x * y
     74 //
     75 // Following the technique above, to compute the derivatives df/dx and df/dy for
     76 // f(1, 3) involves doing two evaluations of f, the first time replacing x with
     77 // x + e, the second time replacing y with y + e.
     78 //
     79 // For df/dx:
     80 //
     81 //   f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
     82 //               = 1 + 2 * e + 3 + 3 * e
     83 //               = 4 + 5 * e
     84 //
     85 //               --> df/dx = 5
     86 //
     87 // For df/dy:
     88 //
     89 //   f(1, 3 + e) = 1^2 + 1 * (3 + e)
     90 //               = 1 + 3 + e
     91 //               = 4 + e
     92 //
     93 //               --> df/dy = 1
     94 //
     95 // To take the gradient of f with the implementation of dual numbers ("jets") in
     96 // this file, it is necessary to create a single jet type which has components
     97 // for the derivative in x and y, and passing them to a templated version of f:
     98 //
     99 //   template<typename T>
    100 //   T f(const T &x, const T &y) {
    101 //     return x * x + x * y;
    102 //   }
    103 //
    104 //   // The "2" means there should be 2 dual number components.
    105 //   Jet<double, 2> x(0);  // Pick the 0th dual number for x.
    106 //   Jet<double, 2> y(1);  // Pick the 1st dual number for y.
    107 //   Jet<double, 2> z = f(x, y);
    108 //
    109 //   LG << "df/dx = " << z.a[0]
    110 //      << "df/dy = " << z.a[1];
    111 //
    112 // Most users should not use Jet objects directly; a wrapper around Jet objects,
    113 // which makes computing the derivative, gradient, or jacobian of templated
    114 // functors simple, is in autodiff.h. Even autodiff.h should not be used
    115 // directly; instead autodiff_cost_function.h is typically the file of interest.
    116 //
    117 // For the more mathematically inclined, this file implements first-order
    118 // "jets". A 1st order jet is an element of the ring
    119 //
    120 //   T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
    121 //
    122 // which essentially means that each jet consists of a "scalar" value 'a' from T
    123 // and a 1st order perturbation vector 'v' of length N:
    124 //
    125 //   x = a + \sum_i v[i] t_i
    126 //
    127 // A shorthand is to write an element as x = a + u, where u is the pertubation.
    128 // Then, the main point about the arithmetic of jets is that the product of
    129 // perturbations is zero:
    130 //
    131 //   (a + u) * (b + v) = ab + av + bu + uv
    132 //                     = ab + (av + bu) + 0
    133 //
    134 // which is what operator* implements below. Addition is simpler:
    135 //
    136 //   (a + u) + (b + v) = (a + b) + (u + v).
    137 //
    138 // The only remaining question is how to evaluate the function of a jet, for
    139 // which we use the chain rule:
    140 //
    141 //   f(a + u) = f(a) + f'(a) u
    142 //
    143 // where f'(a) is the (scalar) derivative of f at a.
    144 //
    145 // By pushing these things through sufficiently and suitably templated
    146 // functions, we can do automatic differentiation. Just be sure to turn on
    147 // function inlining and common-subexpression elimination, or it will be very
    148 // slow!
    149 //
    150 // WARNING: Most Ceres users should not directly include this file or know the
    151 // details of how jets work. Instead the suggested method for automatic
    152 // derivatives is to use autodiff_cost_function.h, which is a wrapper around
    153 // both jets.h and autodiff.h to make taking derivatives of cost functions for
    154 // use in Ceres easier.
    155 
    156 #ifndef CERES_PUBLIC_JET_H_
    157 #define CERES_PUBLIC_JET_H_
    158 
    159 #include <cmath>
    160 #include <iosfwd>
    161 #include <iostream>  // NOLINT
    162 #include <string>
    163 
    164 #include "Eigen/Core"
    165 #include "ceres/fpclassify.h"
    166 
    167 namespace ceres {
    168 
    169 template <typename T, int N>
    170 struct Jet {
    171   enum { DIMENSION = N };
    172 
    173   // Default-construct "a" because otherwise this can lead to false errors about
    174   // uninitialized uses when other classes relying on default constructed T
    175   // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
    176   // the C++ standard mandates that e.g. default constructed doubles are
    177   // initialized to 0.0; see sections 8.5 of the C++03 standard.
    178   Jet() : a() {
    179     v.setZero();
    180   }
    181 
    182   // Constructor from scalar: a + 0.
    183   explicit Jet(const T& value) {
    184     a = value;
    185     v.setZero();
    186   }
    187 
    188   // Constructor from scalar plus variable: a + t_i.
    189   Jet(const T& value, int k) {
    190     a = value;
    191     v.setZero();
    192     v[k] = T(1.0);
    193   }
    194 
    195   // Compound operators
    196   Jet<T, N>& operator+=(const Jet<T, N> &y) {
    197     *this = *this + y;
    198     return *this;
    199   }
    200 
    201   Jet<T, N>& operator-=(const Jet<T, N> &y) {
    202     *this = *this - y;
    203     return *this;
    204   }
    205 
    206   Jet<T, N>& operator*=(const Jet<T, N> &y) {
    207     *this = *this * y;
    208     return *this;
    209   }
    210 
    211   Jet<T, N>& operator/=(const Jet<T, N> &y) {
    212     *this = *this / y;
    213     return *this;
    214   }
    215 
    216   // The scalar part.
    217   T a;
    218 
    219   // The infinitesimal part.
    220   //
    221   // Note the Eigen::DontAlign bit is needed here because this object
    222   // gets allocated on the stack and as part of other arrays and
    223   // structs. Forcing the right alignment there is the source of much
    224   // pain and suffering. Even if that works, passing Jets around to
    225   // functions by value has problems because the C++ ABI does not
    226   // guarantee alignment for function arguments.
    227   //
    228   // Setting the DontAlign bit prevents Eigen from using SSE for the
    229   // various operations on Jets. This is a small performance penalty
    230   // since the AutoDiff code will still expose much of the code as
    231   // statically sized loops to the compiler. But given the subtle
    232   // issues that arise due to alignment, especially when dealing with
    233   // multiple platforms, it seems to be a trade off worth making.
    234   Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
    235 };
    236 
    237 // Unary +
    238 template<typename T, int N> inline
    239 Jet<T, N> const& operator+(const Jet<T, N>& f) {
    240   return f;
    241 }
    242 
    243 // TODO(keir): Try adding __attribute__((always_inline)) to these functions to
    244 // see if it causes a performance increase.
    245 
    246 // Unary -
    247 template<typename T, int N> inline
    248 Jet<T, N> operator-(const Jet<T, N>&f) {
    249   Jet<T, N> g;
    250   g.a = -f.a;
    251   g.v = -f.v;
    252   return g;
    253 }
    254 
    255 // Binary +
    256 template<typename T, int N> inline
    257 Jet<T, N> operator+(const Jet<T, N>& f,
    258                     const Jet<T, N>& g) {
    259   Jet<T, N> h;
    260   h.a = f.a + g.a;
    261   h.v = f.v + g.v;
    262   return h;
    263 }
    264 
    265 // Binary + with a scalar: x + s
    266 template<typename T, int N> inline
    267 Jet<T, N> operator+(const Jet<T, N>& f, T s) {
    268   Jet<T, N> h;
    269   h.a = f.a + s;
    270   h.v = f.v;
    271   return h;
    272 }
    273 
    274 // Binary + with a scalar: s + x
    275 template<typename T, int N> inline
    276 Jet<T, N> operator+(T s, const Jet<T, N>& f) {
    277   Jet<T, N> h;
    278   h.a = f.a + s;
    279   h.v = f.v;
    280   return h;
    281 }
    282 
    283 // Binary -
    284 template<typename T, int N> inline
    285 Jet<T, N> operator-(const Jet<T, N>& f,
    286                     const Jet<T, N>& g) {
    287   Jet<T, N> h;
    288   h.a = f.a - g.a;
    289   h.v = f.v - g.v;
    290   return h;
    291 }
    292 
    293 // Binary - with a scalar: x - s
    294 template<typename T, int N> inline
    295 Jet<T, N> operator-(const Jet<T, N>& f, T s) {
    296   Jet<T, N> h;
    297   h.a = f.a - s;
    298   h.v = f.v;
    299   return h;
    300 }
    301 
    302 // Binary - with a scalar: s - x
    303 template<typename T, int N> inline
    304 Jet<T, N> operator-(T s, const Jet<T, N>& f) {
    305   Jet<T, N> h;
    306   h.a = s - f.a;
    307   h.v = -f.v;
    308   return h;
    309 }
    310 
    311 // Binary *
    312 template<typename T, int N> inline
    313 Jet<T, N> operator*(const Jet<T, N>& f,
    314                     const Jet<T, N>& g) {
    315   Jet<T, N> h;
    316   h.a = f.a * g.a;
    317   h.v = f.a * g.v + f.v * g.a;
    318   return h;
    319 }
    320 
    321 // Binary * with a scalar: x * s
    322 template<typename T, int N> inline
    323 Jet<T, N> operator*(const Jet<T, N>& f, T s) {
    324   Jet<T, N> h;
    325   h.a = f.a * s;
    326   h.v = f.v * s;
    327   return h;
    328 }
    329 
    330 // Binary * with a scalar: s * x
    331 template<typename T, int N> inline
    332 Jet<T, N> operator*(T s, const Jet<T, N>& f) {
    333   Jet<T, N> h;
    334   h.a = f.a * s;
    335   h.v = f.v * s;
    336   return h;
    337 }
    338 
    339 // Binary /
    340 template<typename T, int N> inline
    341 Jet<T, N> operator/(const Jet<T, N>& f,
    342                     const Jet<T, N>& g) {
    343   Jet<T, N> h;
    344   // This uses:
    345   //
    346   //   a + u   (a + u)(b - v)   (a + u)(b - v)
    347   //   ----- = -------------- = --------------
    348   //   b + v   (b + v)(b - v)        b^2
    349   //
    350   // which holds because v*v = 0.
    351   h.a = f.a / g.a;
    352   h.v = (f.v - f.a / g.a * g.v) / g.a;
    353   return h;
    354 }
    355 
    356 // Binary / with a scalar: s / x
    357 template<typename T, int N> inline
    358 Jet<T, N> operator/(T s, const Jet<T, N>& g) {
    359   Jet<T, N> h;
    360   h.a = s / g.a;
    361   h.v = - s * g.v / (g.a * g.a);
    362   return h;
    363 }
    364 
    365 // Binary / with a scalar: x / s
    366 template<typename T, int N> inline
    367 Jet<T, N> operator/(const Jet<T, N>& f, T s) {
    368   Jet<T, N> h;
    369   h.a = f.a / s;
    370   h.v = f.v / s;
    371   return h;
    372 }
    373 
    374 // Binary comparison operators for both scalars and jets.
    375 #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
    376 template<typename T, int N> inline \
    377 bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
    378   return f.a op g.a; \
    379 } \
    380 template<typename T, int N> inline \
    381 bool operator op(const T& s, const Jet<T, N>& g) { \
    382   return s op g.a; \
    383 } \
    384 template<typename T, int N> inline \
    385 bool operator op(const Jet<T, N>& f, const T& s) { \
    386   return f.a op s; \
    387 }
    388 CERES_DEFINE_JET_COMPARISON_OPERATOR( <  )  // NOLINT
    389 CERES_DEFINE_JET_COMPARISON_OPERATOR( <= )  // NOLINT
    390 CERES_DEFINE_JET_COMPARISON_OPERATOR( >  )  // NOLINT
    391 CERES_DEFINE_JET_COMPARISON_OPERATOR( >= )  // NOLINT
    392 CERES_DEFINE_JET_COMPARISON_OPERATOR( == )  // NOLINT
    393 CERES_DEFINE_JET_COMPARISON_OPERATOR( != )  // NOLINT
    394 #undef CERES_DEFINE_JET_COMPARISON_OPERATOR
    395 
    396 // Pull some functions from namespace std.
    397 //
    398 // This is necessary because we want to use the same name (e.g. 'sqrt') for
    399 // double-valued and Jet-valued functions, but we are not allowed to put
    400 // Jet-valued functions inside namespace std.
    401 //
    402 // Missing: cosh, sinh, tanh, tan
    403 // TODO(keir): Switch to "using".
    404 inline double abs     (double x) { return std::abs(x);      }
    405 inline double log     (double x) { return std::log(x);      }
    406 inline double exp     (double x) { return std::exp(x);      }
    407 inline double sqrt    (double x) { return std::sqrt(x);     }
    408 inline double cos     (double x) { return std::cos(x);      }
    409 inline double acos    (double x) { return std::acos(x);     }
    410 inline double sin     (double x) { return std::sin(x);      }
    411 inline double asin    (double x) { return std::asin(x);     }
    412 inline double pow  (double x, double y) { return std::pow(x, y);   }
    413 inline double atan2(double y, double x) { return std::atan2(y, x); }
    414 
    415 // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
    416 
    417 // abs(x + h) ~= x + h or -(x + h)
    418 template <typename T, int N> inline
    419 Jet<T, N> abs(const Jet<T, N>& f) {
    420   return f.a < T(0.0) ? -f : f;
    421 }
    422 
    423 // log(a + h) ~= log(a) + h / a
    424 template <typename T, int N> inline
    425 Jet<T, N> log(const Jet<T, N>& f) {
    426   Jet<T, N> g;
    427   g.a = log(f.a);
    428   g.v = f.v / f.a;
    429   return g;
    430 }
    431 
    432 // exp(a + h) ~= exp(a) + exp(a) h
    433 template <typename T, int N> inline
    434 Jet<T, N> exp(const Jet<T, N>& f) {
    435   Jet<T, N> g;
    436   g.a = exp(f.a);
    437   g.v = g.a * f.v;
    438   return g;
    439 }
    440 
    441 // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
    442 template <typename T, int N> inline
    443 Jet<T, N> sqrt(const Jet<T, N>& f) {
    444   Jet<T, N> g;
    445   g.a = sqrt(f.a);
    446   g.v = f.v / (T(2.0) * g.a);
    447   return g;
    448 }
    449 
    450 // cos(a + h) ~= cos(a) - sin(a) h
    451 template <typename T, int N> inline
    452 Jet<T, N> cos(const Jet<T, N>& f) {
    453   Jet<T, N> g;
    454   g.a = cos(f.a);
    455   T sin_a = sin(f.a);
    456   g.v = - sin_a * f.v;
    457   return g;
    458 }
    459 
    460 // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
    461 template <typename T, int N> inline
    462 Jet<T, N> acos(const Jet<T, N>& f) {
    463   Jet<T, N> g;
    464   g.a = acos(f.a);
    465   g.v = - T(1.0) / sqrt(T(1.0) - f.a * f.a) * f.v;
    466   return g;
    467 }
    468 
    469 // sin(a + h) ~= sin(a) + cos(a) h
    470 template <typename T, int N> inline
    471 Jet<T, N> sin(const Jet<T, N>& f) {
    472   Jet<T, N> g;
    473   g.a = sin(f.a);
    474   T cos_a = cos(f.a);
    475   g.v = cos_a * f.v;
    476   return g;
    477 }
    478 
    479 // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
    480 template <typename T, int N> inline
    481 Jet<T, N> asin(const Jet<T, N>& f) {
    482   Jet<T, N> g;
    483   g.a = asin(f.a);
    484   g.v = T(1.0) / sqrt(T(1.0) - f.a * f.a) * f.v;
    485   return g;
    486 }
    487 
    488 // Jet Classification. It is not clear what the appropriate semantics are for
    489 // these classifications. This picks that IsFinite and isnormal are "all"
    490 // operations, i.e. all elements of the jet must be finite for the jet itself
    491 // to be finite (or normal). For IsNaN and IsInfinite, the answer is less
    492 // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
    493 // part of a jet is nan or inf, then the entire jet is nan or inf. This leads
    494 // to strange situations like a jet can be both IsInfinite and IsNaN, but in
    495 // practice the "any" semantics are the most useful for e.g. checking that
    496 // derivatives are sane.
    497 
    498 // The jet is finite if all parts of the jet are finite.
    499 template <typename T, int N> inline
    500 bool IsFinite(const Jet<T, N>& f) {
    501   if (!IsFinite(f.a)) {
    502     return false;
    503   }
    504   for (int i = 0; i < N; ++i) {
    505     if (!IsFinite(f.v[i])) {
    506       return false;
    507     }
    508   }
    509   return true;
    510 }
    511 
    512 // The jet is infinite if any part of the jet is infinite.
    513 template <typename T, int N> inline
    514 bool IsInfinite(const Jet<T, N>& f) {
    515   if (IsInfinite(f.a)) {
    516     return true;
    517   }
    518   for (int i = 0; i < N; i++) {
    519     if (IsInfinite(f.v[i])) {
    520       return true;
    521     }
    522   }
    523   return false;
    524 }
    525 
    526 // The jet is NaN if any part of the jet is NaN.
    527 template <typename T, int N> inline
    528 bool IsNaN(const Jet<T, N>& f) {
    529   if (IsNaN(f.a)) {
    530     return true;
    531   }
    532   for (int i = 0; i < N; ++i) {
    533     if (IsNaN(f.v[i])) {
    534       return true;
    535     }
    536   }
    537   return false;
    538 }
    539 
    540 // The jet is normal if all parts of the jet are normal.
    541 template <typename T, int N> inline
    542 bool IsNormal(const Jet<T, N>& f) {
    543   if (!IsNormal(f.a)) {
    544     return false;
    545   }
    546   for (int i = 0; i < N; ++i) {
    547     if (!IsNormal(f.v[i])) {
    548       return false;
    549     }
    550   }
    551   return true;
    552 }
    553 
    554 // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
    555 //
    556 // In words: the rate of change of theta is 1/r times the rate of
    557 // change of (x, y) in the positive angular direction.
    558 template <typename T, int N> inline
    559 Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
    560   // Note order of arguments:
    561   //
    562   //   f = a + da
    563   //   g = b + db
    564 
    565   Jet<T, N> out;
    566 
    567   out.a = atan2(g.a, f.a);
    568 
    569   T const temp = T(1.0) / (f.a * f.a + g.a * g.a);
    570   out.v = temp * (- g.a * f.v + f.a * g.v);
    571   return out;
    572 }
    573 
    574 
    575 // pow -- base is a differentiatble function, exponent is a constant.
    576 // (a+da)^p ~= a^p + p*a^(p-1) da
    577 template <typename T, int N> inline
    578 Jet<T, N> pow(const Jet<T, N>& f, double g) {
    579   Jet<T, N> out;
    580   out.a = pow(f.a, g);
    581   T const temp = g * pow(f.a, g - T(1.0));
    582   out.v = temp * f.v;
    583   return out;
    584 }
    585 
    586 // pow -- base is a constant, exponent is a differentiable function.
    587 // (a)^(p+dp) ~= a^p + a^p log(a) dp
    588 template <typename T, int N> inline
    589 Jet<T, N> pow(double f, const Jet<T, N>& g) {
    590   Jet<T, N> out;
    591   out.a = pow(f, g.a);
    592   T const temp = log(f) * out.a;
    593   out.v = temp * g.v;
    594   return out;
    595 }
    596 
    597 
    598 // pow -- both base and exponent are differentiable functions.
    599 // (a+da)^(b+db) ~= a^b + b * a^(b-1) da + a^b log(a) * db
    600 template <typename T, int N> inline
    601 Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
    602   Jet<T, N> out;
    603 
    604   T const temp1 = pow(f.a, g.a);
    605   T const temp2 = g.a * pow(f.a, g.a - T(1.0));
    606   T const temp3 = temp1 * log(f.a);
    607 
    608   out.a = temp1;
    609   out.v = temp2 * f.v + temp3 * g.v;
    610   return out;
    611 }
    612 
    613 // Define the helper functions Eigen needs to embed Jet types.
    614 //
    615 // NOTE(keir): machine_epsilon() and precision() are missing, because they don't
    616 // work with nested template types (e.g. where the scalar is itself templated).
    617 // Among other things, this means that decompositions of Jet's does not work,
    618 // for example
    619 //
    620 //   Matrix<Jet<T, N> ... > A, x, b;
    621 //   ...
    622 //   A.solve(b, &x)
    623 //
    624 // does not work and will fail with a strange compiler error.
    625 //
    626 // TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
    627 // switch to 3.0, also add the rest of the specialization functionality.
    628 template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x;              }  // NOLINT
    629 template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x;              }  // NOLINT
    630 template<typename T, int N> inline       Jet<T, N>  ei_imag(const Jet<T, N>&  ) { return Jet<T, N>(0.0); }  // NOLINT
    631 template<typename T, int N> inline       Jet<T, N>  ei_abs (const Jet<T, N>& x) { return fabs(x);        }  // NOLINT
    632 template<typename T, int N> inline       Jet<T, N>  ei_abs2(const Jet<T, N>& x) { return x * x;          }  // NOLINT
    633 template<typename T, int N> inline       Jet<T, N>  ei_sqrt(const Jet<T, N>& x) { return sqrt(x);        }  // NOLINT
    634 template<typename T, int N> inline       Jet<T, N>  ei_exp (const Jet<T, N>& x) { return exp(x);         }  // NOLINT
    635 template<typename T, int N> inline       Jet<T, N>  ei_log (const Jet<T, N>& x) { return log(x);         }  // NOLINT
    636 template<typename T, int N> inline       Jet<T, N>  ei_sin (const Jet<T, N>& x) { return sin(x);         }  // NOLINT
    637 template<typename T, int N> inline       Jet<T, N>  ei_cos (const Jet<T, N>& x) { return cos(x);         }  // NOLINT
    638 template<typename T, int N> inline       Jet<T, N>  ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); }  // NOLINT
    639 
    640 // Note: This has to be in the ceres namespace for argument dependent lookup to
    641 // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
    642 // strange compile errors.
    643 template <typename T, int N>
    644 inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
    645   return s << "[" << z.a << " ; " << z.v.transpose() << "]";
    646 }
    647 
    648 }  // namespace ceres
    649 
    650 namespace Eigen {
    651 
    652 // Creating a specialization of NumTraits enables placing Jet objects inside
    653 // Eigen arrays, getting all the goodness of Eigen combined with autodiff.
    654 template<typename T, int N>
    655 struct NumTraits<ceres::Jet<T, N> > {
    656   typedef ceres::Jet<T, N> Real;
    657   typedef ceres::Jet<T, N> NonInteger;
    658   typedef ceres::Jet<T, N> Nested;
    659 
    660   static typename ceres::Jet<T, N> dummy_precision() {
    661     return ceres::Jet<T, N>(1e-12);
    662   }
    663 
    664   enum {
    665     IsComplex = 0,
    666     IsInteger = 0,
    667     IsSigned,
    668     ReadCost = 1,
    669     AddCost = 1,
    670     // For Jet types, multiplication is more expensive than addition.
    671     MulCost = 3,
    672     HasFloatingPoint = 1
    673   };
    674 };
    675 
    676 }  // namespace Eigen
    677 
    678 #endif  // CERES_PUBLIC_JET_H_
    679