Home | History | Annotate | Download | only in Core
      1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     17 
     18 using namespace clang;
     19 using namespace ento;
     20 
     21 namespace {
     22 class SimpleSValBuilder : public SValBuilder {
     23 protected:
     24   virtual SVal dispatchCast(SVal val, QualType castTy);
     25   virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
     26   virtual SVal evalCastFromLoc(Loc val, QualType castTy);
     27 
     28 public:
     29   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
     30                     ProgramStateManager &stateMgr)
     31                     : SValBuilder(alloc, context, stateMgr) {}
     32   virtual ~SimpleSValBuilder() {}
     33 
     34   virtual SVal evalMinus(NonLoc val);
     35   virtual SVal evalComplement(NonLoc val);
     36   virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
     37                            NonLoc lhs, NonLoc rhs, QualType resultTy);
     38   virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
     39                            Loc lhs, Loc rhs, QualType resultTy);
     40   virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
     41                            Loc lhs, NonLoc rhs, QualType resultTy);
     42 
     43   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
     44   ///  (integer) value, that value is returned. Otherwise, returns NULL.
     45   virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
     46 
     47   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
     48                      const llvm::APSInt &RHS, QualType resultTy);
     49 };
     50 } // end anonymous namespace
     51 
     52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
     53                                            ASTContext &context,
     54                                            ProgramStateManager &stateMgr) {
     55   return new SimpleSValBuilder(alloc, context, stateMgr);
     56 }
     57 
     58 //===----------------------------------------------------------------------===//
     59 // Transfer function for Casts.
     60 //===----------------------------------------------------------------------===//
     61 
     62 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
     63   assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
     64   return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
     65                            : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
     66 }
     67 
     68 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
     69 
     70   bool isLocType = Loc::isLocType(castTy);
     71 
     72   if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
     73     if (isLocType)
     74       return LI->getLoc();
     75 
     76     // FIXME: Correctly support promotions/truncations.
     77     unsigned castSize = Context.getTypeSize(castTy);
     78     if (castSize == LI->getNumBits())
     79       return val;
     80     return makeLocAsInteger(LI->getLoc(), castSize);
     81   }
     82 
     83   if (const SymExpr *se = val.getAsSymbolicExpression()) {
     84     QualType T = Context.getCanonicalType(se->getType());
     85     // If types are the same or both are integers, ignore the cast.
     86     // FIXME: Remove this hack when we support symbolic truncation/extension.
     87     // HACK: If both castTy and T are integers, ignore the cast.  This is
     88     // not a permanent solution.  Eventually we want to precisely handle
     89     // extension/truncation of symbolic integers.  This prevents us from losing
     90     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
     91     // different integer types.
     92    if (haveSameType(T, castTy))
     93       return val;
     94 
     95     if (!isLocType)
     96       return makeNonLoc(se, T, castTy);
     97     return UnknownVal();
     98   }
     99 
    100   // If value is a non integer constant, produce unknown.
    101   if (!val.getAs<nonloc::ConcreteInt>())
    102     return UnknownVal();
    103 
    104   // Handle casts to a boolean type.
    105   if (castTy->isBooleanType()) {
    106     bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
    107     return makeTruthVal(b, castTy);
    108   }
    109 
    110   // Only handle casts from integers to integers - if val is an integer constant
    111   // being cast to a non integer type, produce unknown.
    112   if (!isLocType && !castTy->isIntegerType())
    113     return UnknownVal();
    114 
    115   llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
    116   BasicVals.getAPSIntType(castTy).apply(i);
    117 
    118   if (isLocType)
    119     return makeIntLocVal(i);
    120   else
    121     return makeIntVal(i);
    122 }
    123 
    124 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
    125 
    126   // Casts from pointers -> pointers, just return the lval.
    127   //
    128   // Casts from pointers -> references, just return the lval.  These
    129   //   can be introduced by the frontend for corner cases, e.g
    130   //   casting from va_list* to __builtin_va_list&.
    131   //
    132   if (Loc::isLocType(castTy) || castTy->isReferenceType())
    133     return val;
    134 
    135   // FIXME: Handle transparent unions where a value can be "transparently"
    136   //  lifted into a union type.
    137   if (castTy->isUnionType())
    138     return UnknownVal();
    139 
    140   if (castTy->isIntegerType()) {
    141     unsigned BitWidth = Context.getTypeSize(castTy);
    142 
    143     if (!val.getAs<loc::ConcreteInt>())
    144       return makeLocAsInteger(val, BitWidth);
    145 
    146     llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
    147     BasicVals.getAPSIntType(castTy).apply(i);
    148     return makeIntVal(i);
    149   }
    150 
    151   // All other cases: return 'UnknownVal'.  This includes casting pointers
    152   // to floats, which is probably badness it itself, but this is a good
    153   // intermediate solution until we do something better.
    154   return UnknownVal();
    155 }
    156 
    157 //===----------------------------------------------------------------------===//
    158 // Transfer function for unary operators.
    159 //===----------------------------------------------------------------------===//
    160 
    161 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
    162   switch (val.getSubKind()) {
    163   case nonloc::ConcreteIntKind:
    164     return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
    165   default:
    166     return UnknownVal();
    167   }
    168 }
    169 
    170 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
    171   switch (X.getSubKind()) {
    172   case nonloc::ConcreteIntKind:
    173     return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
    174   default:
    175     return UnknownVal();
    176   }
    177 }
    178 
    179 //===----------------------------------------------------------------------===//
    180 // Transfer function for binary operators.
    181 //===----------------------------------------------------------------------===//
    182 
    183 static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
    184   switch (op) {
    185   default:
    186     llvm_unreachable("Invalid opcode.");
    187   case BO_LT: return BO_GE;
    188   case BO_GT: return BO_LE;
    189   case BO_LE: return BO_GT;
    190   case BO_GE: return BO_LT;
    191   case BO_EQ: return BO_NE;
    192   case BO_NE: return BO_EQ;
    193   }
    194 }
    195 
    196 static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
    197   switch (op) {
    198   default:
    199     llvm_unreachable("Invalid opcode.");
    200   case BO_LT: return BO_GT;
    201   case BO_GT: return BO_LT;
    202   case BO_LE: return BO_GE;
    203   case BO_GE: return BO_LE;
    204   case BO_EQ:
    205   case BO_NE:
    206     return op;
    207   }
    208 }
    209 
    210 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
    211                                     BinaryOperator::Opcode op,
    212                                     const llvm::APSInt &RHS,
    213                                     QualType resultTy) {
    214   bool isIdempotent = false;
    215 
    216   // Check for a few special cases with known reductions first.
    217   switch (op) {
    218   default:
    219     // We can't reduce this case; just treat it normally.
    220     break;
    221   case BO_Mul:
    222     // a*0 and a*1
    223     if (RHS == 0)
    224       return makeIntVal(0, resultTy);
    225     else if (RHS == 1)
    226       isIdempotent = true;
    227     break;
    228   case BO_Div:
    229     // a/0 and a/1
    230     if (RHS == 0)
    231       // This is also handled elsewhere.
    232       return UndefinedVal();
    233     else if (RHS == 1)
    234       isIdempotent = true;
    235     break;
    236   case BO_Rem:
    237     // a%0 and a%1
    238     if (RHS == 0)
    239       // This is also handled elsewhere.
    240       return UndefinedVal();
    241     else if (RHS == 1)
    242       return makeIntVal(0, resultTy);
    243     break;
    244   case BO_Add:
    245   case BO_Sub:
    246   case BO_Shl:
    247   case BO_Shr:
    248   case BO_Xor:
    249     // a+0, a-0, a<<0, a>>0, a^0
    250     if (RHS == 0)
    251       isIdempotent = true;
    252     break;
    253   case BO_And:
    254     // a&0 and a&(~0)
    255     if (RHS == 0)
    256       return makeIntVal(0, resultTy);
    257     else if (RHS.isAllOnesValue())
    258       isIdempotent = true;
    259     break;
    260   case BO_Or:
    261     // a|0 and a|(~0)
    262     if (RHS == 0)
    263       isIdempotent = true;
    264     else if (RHS.isAllOnesValue()) {
    265       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
    266       return nonloc::ConcreteInt(Result);
    267     }
    268     break;
    269   }
    270 
    271   // Idempotent ops (like a*1) can still change the type of an expression.
    272   // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
    273   // dirty work.
    274   if (isIdempotent)
    275       return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
    276 
    277   // If we reach this point, the expression cannot be simplified.
    278   // Make a SymbolVal for the entire expression, after converting the RHS.
    279   const llvm::APSInt *ConvertedRHS = &RHS;
    280   if (BinaryOperator::isComparisonOp(op)) {
    281     // We're looking for a type big enough to compare the symbolic value
    282     // with the given constant.
    283     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
    284     ASTContext &Ctx = getContext();
    285     QualType SymbolType = LHS->getType();
    286     uint64_t ValWidth = RHS.getBitWidth();
    287     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
    288 
    289     if (ValWidth < TypeWidth) {
    290       // If the value is too small, extend it.
    291       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
    292     } else if (ValWidth == TypeWidth) {
    293       // If the value is signed but the symbol is unsigned, do the comparison
    294       // in unsigned space. [C99 6.3.1.8]
    295       // (For the opposite case, the value is already unsigned.)
    296       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
    297         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
    298     }
    299   } else
    300     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
    301 
    302   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
    303 }
    304 
    305 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
    306                                   BinaryOperator::Opcode op,
    307                                   NonLoc lhs, NonLoc rhs,
    308                                   QualType resultTy)  {
    309   NonLoc InputLHS = lhs;
    310   NonLoc InputRHS = rhs;
    311 
    312   // Handle trivial case where left-side and right-side are the same.
    313   if (lhs == rhs)
    314     switch (op) {
    315       default:
    316         break;
    317       case BO_EQ:
    318       case BO_LE:
    319       case BO_GE:
    320         return makeTruthVal(true, resultTy);
    321       case BO_LT:
    322       case BO_GT:
    323       case BO_NE:
    324         return makeTruthVal(false, resultTy);
    325       case BO_Xor:
    326       case BO_Sub:
    327         if (resultTy->isIntegralOrEnumerationType())
    328           return makeIntVal(0, resultTy);
    329         return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
    330       case BO_Or:
    331       case BO_And:
    332         return evalCastFromNonLoc(lhs, resultTy);
    333     }
    334 
    335   while (1) {
    336     switch (lhs.getSubKind()) {
    337     default:
    338       return makeSymExprValNN(state, op, lhs, rhs, resultTy);
    339     case nonloc::LocAsIntegerKind: {
    340       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
    341       switch (rhs.getSubKind()) {
    342         case nonloc::LocAsIntegerKind:
    343           return evalBinOpLL(state, op, lhsL,
    344                              rhs.castAs<nonloc::LocAsInteger>().getLoc(),
    345                              resultTy);
    346         case nonloc::ConcreteIntKind: {
    347           // Transform the integer into a location and compare.
    348           llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
    349           BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
    350           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
    351         }
    352         default:
    353           switch (op) {
    354             case BO_EQ:
    355               return makeTruthVal(false, resultTy);
    356             case BO_NE:
    357               return makeTruthVal(true, resultTy);
    358             default:
    359               // This case also handles pointer arithmetic.
    360               return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    361           }
    362       }
    363     }
    364     case nonloc::ConcreteIntKind: {
    365       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
    366 
    367       // If we're dealing with two known constants, just perform the operation.
    368       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
    369         llvm::APSInt RHSValue = *KnownRHSValue;
    370         if (BinaryOperator::isComparisonOp(op)) {
    371           // We're looking for a type big enough to compare the two values.
    372           // FIXME: This is not correct. char + short will result in a promotion
    373           // to int. Unfortunately we have lost types by this point.
    374           APSIntType CompareType = std::max(APSIntType(LHSValue),
    375                                             APSIntType(RHSValue));
    376           CompareType.apply(LHSValue);
    377           CompareType.apply(RHSValue);
    378         } else if (!BinaryOperator::isShiftOp(op)) {
    379           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
    380           IntType.apply(LHSValue);
    381           IntType.apply(RHSValue);
    382         }
    383 
    384         const llvm::APSInt *Result =
    385           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
    386         if (!Result)
    387           return UndefinedVal();
    388 
    389         return nonloc::ConcreteInt(*Result);
    390       }
    391 
    392       // Swap the left and right sides and flip the operator if doing so
    393       // allows us to better reason about the expression (this is a form
    394       // of expression canonicalization).
    395       // While we're at it, catch some special cases for non-commutative ops.
    396       switch (op) {
    397       case BO_LT:
    398       case BO_GT:
    399       case BO_LE:
    400       case BO_GE:
    401         op = ReverseComparison(op);
    402         // FALL-THROUGH
    403       case BO_EQ:
    404       case BO_NE:
    405       case BO_Add:
    406       case BO_Mul:
    407       case BO_And:
    408       case BO_Xor:
    409       case BO_Or:
    410         std::swap(lhs, rhs);
    411         continue;
    412       case BO_Shr:
    413         // (~0)>>a
    414         if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
    415           return evalCastFromNonLoc(lhs, resultTy);
    416         // FALL-THROUGH
    417       case BO_Shl:
    418         // 0<<a and 0>>a
    419         if (LHSValue == 0)
    420           return evalCastFromNonLoc(lhs, resultTy);
    421         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    422       default:
    423         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    424       }
    425     }
    426     case nonloc::SymbolValKind: {
    427       // We only handle LHS as simple symbols or SymIntExprs.
    428       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
    429 
    430       // LHS is a symbolic expression.
    431       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
    432 
    433         // Is this a logical not? (!x is represented as x == 0.)
    434         if (op == BO_EQ && rhs.isZeroConstant()) {
    435           // We know how to negate certain expressions. Simplify them here.
    436 
    437           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
    438           switch (opc) {
    439           default:
    440             // We don't know how to negate this operation.
    441             // Just handle it as if it were a normal comparison to 0.
    442             break;
    443           case BO_LAnd:
    444           case BO_LOr:
    445             llvm_unreachable("Logical operators handled by branching logic.");
    446           case BO_Assign:
    447           case BO_MulAssign:
    448           case BO_DivAssign:
    449           case BO_RemAssign:
    450           case BO_AddAssign:
    451           case BO_SubAssign:
    452           case BO_ShlAssign:
    453           case BO_ShrAssign:
    454           case BO_AndAssign:
    455           case BO_XorAssign:
    456           case BO_OrAssign:
    457           case BO_Comma:
    458             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
    459           case BO_PtrMemD:
    460           case BO_PtrMemI:
    461             llvm_unreachable("Pointer arithmetic not handled here.");
    462           case BO_LT:
    463           case BO_GT:
    464           case BO_LE:
    465           case BO_GE:
    466           case BO_EQ:
    467           case BO_NE:
    468             // Negate the comparison and make a value.
    469             opc = NegateComparison(opc);
    470             assert(symIntExpr->getType() == resultTy);
    471             return makeNonLoc(symIntExpr->getLHS(), opc,
    472                 symIntExpr->getRHS(), resultTy);
    473           }
    474         }
    475 
    476         // For now, only handle expressions whose RHS is a constant.
    477         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
    478           // If both the LHS and the current expression are additive,
    479           // fold their constants and try again.
    480           if (BinaryOperator::isAdditiveOp(op)) {
    481             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
    482             if (BinaryOperator::isAdditiveOp(lop)) {
    483               // Convert the two constants to a common type, then combine them.
    484 
    485               // resultTy may not be the best type to convert to, but it's
    486               // probably the best choice in expressions with mixed type
    487               // (such as x+1U+2LL). The rules for implicit conversions should
    488               // choose a reasonable type to preserve the expression, and will
    489               // at least match how the value is going to be used.
    490               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
    491               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
    492               const llvm::APSInt &second = IntType.convert(*RHSValue);
    493 
    494               const llvm::APSInt *newRHS;
    495               if (lop == op)
    496                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
    497               else
    498                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
    499 
    500               assert(newRHS && "Invalid operation despite common type!");
    501               rhs = nonloc::ConcreteInt(*newRHS);
    502               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
    503               op = lop;
    504               continue;
    505             }
    506           }
    507 
    508           // Otherwise, make a SymIntExpr out of the expression.
    509           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
    510         }
    511 
    512 
    513       } else if (isa<SymbolData>(Sym)) {
    514         // Does the symbol simplify to a constant?  If so, "fold" the constant
    515         // by setting 'lhs' to a ConcreteInt and try again.
    516         if (const llvm::APSInt *Constant = state->getConstraintManager()
    517                                                   .getSymVal(state, Sym)) {
    518           lhs = nonloc::ConcreteInt(*Constant);
    519           continue;
    520         }
    521 
    522         // Is the RHS a constant?
    523         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
    524           return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
    525       }
    526 
    527       // Give up -- this is not a symbolic expression we can handle.
    528       return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    529     }
    530     }
    531   }
    532 }
    533 
    534 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
    535 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
    536                                   BinaryOperator::Opcode op,
    537                                   Loc lhs, Loc rhs,
    538                                   QualType resultTy) {
    539   // Only comparisons and subtractions are valid operations on two pointers.
    540   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
    541   // However, if a pointer is casted to an integer, evalBinOpNN may end up
    542   // calling this function with another operation (PR7527). We don't attempt to
    543   // model this for now, but it could be useful, particularly when the
    544   // "location" is actually an integer value that's been passed through a void*.
    545   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
    546     return UnknownVal();
    547 
    548   // Special cases for when both sides are identical.
    549   if (lhs == rhs) {
    550     switch (op) {
    551     default:
    552       llvm_unreachable("Unimplemented operation for two identical values");
    553     case BO_Sub:
    554       return makeZeroVal(resultTy);
    555     case BO_EQ:
    556     case BO_LE:
    557     case BO_GE:
    558       return makeTruthVal(true, resultTy);
    559     case BO_NE:
    560     case BO_LT:
    561     case BO_GT:
    562       return makeTruthVal(false, resultTy);
    563     }
    564   }
    565 
    566   switch (lhs.getSubKind()) {
    567   default:
    568     llvm_unreachable("Ordering not implemented for this Loc.");
    569 
    570   case loc::GotoLabelKind:
    571     // The only thing we know about labels is that they're non-null.
    572     if (rhs.isZeroConstant()) {
    573       switch (op) {
    574       default:
    575         break;
    576       case BO_Sub:
    577         return evalCastFromLoc(lhs, resultTy);
    578       case BO_EQ:
    579       case BO_LE:
    580       case BO_LT:
    581         return makeTruthVal(false, resultTy);
    582       case BO_NE:
    583       case BO_GT:
    584       case BO_GE:
    585         return makeTruthVal(true, resultTy);
    586       }
    587     }
    588     // There may be two labels for the same location, and a function region may
    589     // have the same address as a label at the start of the function (depending
    590     // on the ABI).
    591     // FIXME: we can probably do a comparison against other MemRegions, though.
    592     // FIXME: is there a way to tell if two labels refer to the same location?
    593     return UnknownVal();
    594 
    595   case loc::ConcreteIntKind: {
    596     // If one of the operands is a symbol and the other is a constant,
    597     // build an expression for use by the constraint manager.
    598     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
    599       // We can only build expressions with symbols on the left,
    600       // so we need a reversible operator.
    601       if (!BinaryOperator::isComparisonOp(op))
    602         return UnknownVal();
    603 
    604       const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
    605       return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
    606     }
    607 
    608     // If both operands are constants, just perform the operation.
    609     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
    610       SVal ResultVal =
    611           lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
    612       if (Optional<Loc> Result = ResultVal.getAs<Loc>())
    613         return evalCastFromLoc(*Result, resultTy);
    614       else
    615         return UnknownVal();
    616     }
    617 
    618     // Special case comparisons against NULL.
    619     // This must come after the test if the RHS is a symbol, which is used to
    620     // build constraints. The address of any non-symbolic region is guaranteed
    621     // to be non-NULL, as is any label.
    622     assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
    623     if (lhs.isZeroConstant()) {
    624       switch (op) {
    625       default:
    626         break;
    627       case BO_EQ:
    628       case BO_GT:
    629       case BO_GE:
    630         return makeTruthVal(false, resultTy);
    631       case BO_NE:
    632       case BO_LT:
    633       case BO_LE:
    634         return makeTruthVal(true, resultTy);
    635       }
    636     }
    637 
    638     // Comparing an arbitrary integer to a region or label address is
    639     // completely unknowable.
    640     return UnknownVal();
    641   }
    642   case loc::MemRegionKind: {
    643     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
    644       // If one of the operands is a symbol and the other is a constant,
    645       // build an expression for use by the constraint manager.
    646       if (SymbolRef lSym = lhs.getAsLocSymbol())
    647         return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
    648 
    649       // Special case comparisons to NULL.
    650       // This must come after the test if the LHS is a symbol, which is used to
    651       // build constraints. The address of any non-symbolic region is guaranteed
    652       // to be non-NULL.
    653       if (rInt->isZeroConstant()) {
    654         switch (op) {
    655         default:
    656           break;
    657         case BO_Sub:
    658           return evalCastFromLoc(lhs, resultTy);
    659         case BO_EQ:
    660         case BO_LT:
    661         case BO_LE:
    662           return makeTruthVal(false, resultTy);
    663         case BO_NE:
    664         case BO_GT:
    665         case BO_GE:
    666           return makeTruthVal(true, resultTy);
    667         }
    668       }
    669 
    670       // Comparing a region to an arbitrary integer is completely unknowable.
    671       return UnknownVal();
    672     }
    673 
    674     // Get both values as regions, if possible.
    675     const MemRegion *LeftMR = lhs.getAsRegion();
    676     assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
    677 
    678     const MemRegion *RightMR = rhs.getAsRegion();
    679     if (!RightMR)
    680       // The RHS is probably a label, which in theory could address a region.
    681       // FIXME: we can probably make a more useful statement about non-code
    682       // regions, though.
    683       return UnknownVal();
    684 
    685     const MemSpaceRegion *LeftMS = LeftMR->getMemorySpace();
    686     const MemSpaceRegion *RightMS = RightMR->getMemorySpace();
    687     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
    688     const MemRegion *LeftBase = LeftMR->getBaseRegion();
    689     const MemRegion *RightBase = RightMR->getBaseRegion();
    690 
    691     // If the two regions are from different known memory spaces they cannot be
    692     // equal. Also, assume that no symbolic region (whose memory space is
    693     // unknown) is on the stack.
    694     if (LeftMS != RightMS &&
    695         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
    696          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
    697       switch (op) {
    698       default:
    699         return UnknownVal();
    700       case BO_EQ:
    701         return makeTruthVal(false, resultTy);
    702       case BO_NE:
    703         return makeTruthVal(true, resultTy);
    704       }
    705     }
    706 
    707     // If both values wrap regions, see if they're from different base regions.
    708     // Note, heap base symbolic regions are assumed to not alias with
    709     // each other; for example, we assume that malloc returns different address
    710     // on each invocation.
    711     if (LeftBase != RightBase &&
    712         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
    713          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
    714       switch (op) {
    715       default:
    716         return UnknownVal();
    717       case BO_EQ:
    718         return makeTruthVal(false, resultTy);
    719       case BO_NE:
    720         return makeTruthVal(true, resultTy);
    721       }
    722     }
    723 
    724     // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
    725     // ElementRegion path and the FieldRegion path below should be unified.
    726     if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
    727       // First see if the right region is also an ElementRegion.
    728       const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
    729       if (!RightER)
    730         return UnknownVal();
    731 
    732       // Next, see if the two ERs have the same super-region and matching types.
    733       // FIXME: This should do something useful even if the types don't match,
    734       // though if both indexes are constant the RegionRawOffset path will
    735       // give the correct answer.
    736       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
    737           LeftER->getElementType() == RightER->getElementType()) {
    738         // Get the left index and cast it to the correct type.
    739         // If the index is unknown or undefined, bail out here.
    740         SVal LeftIndexVal = LeftER->getIndex();
    741         Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
    742         if (!LeftIndex)
    743           return UnknownVal();
    744         LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
    745         LeftIndex = LeftIndexVal.getAs<NonLoc>();
    746         if (!LeftIndex)
    747           return UnknownVal();
    748 
    749         // Do the same for the right index.
    750         SVal RightIndexVal = RightER->getIndex();
    751         Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
    752         if (!RightIndex)
    753           return UnknownVal();
    754         RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
    755         RightIndex = RightIndexVal.getAs<NonLoc>();
    756         if (!RightIndex)
    757           return UnknownVal();
    758 
    759         // Actually perform the operation.
    760         // evalBinOpNN expects the two indexes to already be the right type.
    761         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
    762       }
    763 
    764       // If the element indexes aren't comparable, see if the raw offsets are.
    765       RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
    766       RegionRawOffset RightOffset = RightER->getAsArrayOffset();
    767 
    768       if (LeftOffset.getRegion() != NULL &&
    769           LeftOffset.getRegion() == RightOffset.getRegion()) {
    770         CharUnits left = LeftOffset.getOffset();
    771         CharUnits right = RightOffset.getOffset();
    772 
    773         switch (op) {
    774         default:
    775           return UnknownVal();
    776         case BO_LT:
    777           return makeTruthVal(left < right, resultTy);
    778         case BO_GT:
    779           return makeTruthVal(left > right, resultTy);
    780         case BO_LE:
    781           return makeTruthVal(left <= right, resultTy);
    782         case BO_GE:
    783           return makeTruthVal(left >= right, resultTy);
    784         case BO_EQ:
    785           return makeTruthVal(left == right, resultTy);
    786         case BO_NE:
    787           return makeTruthVal(left != right, resultTy);
    788         }
    789       }
    790 
    791       // If we get here, we have no way of comparing the ElementRegions.
    792       return UnknownVal();
    793     }
    794 
    795     // See if both regions are fields of the same structure.
    796     // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
    797     if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
    798       // Only comparisons are meaningful here!
    799       if (!BinaryOperator::isComparisonOp(op))
    800         return UnknownVal();
    801 
    802       // First see if the right region is also a FieldRegion.
    803       const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
    804       if (!RightFR)
    805         return UnknownVal();
    806 
    807       // Next, see if the two FRs have the same super-region.
    808       // FIXME: This doesn't handle casts yet, and simply stripping the casts
    809       // doesn't help.
    810       if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
    811         return UnknownVal();
    812 
    813       const FieldDecl *LeftFD = LeftFR->getDecl();
    814       const FieldDecl *RightFD = RightFR->getDecl();
    815       const RecordDecl *RD = LeftFD->getParent();
    816 
    817       // Make sure the two FRs are from the same kind of record. Just in case!
    818       // FIXME: This is probably where inheritance would be a problem.
    819       if (RD != RightFD->getParent())
    820         return UnknownVal();
    821 
    822       // We know for sure that the two fields are not the same, since that
    823       // would have given us the same SVal.
    824       if (op == BO_EQ)
    825         return makeTruthVal(false, resultTy);
    826       if (op == BO_NE)
    827         return makeTruthVal(true, resultTy);
    828 
    829       // Iterate through the fields and see which one comes first.
    830       // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
    831       // members and the units in which bit-fields reside have addresses that
    832       // increase in the order in which they are declared."
    833       bool leftFirst = (op == BO_LT || op == BO_LE);
    834       for (RecordDecl::field_iterator I = RD->field_begin(),
    835            E = RD->field_end(); I!=E; ++I) {
    836         if (*I == LeftFD)
    837           return makeTruthVal(leftFirst, resultTy);
    838         if (*I == RightFD)
    839           return makeTruthVal(!leftFirst, resultTy);
    840       }
    841 
    842       llvm_unreachable("Fields not found in parent record's definition");
    843     }
    844 
    845     // If we get here, we have no way of comparing the regions.
    846     return UnknownVal();
    847   }
    848   }
    849 }
    850 
    851 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
    852                                   BinaryOperator::Opcode op,
    853                                   Loc lhs, NonLoc rhs, QualType resultTy) {
    854 
    855   // Special case: rhs is a zero constant.
    856   if (rhs.isZeroConstant())
    857     return lhs;
    858 
    859   // Special case: 'rhs' is an integer that has the same width as a pointer and
    860   // we are using the integer location in a comparison.  Normally this cannot be
    861   // triggered, but transfer functions like those for OSCompareAndSwapBarrier32
    862   // can generate comparisons that trigger this code.
    863   // FIXME: Are all locations guaranteed to have pointer width?
    864   if (BinaryOperator::isComparisonOp(op)) {
    865     if (Optional<nonloc::ConcreteInt> rhsInt =
    866             rhs.getAs<nonloc::ConcreteInt>()) {
    867       const llvm::APSInt *x = &rhsInt->getValue();
    868       ASTContext &ctx = Context;
    869       if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
    870         // Convert the signedness of the integer (if necessary).
    871         if (x->isSigned())
    872           x = &getBasicValueFactory().getValue(*x, true);
    873 
    874         return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
    875       }
    876     }
    877     return UnknownVal();
    878   }
    879 
    880   // We are dealing with pointer arithmetic.
    881 
    882   // Handle pointer arithmetic on constant values.
    883   if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
    884     if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
    885       const llvm::APSInt &leftI = lhsInt->getValue();
    886       assert(leftI.isUnsigned());
    887       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
    888 
    889       // Convert the bitwidth of rightI.  This should deal with overflow
    890       // since we are dealing with concrete values.
    891       rightI = rightI.extOrTrunc(leftI.getBitWidth());
    892 
    893       // Offset the increment by the pointer size.
    894       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
    895       rightI *= Multiplicand;
    896 
    897       // Compute the adjusted pointer.
    898       switch (op) {
    899         case BO_Add:
    900           rightI = leftI + rightI;
    901           break;
    902         case BO_Sub:
    903           rightI = leftI - rightI;
    904           break;
    905         default:
    906           llvm_unreachable("Invalid pointer arithmetic operation");
    907       }
    908       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
    909     }
    910   }
    911 
    912   // Handle cases where 'lhs' is a region.
    913   if (const MemRegion *region = lhs.getAsRegion()) {
    914     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
    915     SVal index = UnknownVal();
    916     const MemRegion *superR = 0;
    917     QualType elementType;
    918 
    919     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
    920       assert(op == BO_Add || op == BO_Sub);
    921       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
    922                           getArrayIndexType());
    923       superR = elemReg->getSuperRegion();
    924       elementType = elemReg->getElementType();
    925     }
    926     else if (isa<SubRegion>(region)) {
    927       superR = region;
    928       index = rhs;
    929       if (resultTy->isAnyPointerType())
    930         elementType = resultTy->getPointeeType();
    931     }
    932 
    933     if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
    934       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
    935                                                        superR, getContext()));
    936     }
    937   }
    938   return UnknownVal();
    939 }
    940 
    941 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
    942                                                    SVal V) {
    943   if (V.isUnknownOrUndef())
    944     return NULL;
    945 
    946   if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
    947     return &X->getValue();
    948 
    949   if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
    950     return &X->getValue();
    951 
    952   if (SymbolRef Sym = V.getAsSymbol())
    953     return state->getConstraintManager().getSymVal(state, Sym);
    954 
    955   // FIXME: Add support for SymExprs.
    956   return NULL;
    957 }
    958