Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class wraps target description classes used by the various code
     11 // generation TableGen backends.  This makes it easier to access the data and
     12 // provides a single place that needs to check it for validity.  All of these
     13 // classes abort on error conditions.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "CodeGenTarget.h"
     18 #include "CodeGenIntrinsics.h"
     19 #include "CodeGenSchedule.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/TableGen/Error.h"
     24 #include "llvm/TableGen/Record.h"
     25 #include <algorithm>
     26 using namespace llvm;
     27 
     28 static cl::opt<unsigned>
     29 AsmParserNum("asmparsernum", cl::init(0),
     30              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
     31 
     32 static cl::opt<unsigned>
     33 AsmWriterNum("asmwriternum", cl::init(0),
     34              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
     35 
     36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
     37 /// record corresponds to.
     38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
     39   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
     40 }
     41 
     42 std::string llvm::getName(MVT::SimpleValueType T) {
     43   switch (T) {
     44   case MVT::Other:   return "UNKNOWN";
     45   case MVT::iPTR:    return "TLI.getPointerTy()";
     46   case MVT::iPTRAny: return "TLI.getPointerTy()";
     47   default: return getEnumName(T);
     48   }
     49 }
     50 
     51 std::string llvm::getEnumName(MVT::SimpleValueType T) {
     52   switch (T) {
     53   case MVT::Other:    return "MVT::Other";
     54   case MVT::i1:       return "MVT::i1";
     55   case MVT::i8:       return "MVT::i8";
     56   case MVT::i16:      return "MVT::i16";
     57   case MVT::i32:      return "MVT::i32";
     58   case MVT::i64:      return "MVT::i64";
     59   case MVT::i128:     return "MVT::i128";
     60   case MVT::iAny:     return "MVT::iAny";
     61   case MVT::fAny:     return "MVT::fAny";
     62   case MVT::vAny:     return "MVT::vAny";
     63   case MVT::f16:      return "MVT::f16";
     64   case MVT::f32:      return "MVT::f32";
     65   case MVT::f64:      return "MVT::f64";
     66   case MVT::f80:      return "MVT::f80";
     67   case MVT::f128:     return "MVT::f128";
     68   case MVT::ppcf128:  return "MVT::ppcf128";
     69   case MVT::x86mmx:   return "MVT::x86mmx";
     70   case MVT::Glue:     return "MVT::Glue";
     71   case MVT::isVoid:   return "MVT::isVoid";
     72   case MVT::v2i1:     return "MVT::v2i1";
     73   case MVT::v4i1:     return "MVT::v4i1";
     74   case MVT::v8i1:     return "MVT::v8i1";
     75   case MVT::v16i1:    return "MVT::v16i1";
     76   case MVT::v32i1:    return "MVT::v32i1";
     77   case MVT::v64i1:    return "MVT::v64i1";
     78   case MVT::v2i8:     return "MVT::v2i8";
     79   case MVT::v4i8:     return "MVT::v4i8";
     80   case MVT::v8i8:     return "MVT::v8i8";
     81   case MVT::v16i8:    return "MVT::v16i8";
     82   case MVT::v32i8:    return "MVT::v32i8";
     83   case MVT::v64i8:    return "MVT::v64i8";
     84   case MVT::v1i16:    return "MVT::v1i16";
     85   case MVT::v2i16:    return "MVT::v2i16";
     86   case MVT::v4i16:    return "MVT::v4i16";
     87   case MVT::v8i16:    return "MVT::v8i16";
     88   case MVT::v16i16:   return "MVT::v16i16";
     89   case MVT::v32i16:   return "MVT::v32i16";
     90   case MVT::v1i32:    return "MVT::v1i32";
     91   case MVT::v2i32:    return "MVT::v2i32";
     92   case MVT::v4i32:    return "MVT::v4i32";
     93   case MVT::v8i32:    return "MVT::v8i32";
     94   case MVT::v16i32:   return "MVT::v16i32";
     95   case MVT::v1i64:    return "MVT::v1i64";
     96   case MVT::v2i64:    return "MVT::v2i64";
     97   case MVT::v4i64:    return "MVT::v4i64";
     98   case MVT::v8i64:    return "MVT::v8i64";
     99   case MVT::v16i64:   return "MVT::v16i64";
    100   case MVT::v2f16:    return "MVT::v2f16";
    101   case MVT::v2f32:    return "MVT::v2f32";
    102   case MVT::v4f32:    return "MVT::v4f32";
    103   case MVT::v8f32:    return "MVT::v8f32";
    104   case MVT::v16f32:   return "MVT::v16f32";
    105   case MVT::v2f64:    return "MVT::v2f64";
    106   case MVT::v4f64:    return "MVT::v4f64";
    107   case MVT::v8f64:    return "MVT::v8f64";
    108   case MVT::Metadata: return "MVT::Metadata";
    109   case MVT::iPTR:     return "MVT::iPTR";
    110   case MVT::iPTRAny:  return "MVT::iPTRAny";
    111   case MVT::Untyped:  return "MVT::Untyped";
    112   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
    113   }
    114 }
    115 
    116 /// getQualifiedName - Return the name of the specified record, with a
    117 /// namespace qualifier if the record contains one.
    118 ///
    119 std::string llvm::getQualifiedName(const Record *R) {
    120   std::string Namespace;
    121   if (R->getValue("Namespace"))
    122      Namespace = R->getValueAsString("Namespace");
    123   if (Namespace.empty()) return R->getName();
    124   return Namespace + "::" + R->getName();
    125 }
    126 
    127 
    128 /// getTarget - Return the current instance of the Target class.
    129 ///
    130 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
    131   : Records(records), RegBank(0), SchedModels(0) {
    132   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
    133   if (Targets.size() == 0)
    134     PrintFatalError("ERROR: No 'Target' subclasses defined!");
    135   if (Targets.size() != 1)
    136     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
    137   TargetRec = Targets[0];
    138 }
    139 
    140 CodeGenTarget::~CodeGenTarget() {
    141   delete RegBank;
    142   delete SchedModels;
    143 }
    144 
    145 const std::string &CodeGenTarget::getName() const {
    146   return TargetRec->getName();
    147 }
    148 
    149 std::string CodeGenTarget::getInstNamespace() const {
    150   for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
    151     // Make sure not to pick up "TargetOpcode" by accidentally getting
    152     // the namespace off the PHI instruction or something.
    153     if ((*i)->Namespace != "TargetOpcode")
    154       return (*i)->Namespace;
    155   }
    156 
    157   return "";
    158 }
    159 
    160 Record *CodeGenTarget::getInstructionSet() const {
    161   return TargetRec->getValueAsDef("InstructionSet");
    162 }
    163 
    164 
    165 /// getAsmParser - Return the AssemblyParser definition for this target.
    166 ///
    167 Record *CodeGenTarget::getAsmParser() const {
    168   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
    169   if (AsmParserNum >= LI.size())
    170     PrintFatalError("Target does not have an AsmParser #" + utostr(AsmParserNum) + "!");
    171   return LI[AsmParserNum];
    172 }
    173 
    174 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
    175 /// this target.
    176 ///
    177 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
    178   std::vector<Record*> LI =
    179     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
    180   if (i >= LI.size())
    181     PrintFatalError("Target does not have an AsmParserVariant #" + utostr(i) + "!");
    182   return LI[i];
    183 }
    184 
    185 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
    186 /// available for this target.
    187 ///
    188 unsigned CodeGenTarget::getAsmParserVariantCount() const {
    189   std::vector<Record*> LI =
    190     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
    191   return LI.size();
    192 }
    193 
    194 /// getAsmWriter - Return the AssemblyWriter definition for this target.
    195 ///
    196 Record *CodeGenTarget::getAsmWriter() const {
    197   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
    198   if (AsmWriterNum >= LI.size())
    199     PrintFatalError("Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!");
    200   return LI[AsmWriterNum];
    201 }
    202 
    203 CodeGenRegBank &CodeGenTarget::getRegBank() const {
    204   if (!RegBank)
    205     RegBank = new CodeGenRegBank(Records);
    206   return *RegBank;
    207 }
    208 
    209 void CodeGenTarget::ReadRegAltNameIndices() const {
    210   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
    211   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
    212 }
    213 
    214 /// getRegisterByName - If there is a register with the specific AsmName,
    215 /// return it.
    216 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
    217   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
    218   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
    219   if (I == Regs.end())
    220     return 0;
    221   return I->second;
    222 }
    223 
    224 std::vector<MVT::SimpleValueType> CodeGenTarget::
    225 getRegisterVTs(Record *R) const {
    226   const CodeGenRegister *Reg = getRegBank().getReg(R);
    227   std::vector<MVT::SimpleValueType> Result;
    228   ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
    229   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
    230     const CodeGenRegisterClass &RC = *RCs[i];
    231     if (RC.contains(Reg)) {
    232       ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
    233       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
    234     }
    235   }
    236 
    237   // Remove duplicates.
    238   array_pod_sort(Result.begin(), Result.end());
    239   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
    240   return Result;
    241 }
    242 
    243 
    244 void CodeGenTarget::ReadLegalValueTypes() const {
    245   ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
    246   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
    247     for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
    248       LegalValueTypes.push_back(RCs[i]->VTs[ri]);
    249 
    250   // Remove duplicates.
    251   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
    252   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
    253                                     LegalValueTypes.end()),
    254                         LegalValueTypes.end());
    255 }
    256 
    257 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
    258   if (!SchedModels)
    259     SchedModels = new CodeGenSchedModels(Records, *this);
    260   return *SchedModels;
    261 }
    262 
    263 void CodeGenTarget::ReadInstructions() const {
    264   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
    265   if (Insts.size() <= 2)
    266     PrintFatalError("No 'Instruction' subclasses defined!");
    267 
    268   // Parse the instructions defined in the .td file.
    269   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
    270     Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
    271 }
    272 
    273 static const CodeGenInstruction *
    274 GetInstByName(const char *Name,
    275               const DenseMap<const Record*, CodeGenInstruction*> &Insts,
    276               RecordKeeper &Records) {
    277   const Record *Rec = Records.getDef(Name);
    278 
    279   DenseMap<const Record*, CodeGenInstruction*>::const_iterator
    280     I = Insts.find(Rec);
    281   if (Rec == 0 || I == Insts.end())
    282     PrintFatalError(std::string("Could not find '") + Name + "' instruction!");
    283   return I->second;
    284 }
    285 
    286 namespace {
    287 /// SortInstByName - Sorting predicate to sort instructions by name.
    288 ///
    289 struct SortInstByName {
    290   bool operator()(const CodeGenInstruction *Rec1,
    291                   const CodeGenInstruction *Rec2) const {
    292     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
    293   }
    294 };
    295 }
    296 
    297 /// getInstructionsByEnumValue - Return all of the instructions defined by the
    298 /// target, ordered by their enum value.
    299 void CodeGenTarget::ComputeInstrsByEnum() const {
    300   // The ordering here must match the ordering in TargetOpcodes.h.
    301   const char *const FixedInstrs[] = {
    302     "PHI",
    303     "INLINEASM",
    304     "PROLOG_LABEL",
    305     "EH_LABEL",
    306     "GC_LABEL",
    307     "KILL",
    308     "EXTRACT_SUBREG",
    309     "INSERT_SUBREG",
    310     "IMPLICIT_DEF",
    311     "SUBREG_TO_REG",
    312     "COPY_TO_REGCLASS",
    313     "DBG_VALUE",
    314     "REG_SEQUENCE",
    315     "COPY",
    316     "BUNDLE",
    317     "LIFETIME_START",
    318     "LIFETIME_END",
    319     0
    320   };
    321   const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
    322   for (const char *const *p = FixedInstrs; *p; ++p) {
    323     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
    324     assert(Instr && "Missing target independent instruction");
    325     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
    326     InstrsByEnum.push_back(Instr);
    327   }
    328   unsigned EndOfPredefines = InstrsByEnum.size();
    329 
    330   for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
    331        I = Insts.begin(), E = Insts.end(); I != E; ++I) {
    332     const CodeGenInstruction *CGI = I->second;
    333     if (CGI->Namespace != "TargetOpcode")
    334       InstrsByEnum.push_back(CGI);
    335   }
    336 
    337   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
    338 
    339   // All of the instructions are now in random order based on the map iteration.
    340   // Sort them by name.
    341   std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
    342             SortInstByName());
    343 }
    344 
    345 
    346 /// isLittleEndianEncoding - Return whether this target encodes its instruction
    347 /// in little-endian format, i.e. bits laid out in the order [0..n]
    348 ///
    349 bool CodeGenTarget::isLittleEndianEncoding() const {
    350   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
    351 }
    352 
    353 /// guessInstructionProperties - Return true if it's OK to guess instruction
    354 /// properties instead of raising an error.
    355 ///
    356 /// This is configurable as a temporary migration aid. It will eventually be
    357 /// permanently false.
    358 bool CodeGenTarget::guessInstructionProperties() const {
    359   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
    360 }
    361 
    362 //===----------------------------------------------------------------------===//
    363 // ComplexPattern implementation
    364 //
    365 ComplexPattern::ComplexPattern(Record *R) {
    366   Ty          = ::getValueType(R->getValueAsDef("Ty"));
    367   NumOperands = R->getValueAsInt("NumOperands");
    368   SelectFunc  = R->getValueAsString("SelectFunc");
    369   RootNodes   = R->getValueAsListOfDefs("RootNodes");
    370 
    371   // Parse the properties.
    372   Properties = 0;
    373   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
    374   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
    375     if (PropList[i]->getName() == "SDNPHasChain") {
    376       Properties |= 1 << SDNPHasChain;
    377     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
    378       Properties |= 1 << SDNPOptInGlue;
    379     } else if (PropList[i]->getName() == "SDNPMayStore") {
    380       Properties |= 1 << SDNPMayStore;
    381     } else if (PropList[i]->getName() == "SDNPMayLoad") {
    382       Properties |= 1 << SDNPMayLoad;
    383     } else if (PropList[i]->getName() == "SDNPSideEffect") {
    384       Properties |= 1 << SDNPSideEffect;
    385     } else if (PropList[i]->getName() == "SDNPMemOperand") {
    386       Properties |= 1 << SDNPMemOperand;
    387     } else if (PropList[i]->getName() == "SDNPVariadic") {
    388       Properties |= 1 << SDNPVariadic;
    389     } else if (PropList[i]->getName() == "SDNPWantRoot") {
    390       Properties |= 1 << SDNPWantRoot;
    391     } else if (PropList[i]->getName() == "SDNPWantParent") {
    392       Properties |= 1 << SDNPWantParent;
    393     } else {
    394       errs() << "Unsupported SD Node property '" << PropList[i]->getName()
    395              << "' on ComplexPattern '" << R->getName() << "'!\n";
    396       exit(1);
    397     }
    398 }
    399 
    400 //===----------------------------------------------------------------------===//
    401 // CodeGenIntrinsic Implementation
    402 //===----------------------------------------------------------------------===//
    403 
    404 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
    405                                                    bool TargetOnly) {
    406   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
    407 
    408   std::vector<CodeGenIntrinsic> Result;
    409 
    410   for (unsigned i = 0, e = I.size(); i != e; ++i) {
    411     bool isTarget = I[i]->getValueAsBit("isTarget");
    412     if (isTarget == TargetOnly)
    413       Result.push_back(CodeGenIntrinsic(I[i]));
    414   }
    415   return Result;
    416 }
    417 
    418 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
    419   TheDef = R;
    420   std::string DefName = R->getName();
    421   ModRef = ReadWriteMem;
    422   isOverloaded = false;
    423   isCommutative = false;
    424   canThrow = false;
    425   isNoReturn = false;
    426 
    427   if (DefName.size() <= 4 ||
    428       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
    429     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
    430 
    431   EnumName = std::string(DefName.begin()+4, DefName.end());
    432 
    433   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
    434     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
    435 
    436   TargetPrefix = R->getValueAsString("TargetPrefix");
    437   Name = R->getValueAsString("LLVMName");
    438 
    439   if (Name == "") {
    440     // If an explicit name isn't specified, derive one from the DefName.
    441     Name = "llvm.";
    442 
    443     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
    444       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
    445   } else {
    446     // Verify it starts with "llvm.".
    447     if (Name.size() <= 5 ||
    448         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
    449       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
    450   }
    451 
    452   // If TargetPrefix is specified, make sure that Name starts with
    453   // "llvm.<targetprefix>.".
    454   if (!TargetPrefix.empty()) {
    455     if (Name.size() < 6+TargetPrefix.size() ||
    456         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
    457         != (TargetPrefix + "."))
    458       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
    459         TargetPrefix + ".'!");
    460   }
    461 
    462   // Parse the list of return types.
    463   std::vector<MVT::SimpleValueType> OverloadedVTs;
    464   ListInit *TypeList = R->getValueAsListInit("RetTypes");
    465   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
    466     Record *TyEl = TypeList->getElementAsRecord(i);
    467     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    468     MVT::SimpleValueType VT;
    469     if (TyEl->isSubClassOf("LLVMMatchType")) {
    470       unsigned MatchTy = TyEl->getValueAsInt("Number");
    471       assert(MatchTy < OverloadedVTs.size() &&
    472              "Invalid matching number!");
    473       VT = OverloadedVTs[MatchTy];
    474       // It only makes sense to use the extended and truncated vector element
    475       // variants with iAny types; otherwise, if the intrinsic is not
    476       // overloaded, all the types can be specified directly.
    477       assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
    478                !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
    479               VT == MVT::iAny || VT == MVT::vAny) &&
    480              "Expected iAny or vAny type");
    481     } else {
    482       VT = getValueType(TyEl->getValueAsDef("VT"));
    483     }
    484     if (EVT(VT).isOverloaded()) {
    485       OverloadedVTs.push_back(VT);
    486       isOverloaded = true;
    487     }
    488 
    489     // Reject invalid types.
    490     if (VT == MVT::isVoid)
    491       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
    492 
    493     IS.RetVTs.push_back(VT);
    494     IS.RetTypeDefs.push_back(TyEl);
    495   }
    496 
    497   // Parse the list of parameter types.
    498   TypeList = R->getValueAsListInit("ParamTypes");
    499   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
    500     Record *TyEl = TypeList->getElementAsRecord(i);
    501     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    502     MVT::SimpleValueType VT;
    503     if (TyEl->isSubClassOf("LLVMMatchType")) {
    504       unsigned MatchTy = TyEl->getValueAsInt("Number");
    505       assert(MatchTy < OverloadedVTs.size() &&
    506              "Invalid matching number!");
    507       VT = OverloadedVTs[MatchTy];
    508       // It only makes sense to use the extended and truncated vector element
    509       // variants with iAny types; otherwise, if the intrinsic is not
    510       // overloaded, all the types can be specified directly.
    511       assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
    512                !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
    513               VT == MVT::iAny || VT == MVT::vAny) &&
    514              "Expected iAny or vAny type");
    515     } else
    516       VT = getValueType(TyEl->getValueAsDef("VT"));
    517 
    518     if (EVT(VT).isOverloaded()) {
    519       OverloadedVTs.push_back(VT);
    520       isOverloaded = true;
    521     }
    522 
    523     // Reject invalid types.
    524     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
    525       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
    526 
    527     IS.ParamVTs.push_back(VT);
    528     IS.ParamTypeDefs.push_back(TyEl);
    529   }
    530 
    531   // Parse the intrinsic properties.
    532   ListInit *PropList = R->getValueAsListInit("Properties");
    533   for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
    534     Record *Property = PropList->getElementAsRecord(i);
    535     assert(Property->isSubClassOf("IntrinsicProperty") &&
    536            "Expected a property!");
    537 
    538     if (Property->getName() == "IntrNoMem")
    539       ModRef = NoMem;
    540     else if (Property->getName() == "IntrReadArgMem")
    541       ModRef = ReadArgMem;
    542     else if (Property->getName() == "IntrReadMem")
    543       ModRef = ReadMem;
    544     else if (Property->getName() == "IntrReadWriteArgMem")
    545       ModRef = ReadWriteArgMem;
    546     else if (Property->getName() == "Commutative")
    547       isCommutative = true;
    548     else if (Property->getName() == "Throws")
    549       canThrow = true;
    550     else if (Property->getName() == "IntrNoReturn")
    551       isNoReturn = true;
    552     else if (Property->isSubClassOf("NoCapture")) {
    553       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    554       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
    555     } else
    556       llvm_unreachable("Unknown property!");
    557   }
    558 
    559   // Sort the argument attributes for later benefit.
    560   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
    561 }
    562