1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include <algorithm> 26 using namespace llvm; 27 28 static cl::opt<unsigned> 29 AsmParserNum("asmparsernum", cl::init(0), 30 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 31 32 static cl::opt<unsigned> 33 AsmWriterNum("asmwriternum", cl::init(0), 34 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 35 36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 37 /// record corresponds to. 38 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 39 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 40 } 41 42 std::string llvm::getName(MVT::SimpleValueType T) { 43 switch (T) { 44 case MVT::Other: return "UNKNOWN"; 45 case MVT::iPTR: return "TLI.getPointerTy()"; 46 case MVT::iPTRAny: return "TLI.getPointerTy()"; 47 default: return getEnumName(T); 48 } 49 } 50 51 std::string llvm::getEnumName(MVT::SimpleValueType T) { 52 switch (T) { 53 case MVT::Other: return "MVT::Other"; 54 case MVT::i1: return "MVT::i1"; 55 case MVT::i8: return "MVT::i8"; 56 case MVT::i16: return "MVT::i16"; 57 case MVT::i32: return "MVT::i32"; 58 case MVT::i64: return "MVT::i64"; 59 case MVT::i128: return "MVT::i128"; 60 case MVT::iAny: return "MVT::iAny"; 61 case MVT::fAny: return "MVT::fAny"; 62 case MVT::vAny: return "MVT::vAny"; 63 case MVT::f16: return "MVT::f16"; 64 case MVT::f32: return "MVT::f32"; 65 case MVT::f64: return "MVT::f64"; 66 case MVT::f80: return "MVT::f80"; 67 case MVT::f128: return "MVT::f128"; 68 case MVT::ppcf128: return "MVT::ppcf128"; 69 case MVT::x86mmx: return "MVT::x86mmx"; 70 case MVT::Glue: return "MVT::Glue"; 71 case MVT::isVoid: return "MVT::isVoid"; 72 case MVT::v2i1: return "MVT::v2i1"; 73 case MVT::v4i1: return "MVT::v4i1"; 74 case MVT::v8i1: return "MVT::v8i1"; 75 case MVT::v16i1: return "MVT::v16i1"; 76 case MVT::v32i1: return "MVT::v32i1"; 77 case MVT::v64i1: return "MVT::v64i1"; 78 case MVT::v2i8: return "MVT::v2i8"; 79 case MVT::v4i8: return "MVT::v4i8"; 80 case MVT::v8i8: return "MVT::v8i8"; 81 case MVT::v16i8: return "MVT::v16i8"; 82 case MVT::v32i8: return "MVT::v32i8"; 83 case MVT::v64i8: return "MVT::v64i8"; 84 case MVT::v1i16: return "MVT::v1i16"; 85 case MVT::v2i16: return "MVT::v2i16"; 86 case MVT::v4i16: return "MVT::v4i16"; 87 case MVT::v8i16: return "MVT::v8i16"; 88 case MVT::v16i16: return "MVT::v16i16"; 89 case MVT::v32i16: return "MVT::v32i16"; 90 case MVT::v1i32: return "MVT::v1i32"; 91 case MVT::v2i32: return "MVT::v2i32"; 92 case MVT::v4i32: return "MVT::v4i32"; 93 case MVT::v8i32: return "MVT::v8i32"; 94 case MVT::v16i32: return "MVT::v16i32"; 95 case MVT::v1i64: return "MVT::v1i64"; 96 case MVT::v2i64: return "MVT::v2i64"; 97 case MVT::v4i64: return "MVT::v4i64"; 98 case MVT::v8i64: return "MVT::v8i64"; 99 case MVT::v16i64: return "MVT::v16i64"; 100 case MVT::v2f16: return "MVT::v2f16"; 101 case MVT::v2f32: return "MVT::v2f32"; 102 case MVT::v4f32: return "MVT::v4f32"; 103 case MVT::v8f32: return "MVT::v8f32"; 104 case MVT::v16f32: return "MVT::v16f32"; 105 case MVT::v2f64: return "MVT::v2f64"; 106 case MVT::v4f64: return "MVT::v4f64"; 107 case MVT::v8f64: return "MVT::v8f64"; 108 case MVT::Metadata: return "MVT::Metadata"; 109 case MVT::iPTR: return "MVT::iPTR"; 110 case MVT::iPTRAny: return "MVT::iPTRAny"; 111 case MVT::Untyped: return "MVT::Untyped"; 112 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 113 } 114 } 115 116 /// getQualifiedName - Return the name of the specified record, with a 117 /// namespace qualifier if the record contains one. 118 /// 119 std::string llvm::getQualifiedName(const Record *R) { 120 std::string Namespace; 121 if (R->getValue("Namespace")) 122 Namespace = R->getValueAsString("Namespace"); 123 if (Namespace.empty()) return R->getName(); 124 return Namespace + "::" + R->getName(); 125 } 126 127 128 /// getTarget - Return the current instance of the Target class. 129 /// 130 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 131 : Records(records), RegBank(0), SchedModels(0) { 132 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 133 if (Targets.size() == 0) 134 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 135 if (Targets.size() != 1) 136 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 137 TargetRec = Targets[0]; 138 } 139 140 CodeGenTarget::~CodeGenTarget() { 141 delete RegBank; 142 delete SchedModels; 143 } 144 145 const std::string &CodeGenTarget::getName() const { 146 return TargetRec->getName(); 147 } 148 149 std::string CodeGenTarget::getInstNamespace() const { 150 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 151 // Make sure not to pick up "TargetOpcode" by accidentally getting 152 // the namespace off the PHI instruction or something. 153 if ((*i)->Namespace != "TargetOpcode") 154 return (*i)->Namespace; 155 } 156 157 return ""; 158 } 159 160 Record *CodeGenTarget::getInstructionSet() const { 161 return TargetRec->getValueAsDef("InstructionSet"); 162 } 163 164 165 /// getAsmParser - Return the AssemblyParser definition for this target. 166 /// 167 Record *CodeGenTarget::getAsmParser() const { 168 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 169 if (AsmParserNum >= LI.size()) 170 PrintFatalError("Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"); 171 return LI[AsmParserNum]; 172 } 173 174 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 175 /// this target. 176 /// 177 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 178 std::vector<Record*> LI = 179 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 180 if (i >= LI.size()) 181 PrintFatalError("Target does not have an AsmParserVariant #" + utostr(i) + "!"); 182 return LI[i]; 183 } 184 185 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 186 /// available for this target. 187 /// 188 unsigned CodeGenTarget::getAsmParserVariantCount() const { 189 std::vector<Record*> LI = 190 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 191 return LI.size(); 192 } 193 194 /// getAsmWriter - Return the AssemblyWriter definition for this target. 195 /// 196 Record *CodeGenTarget::getAsmWriter() const { 197 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 198 if (AsmWriterNum >= LI.size()) 199 PrintFatalError("Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"); 200 return LI[AsmWriterNum]; 201 } 202 203 CodeGenRegBank &CodeGenTarget::getRegBank() const { 204 if (!RegBank) 205 RegBank = new CodeGenRegBank(Records); 206 return *RegBank; 207 } 208 209 void CodeGenTarget::ReadRegAltNameIndices() const { 210 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 211 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 212 } 213 214 /// getRegisterByName - If there is a register with the specific AsmName, 215 /// return it. 216 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 217 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 218 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 219 if (I == Regs.end()) 220 return 0; 221 return I->second; 222 } 223 224 std::vector<MVT::SimpleValueType> CodeGenTarget:: 225 getRegisterVTs(Record *R) const { 226 const CodeGenRegister *Reg = getRegBank().getReg(R); 227 std::vector<MVT::SimpleValueType> Result; 228 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 229 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 230 const CodeGenRegisterClass &RC = *RCs[i]; 231 if (RC.contains(Reg)) { 232 ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes(); 233 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 234 } 235 } 236 237 // Remove duplicates. 238 array_pod_sort(Result.begin(), Result.end()); 239 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 240 return Result; 241 } 242 243 244 void CodeGenTarget::ReadLegalValueTypes() const { 245 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 246 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 247 for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri) 248 LegalValueTypes.push_back(RCs[i]->VTs[ri]); 249 250 // Remove duplicates. 251 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 252 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 253 LegalValueTypes.end()), 254 LegalValueTypes.end()); 255 } 256 257 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 258 if (!SchedModels) 259 SchedModels = new CodeGenSchedModels(Records, *this); 260 return *SchedModels; 261 } 262 263 void CodeGenTarget::ReadInstructions() const { 264 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 265 if (Insts.size() <= 2) 266 PrintFatalError("No 'Instruction' subclasses defined!"); 267 268 // Parse the instructions defined in the .td file. 269 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 270 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); 271 } 272 273 static const CodeGenInstruction * 274 GetInstByName(const char *Name, 275 const DenseMap<const Record*, CodeGenInstruction*> &Insts, 276 RecordKeeper &Records) { 277 const Record *Rec = Records.getDef(Name); 278 279 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 280 I = Insts.find(Rec); 281 if (Rec == 0 || I == Insts.end()) 282 PrintFatalError(std::string("Could not find '") + Name + "' instruction!"); 283 return I->second; 284 } 285 286 namespace { 287 /// SortInstByName - Sorting predicate to sort instructions by name. 288 /// 289 struct SortInstByName { 290 bool operator()(const CodeGenInstruction *Rec1, 291 const CodeGenInstruction *Rec2) const { 292 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 293 } 294 }; 295 } 296 297 /// getInstructionsByEnumValue - Return all of the instructions defined by the 298 /// target, ordered by their enum value. 299 void CodeGenTarget::ComputeInstrsByEnum() const { 300 // The ordering here must match the ordering in TargetOpcodes.h. 301 const char *const FixedInstrs[] = { 302 "PHI", 303 "INLINEASM", 304 "PROLOG_LABEL", 305 "EH_LABEL", 306 "GC_LABEL", 307 "KILL", 308 "EXTRACT_SUBREG", 309 "INSERT_SUBREG", 310 "IMPLICIT_DEF", 311 "SUBREG_TO_REG", 312 "COPY_TO_REGCLASS", 313 "DBG_VALUE", 314 "REG_SEQUENCE", 315 "COPY", 316 "BUNDLE", 317 "LIFETIME_START", 318 "LIFETIME_END", 319 0 320 }; 321 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 322 for (const char *const *p = FixedInstrs; *p; ++p) { 323 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 324 assert(Instr && "Missing target independent instruction"); 325 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 326 InstrsByEnum.push_back(Instr); 327 } 328 unsigned EndOfPredefines = InstrsByEnum.size(); 329 330 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 331 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 332 const CodeGenInstruction *CGI = I->second; 333 if (CGI->Namespace != "TargetOpcode") 334 InstrsByEnum.push_back(CGI); 335 } 336 337 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 338 339 // All of the instructions are now in random order based on the map iteration. 340 // Sort them by name. 341 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 342 SortInstByName()); 343 } 344 345 346 /// isLittleEndianEncoding - Return whether this target encodes its instruction 347 /// in little-endian format, i.e. bits laid out in the order [0..n] 348 /// 349 bool CodeGenTarget::isLittleEndianEncoding() const { 350 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 351 } 352 353 /// guessInstructionProperties - Return true if it's OK to guess instruction 354 /// properties instead of raising an error. 355 /// 356 /// This is configurable as a temporary migration aid. It will eventually be 357 /// permanently false. 358 bool CodeGenTarget::guessInstructionProperties() const { 359 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 360 } 361 362 //===----------------------------------------------------------------------===// 363 // ComplexPattern implementation 364 // 365 ComplexPattern::ComplexPattern(Record *R) { 366 Ty = ::getValueType(R->getValueAsDef("Ty")); 367 NumOperands = R->getValueAsInt("NumOperands"); 368 SelectFunc = R->getValueAsString("SelectFunc"); 369 RootNodes = R->getValueAsListOfDefs("RootNodes"); 370 371 // Parse the properties. 372 Properties = 0; 373 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 374 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 375 if (PropList[i]->getName() == "SDNPHasChain") { 376 Properties |= 1 << SDNPHasChain; 377 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 378 Properties |= 1 << SDNPOptInGlue; 379 } else if (PropList[i]->getName() == "SDNPMayStore") { 380 Properties |= 1 << SDNPMayStore; 381 } else if (PropList[i]->getName() == "SDNPMayLoad") { 382 Properties |= 1 << SDNPMayLoad; 383 } else if (PropList[i]->getName() == "SDNPSideEffect") { 384 Properties |= 1 << SDNPSideEffect; 385 } else if (PropList[i]->getName() == "SDNPMemOperand") { 386 Properties |= 1 << SDNPMemOperand; 387 } else if (PropList[i]->getName() == "SDNPVariadic") { 388 Properties |= 1 << SDNPVariadic; 389 } else if (PropList[i]->getName() == "SDNPWantRoot") { 390 Properties |= 1 << SDNPWantRoot; 391 } else if (PropList[i]->getName() == "SDNPWantParent") { 392 Properties |= 1 << SDNPWantParent; 393 } else { 394 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 395 << "' on ComplexPattern '" << R->getName() << "'!\n"; 396 exit(1); 397 } 398 } 399 400 //===----------------------------------------------------------------------===// 401 // CodeGenIntrinsic Implementation 402 //===----------------------------------------------------------------------===// 403 404 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 405 bool TargetOnly) { 406 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 407 408 std::vector<CodeGenIntrinsic> Result; 409 410 for (unsigned i = 0, e = I.size(); i != e; ++i) { 411 bool isTarget = I[i]->getValueAsBit("isTarget"); 412 if (isTarget == TargetOnly) 413 Result.push_back(CodeGenIntrinsic(I[i])); 414 } 415 return Result; 416 } 417 418 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 419 TheDef = R; 420 std::string DefName = R->getName(); 421 ModRef = ReadWriteMem; 422 isOverloaded = false; 423 isCommutative = false; 424 canThrow = false; 425 isNoReturn = false; 426 427 if (DefName.size() <= 4 || 428 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 429 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 430 431 EnumName = std::string(DefName.begin()+4, DefName.end()); 432 433 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 434 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 435 436 TargetPrefix = R->getValueAsString("TargetPrefix"); 437 Name = R->getValueAsString("LLVMName"); 438 439 if (Name == "") { 440 // If an explicit name isn't specified, derive one from the DefName. 441 Name = "llvm."; 442 443 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 444 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 445 } else { 446 // Verify it starts with "llvm.". 447 if (Name.size() <= 5 || 448 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 449 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 450 } 451 452 // If TargetPrefix is specified, make sure that Name starts with 453 // "llvm.<targetprefix>.". 454 if (!TargetPrefix.empty()) { 455 if (Name.size() < 6+TargetPrefix.size() || 456 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 457 != (TargetPrefix + ".")) 458 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 459 TargetPrefix + ".'!"); 460 } 461 462 // Parse the list of return types. 463 std::vector<MVT::SimpleValueType> OverloadedVTs; 464 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 465 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 466 Record *TyEl = TypeList->getElementAsRecord(i); 467 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 468 MVT::SimpleValueType VT; 469 if (TyEl->isSubClassOf("LLVMMatchType")) { 470 unsigned MatchTy = TyEl->getValueAsInt("Number"); 471 assert(MatchTy < OverloadedVTs.size() && 472 "Invalid matching number!"); 473 VT = OverloadedVTs[MatchTy]; 474 // It only makes sense to use the extended and truncated vector element 475 // variants with iAny types; otherwise, if the intrinsic is not 476 // overloaded, all the types can be specified directly. 477 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 478 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 479 VT == MVT::iAny || VT == MVT::vAny) && 480 "Expected iAny or vAny type"); 481 } else { 482 VT = getValueType(TyEl->getValueAsDef("VT")); 483 } 484 if (EVT(VT).isOverloaded()) { 485 OverloadedVTs.push_back(VT); 486 isOverloaded = true; 487 } 488 489 // Reject invalid types. 490 if (VT == MVT::isVoid) 491 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 492 493 IS.RetVTs.push_back(VT); 494 IS.RetTypeDefs.push_back(TyEl); 495 } 496 497 // Parse the list of parameter types. 498 TypeList = R->getValueAsListInit("ParamTypes"); 499 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 500 Record *TyEl = TypeList->getElementAsRecord(i); 501 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 502 MVT::SimpleValueType VT; 503 if (TyEl->isSubClassOf("LLVMMatchType")) { 504 unsigned MatchTy = TyEl->getValueAsInt("Number"); 505 assert(MatchTy < OverloadedVTs.size() && 506 "Invalid matching number!"); 507 VT = OverloadedVTs[MatchTy]; 508 // It only makes sense to use the extended and truncated vector element 509 // variants with iAny types; otherwise, if the intrinsic is not 510 // overloaded, all the types can be specified directly. 511 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 512 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 513 VT == MVT::iAny || VT == MVT::vAny) && 514 "Expected iAny or vAny type"); 515 } else 516 VT = getValueType(TyEl->getValueAsDef("VT")); 517 518 if (EVT(VT).isOverloaded()) { 519 OverloadedVTs.push_back(VT); 520 isOverloaded = true; 521 } 522 523 // Reject invalid types. 524 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 525 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 526 527 IS.ParamVTs.push_back(VT); 528 IS.ParamTypeDefs.push_back(TyEl); 529 } 530 531 // Parse the intrinsic properties. 532 ListInit *PropList = R->getValueAsListInit("Properties"); 533 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 534 Record *Property = PropList->getElementAsRecord(i); 535 assert(Property->isSubClassOf("IntrinsicProperty") && 536 "Expected a property!"); 537 538 if (Property->getName() == "IntrNoMem") 539 ModRef = NoMem; 540 else if (Property->getName() == "IntrReadArgMem") 541 ModRef = ReadArgMem; 542 else if (Property->getName() == "IntrReadMem") 543 ModRef = ReadMem; 544 else if (Property->getName() == "IntrReadWriteArgMem") 545 ModRef = ReadWriteArgMem; 546 else if (Property->getName() == "Commutative") 547 isCommutative = true; 548 else if (Property->getName() == "Throws") 549 canThrow = true; 550 else if (Property->getName() == "IntrNoReturn") 551 isNoReturn = true; 552 else if (Property->isSubClassOf("NoCapture")) { 553 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 554 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 555 } else 556 llvm_unreachable("Unknown property!"); 557 } 558 559 // Sort the argument attributes for later benefit. 560 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 561 } 562