Home | History | Annotate | Download | only in Analysis
      1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Calculate a program structure tree built out of single entry single exit
     11 // regions.
     12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
     13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
     14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
     15 // Koehler - 2009".
     16 // The algorithm to calculate these data structures however is completely
     17 // different, as it takes advantage of existing information already available
     18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
     19 // and in practice hopefully better performing algorithm. The runtime of the
     20 // algorithms described in the papers above are both linear in graph size,
     21 // O(V+E), whereas this algorithm is not, as the dominance frontier information
     22 // itself is not, but in practice runtime seems to be in the order of magnitude
     23 // of dominance tree calculation.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #ifndef LLVM_ANALYSIS_REGIONINFO_H
     28 #define LLVM_ANALYSIS_REGIONINFO_H
     29 
     30 #include "llvm/ADT/PointerIntPair.h"
     31 #include "llvm/Analysis/DominanceFrontier.h"
     32 #include "llvm/Analysis/PostDominators.h"
     33 #include "llvm/Support/Allocator.h"
     34 #include <map>
     35 
     36 namespace llvm {
     37 
     38 class Region;
     39 class RegionInfo;
     40 class raw_ostream;
     41 class Loop;
     42 class LoopInfo;
     43 
     44 /// @brief Marker class to iterate over the elements of a Region in flat mode.
     45 ///
     46 /// The class is used to either iterate in Flat mode or by not using it to not
     47 /// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
     48 /// and the iteration returns every BasicBlock.  If the Flat mode is not
     49 /// selected for SubRegions just one RegionNode containing the subregion is
     50 /// returned.
     51 template <class GraphType>
     52 class FlatIt {};
     53 
     54 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
     55 /// Region.
     56 class RegionNode {
     57   RegionNode(const RegionNode &) LLVM_DELETED_FUNCTION;
     58   const RegionNode &operator=(const RegionNode &) LLVM_DELETED_FUNCTION;
     59 
     60 protected:
     61   /// This is the entry basic block that starts this region node.  If this is a
     62   /// BasicBlock RegionNode, then entry is just the basic block, that this
     63   /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
     64   ///
     65   /// In the BBtoRegionNode map of the parent of this node, BB will always map
     66   /// to this node no matter which kind of node this one is.
     67   ///
     68   /// The node can hold either a Region or a BasicBlock.
     69   /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
     70   /// RegionNode.
     71   PointerIntPair<BasicBlock*, 1, bool> entry;
     72 
     73   /// @brief The parent Region of this RegionNode.
     74   /// @see getParent()
     75   Region* parent;
     76 
     77 public:
     78   /// @brief Create a RegionNode.
     79   ///
     80   /// @param Parent      The parent of this RegionNode.
     81   /// @param Entry       The entry BasicBlock of the RegionNode.  If this
     82   ///                    RegionNode represents a BasicBlock, this is the
     83   ///                    BasicBlock itself.  If it represents a subregion, this
     84   ///                    is the entry BasicBlock of the subregion.
     85   /// @param isSubRegion If this RegionNode represents a SubRegion.
     86   inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
     87     : entry(Entry, isSubRegion), parent(Parent) {}
     88 
     89   /// @brief Get the parent Region of this RegionNode.
     90   ///
     91   /// The parent Region is the Region this RegionNode belongs to. If for
     92   /// example a BasicBlock is element of two Regions, there exist two
     93   /// RegionNodes for this BasicBlock. Each with the getParent() function
     94   /// pointing to the Region this RegionNode belongs to.
     95   ///
     96   /// @return Get the parent Region of this RegionNode.
     97   inline Region* getParent() const { return parent; }
     98 
     99   /// @brief Get the entry BasicBlock of this RegionNode.
    100   ///
    101   /// If this RegionNode represents a BasicBlock this is just the BasicBlock
    102   /// itself, otherwise we return the entry BasicBlock of the Subregion
    103   ///
    104   /// @return The entry BasicBlock of this RegionNode.
    105   inline BasicBlock* getEntry() const { return entry.getPointer(); }
    106 
    107   /// @brief Get the content of this RegionNode.
    108   ///
    109   /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
    110   /// check the type of the content with the isSubRegion() function call.
    111   ///
    112   /// @return The content of this RegionNode.
    113   template<class T>
    114   inline T* getNodeAs() const;
    115 
    116   /// @brief Is this RegionNode a subregion?
    117   ///
    118   /// @return True if it contains a subregion. False if it contains a
    119   ///         BasicBlock.
    120   inline bool isSubRegion() const {
    121     return entry.getInt();
    122   }
    123 };
    124 
    125 /// Print a RegionNode.
    126 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
    127 
    128 template<>
    129 inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
    130   assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
    131   return getEntry();
    132 }
    133 
    134 template<>
    135 inline Region* RegionNode::getNodeAs<Region>() const {
    136   assert(isSubRegion() && "This is not a subregion RegionNode!");
    137   return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
    138 }
    139 
    140 //===----------------------------------------------------------------------===//
    141 /// @brief A single entry single exit Region.
    142 ///
    143 /// A Region is a connected subgraph of a control flow graph that has exactly
    144 /// two connections to the remaining graph. It can be used to analyze or
    145 /// optimize parts of the control flow graph.
    146 ///
    147 /// A <em> simple Region </em> is connected to the remaining graph by just two
    148 /// edges. One edge entering the Region and another one leaving the Region.
    149 ///
    150 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
    151 /// transform into a simple Region. The transformation is done by adding
    152 /// BasicBlocks that merge several entry or exit edges so that after the merge
    153 /// just one entry and one exit edge exists.
    154 ///
    155 /// The \e Entry of a Region is the first BasicBlock that is passed after
    156 /// entering the Region. It is an element of the Region. The entry BasicBlock
    157 /// dominates all BasicBlocks in the Region.
    158 ///
    159 /// The \e Exit of a Region is the first BasicBlock that is passed after
    160 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
    161 /// postdominates all BasicBlocks in the Region.
    162 ///
    163 /// A <em> canonical Region </em> cannot be constructed by combining smaller
    164 /// Regions.
    165 ///
    166 /// Region A is the \e parent of Region B, if B is completely contained in A.
    167 ///
    168 /// Two canonical Regions either do not intersect at all or one is
    169 /// the parent of the other.
    170 ///
    171 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
    172 /// Regions in the control flow graph and E is the \e parent relation of these
    173 /// Regions.
    174 ///
    175 /// Example:
    176 ///
    177 /// \verbatim
    178 /// A simple control flow graph, that contains two regions.
    179 ///
    180 ///        1
    181 ///       / |
    182 ///      2   |
    183 ///     / \   3
    184 ///    4   5  |
    185 ///    |   |  |
    186 ///    6   7  8
    187 ///     \  | /
    188 ///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
    189 ///        9        Region B: 2 -> 9 {2,4,5,6,7}
    190 /// \endverbatim
    191 ///
    192 /// You can obtain more examples by either calling
    193 ///
    194 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
    195 /// or
    196 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
    197 ///
    198 /// on any LLVM file you are interested in.
    199 ///
    200 /// The first call returns a textual representation of the program structure
    201 /// tree, the second one creates a graphical representation using graphviz.
    202 class Region : public RegionNode {
    203   friend class RegionInfo;
    204   Region(const Region &) LLVM_DELETED_FUNCTION;
    205   const Region &operator=(const Region &) LLVM_DELETED_FUNCTION;
    206 
    207   // Information necessary to manage this Region.
    208   RegionInfo* RI;
    209   DominatorTree *DT;
    210 
    211   // The exit BasicBlock of this region.
    212   // (The entry BasicBlock is part of RegionNode)
    213   BasicBlock *exit;
    214 
    215   typedef std::vector<Region*> RegionSet;
    216 
    217   // The subregions of this region.
    218   RegionSet children;
    219 
    220   typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
    221 
    222   // Save the BasicBlock RegionNodes that are element of this Region.
    223   mutable BBNodeMapT BBNodeMap;
    224 
    225   /// verifyBBInRegion - Check if a BB is in this Region. This check also works
    226   /// if the region is incorrectly built. (EXPENSIVE!)
    227   void verifyBBInRegion(BasicBlock* BB) const;
    228 
    229   /// verifyWalk - Walk over all the BBs of the region starting from BB and
    230   /// verify that all reachable basic blocks are elements of the region.
    231   /// (EXPENSIVE!)
    232   void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
    233 
    234   /// verifyRegionNest - Verify if the region and its children are valid
    235   /// regions (EXPENSIVE!)
    236   void verifyRegionNest() const;
    237 
    238 public:
    239   /// @brief Create a new region.
    240   ///
    241   /// @param Entry  The entry basic block of the region.
    242   /// @param Exit   The exit basic block of the region.
    243   /// @param RI     The region info object that is managing this region.
    244   /// @param DT     The dominator tree of the current function.
    245   /// @param Parent The surrounding region or NULL if this is a top level
    246   ///               region.
    247   Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
    248          DominatorTree *DT, Region *Parent = 0);
    249 
    250   /// Delete the Region and all its subregions.
    251   ~Region();
    252 
    253   /// @brief Get the entry BasicBlock of the Region.
    254   /// @return The entry BasicBlock of the region.
    255   BasicBlock *getEntry() const { return RegionNode::getEntry(); }
    256 
    257   /// @brief Replace the entry basic block of the region with the new basic
    258   ///        block.
    259   ///
    260   /// @param BB  The new entry basic block of the region.
    261   void replaceEntry(BasicBlock *BB);
    262 
    263   /// @brief Replace the exit basic block of the region with the new basic
    264   ///        block.
    265   ///
    266   /// @param BB  The new exit basic block of the region.
    267   void replaceExit(BasicBlock *BB);
    268 
    269   /// @brief Get the exit BasicBlock of the Region.
    270   /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
    271   ///         Region.
    272   BasicBlock *getExit() const { return exit; }
    273 
    274   /// @brief Get the parent of the Region.
    275   /// @return The parent of the Region or NULL if this is a top level
    276   ///         Region.
    277   Region *getParent() const { return RegionNode::getParent(); }
    278 
    279   /// @brief Get the RegionNode representing the current Region.
    280   /// @return The RegionNode representing the current Region.
    281   RegionNode* getNode() const {
    282     return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
    283   }
    284 
    285   /// @brief Get the nesting level of this Region.
    286   ///
    287   /// An toplevel Region has depth 0.
    288   ///
    289   /// @return The depth of the region.
    290   unsigned getDepth() const;
    291 
    292   /// @brief Check if a Region is the TopLevel region.
    293   ///
    294   /// The toplevel region represents the whole function.
    295   bool isTopLevelRegion() const { return exit == NULL; }
    296 
    297   /// @brief Return a new (non canonical) region, that is obtained by joining
    298   ///        this region with its predecessors.
    299   ///
    300   /// @return A region also starting at getEntry(), but reaching to the next
    301   ///         basic block that forms with getEntry() a (non canonical) region.
    302   ///         NULL if such a basic block does not exist.
    303   Region *getExpandedRegion() const;
    304 
    305   /// @brief Return the first block of this region's single entry edge,
    306   ///        if existing.
    307   ///
    308   /// @return The BasicBlock starting this region's single entry edge,
    309   ///         else NULL.
    310   BasicBlock *getEnteringBlock() const;
    311 
    312   /// @brief Return the first block of this region's single exit edge,
    313   ///        if existing.
    314   ///
    315   /// @return The BasicBlock starting this region's single exit edge,
    316   ///         else NULL.
    317   BasicBlock *getExitingBlock() const;
    318 
    319   /// @brief Is this a simple region?
    320   ///
    321   /// A region is simple if it has exactly one exit and one entry edge.
    322   ///
    323   /// @return True if the Region is simple.
    324   bool isSimple() const;
    325 
    326   /// @brief Returns the name of the Region.
    327   /// @return The Name of the Region.
    328   std::string getNameStr() const;
    329 
    330   /// @brief Return the RegionInfo object, that belongs to this Region.
    331   RegionInfo *getRegionInfo() const {
    332     return RI;
    333   }
    334 
    335   /// PrintStyle - Print region in difference ways.
    336   enum PrintStyle { PrintNone, PrintBB, PrintRN  };
    337 
    338   /// @brief Print the region.
    339   ///
    340   /// @param OS The output stream the Region is printed to.
    341   /// @param printTree Print also the tree of subregions.
    342   /// @param level The indentation level used for printing.
    343   void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
    344              enum PrintStyle Style = PrintNone) const;
    345 
    346   /// @brief Print the region to stderr.
    347   void dump() const;
    348 
    349   /// @brief Check if the region contains a BasicBlock.
    350   ///
    351   /// @param BB The BasicBlock that might be contained in this Region.
    352   /// @return True if the block is contained in the region otherwise false.
    353   bool contains(const BasicBlock *BB) const;
    354 
    355   /// @brief Check if the region contains another region.
    356   ///
    357   /// @param SubRegion The region that might be contained in this Region.
    358   /// @return True if SubRegion is contained in the region otherwise false.
    359   bool contains(const Region *SubRegion) const {
    360     // Toplevel Region.
    361     if (!getExit())
    362       return true;
    363 
    364     return contains(SubRegion->getEntry())
    365       && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
    366   }
    367 
    368   /// @brief Check if the region contains an Instruction.
    369   ///
    370   /// @param Inst The Instruction that might be contained in this region.
    371   /// @return True if the Instruction is contained in the region otherwise false.
    372   bool contains(const Instruction *Inst) const {
    373     return contains(Inst->getParent());
    374   }
    375 
    376   /// @brief Check if the region contains a loop.
    377   ///
    378   /// @param L The loop that might be contained in this region.
    379   /// @return True if the loop is contained in the region otherwise false.
    380   ///         In case a NULL pointer is passed to this function the result
    381   ///         is false, except for the region that describes the whole function.
    382   ///         In that case true is returned.
    383   bool contains(const Loop *L) const;
    384 
    385   /// @brief Get the outermost loop in the region that contains a loop.
    386   ///
    387   /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
    388   /// and is itself contained in the region.
    389   ///
    390   /// @param L The loop the lookup is started.
    391   /// @return The outermost loop in the region, NULL if such a loop does not
    392   ///         exist or if the region describes the whole function.
    393   Loop *outermostLoopInRegion(Loop *L) const;
    394 
    395   /// @brief Get the outermost loop in the region that contains a basic block.
    396   ///
    397   /// Find for a basic block BB the outermost loop L that contains BB and is
    398   /// itself contained in the region.
    399   ///
    400   /// @param LI A pointer to a LoopInfo analysis.
    401   /// @param BB The basic block surrounded by the loop.
    402   /// @return The outermost loop in the region, NULL if such a loop does not
    403   ///         exist or if the region describes the whole function.
    404   Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
    405 
    406   /// @brief Get the subregion that starts at a BasicBlock
    407   ///
    408   /// @param BB The BasicBlock the subregion should start.
    409   /// @return The Subregion if available, otherwise NULL.
    410   Region* getSubRegionNode(BasicBlock *BB) const;
    411 
    412   /// @brief Get the RegionNode for a BasicBlock
    413   ///
    414   /// @param BB The BasicBlock at which the RegionNode should start.
    415   /// @return If available, the RegionNode that represents the subregion
    416   ///         starting at BB. If no subregion starts at BB, the RegionNode
    417   ///         representing BB.
    418   RegionNode* getNode(BasicBlock *BB) const;
    419 
    420   /// @brief Get the BasicBlock RegionNode for a BasicBlock
    421   ///
    422   /// @param BB The BasicBlock for which the RegionNode is requested.
    423   /// @return The RegionNode representing the BB.
    424   RegionNode* getBBNode(BasicBlock *BB) const;
    425 
    426   /// @brief Add a new subregion to this Region.
    427   ///
    428   /// @param SubRegion The new subregion that will be added.
    429   /// @param moveChildren Move the children of this region, that are also
    430   ///                     contained in SubRegion into SubRegion.
    431   void addSubRegion(Region *SubRegion, bool moveChildren = false);
    432 
    433   /// @brief Remove a subregion from this Region.
    434   ///
    435   /// The subregion is not deleted, as it will probably be inserted into another
    436   /// region.
    437   /// @param SubRegion The SubRegion that will be removed.
    438   Region *removeSubRegion(Region *SubRegion);
    439 
    440   /// @brief Move all direct child nodes of this Region to another Region.
    441   ///
    442   /// @param To The Region the child nodes will be transferred to.
    443   void transferChildrenTo(Region *To);
    444 
    445   /// @brief Verify if the region is a correct region.
    446   ///
    447   /// Check if this is a correctly build Region. This is an expensive check, as
    448   /// the complete CFG of the Region will be walked.
    449   void verifyRegion() const;
    450 
    451   /// @brief Clear the cache for BB RegionNodes.
    452   ///
    453   /// After calling this function the BasicBlock RegionNodes will be stored at
    454   /// different memory locations. RegionNodes obtained before this function is
    455   /// called are therefore not comparable to RegionNodes abtained afterwords.
    456   void clearNodeCache();
    457 
    458   /// @name Subregion Iterators
    459   ///
    460   /// These iterators iterator over all subregions of this Region.
    461   //@{
    462   typedef RegionSet::iterator iterator;
    463   typedef RegionSet::const_iterator const_iterator;
    464 
    465   iterator begin() { return children.begin(); }
    466   iterator end() { return children.end(); }
    467 
    468   const_iterator begin() const { return children.begin(); }
    469   const_iterator end() const { return children.end(); }
    470   //@}
    471 
    472   /// @name BasicBlock Iterators
    473   ///
    474   /// These iterators iterate over all BasicBlocks that are contained in this
    475   /// Region. The iterator also iterates over BasicBlocks that are elements of
    476   /// a subregion of this Region. It is therefore called a flat iterator.
    477   //@{
    478   template <bool IsConst>
    479   class block_iterator_wrapper
    480     : public df_iterator<typename conditional<IsConst,
    481                                               const BasicBlock,
    482                                               BasicBlock>::type*> {
    483     typedef df_iterator<typename conditional<IsConst,
    484                                              const BasicBlock,
    485                                              BasicBlock>::type*>
    486       super;
    487   public:
    488     typedef block_iterator_wrapper<IsConst> Self;
    489     typedef typename super::pointer pointer;
    490 
    491     // Construct the begin iterator.
    492     block_iterator_wrapper(pointer Entry, pointer Exit) : super(df_begin(Entry))
    493     {
    494       // Mark the exit of the region as visited, so that the children of the
    495       // exit and the exit itself, i.e. the block outside the region will never
    496       // be visited.
    497       super::Visited.insert(Exit);
    498     }
    499 
    500     // Construct the end iterator.
    501     block_iterator_wrapper() : super(df_end<pointer>((BasicBlock *)0)) {}
    502 
    503     /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
    504 
    505     // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
    506     //        This was introduced for backwards compatibility, but should
    507     //        be removed as soon as all users are fixed.
    508     BasicBlock *operator*() const {
    509       return const_cast<BasicBlock*>(super::operator*());
    510     }
    511   };
    512 
    513   typedef block_iterator_wrapper<false> block_iterator;
    514   typedef block_iterator_wrapper<true>  const_block_iterator;
    515 
    516   block_iterator block_begin() {
    517    return block_iterator(getEntry(), getExit());
    518   }
    519 
    520   block_iterator block_end() {
    521    return block_iterator();
    522   }
    523 
    524   const_block_iterator block_begin() const {
    525     return const_block_iterator(getEntry(), getExit());
    526   }
    527   const_block_iterator block_end() const {
    528     return const_block_iterator();
    529   }
    530   //@}
    531 
    532   /// @name Element Iterators
    533   ///
    534   /// These iterators iterate over all BasicBlock and subregion RegionNodes that
    535   /// are direct children of this Region. It does not iterate over any
    536   /// RegionNodes that are also element of a subregion of this Region.
    537   //@{
    538   typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
    539                       GraphTraits<RegionNode*> > element_iterator;
    540 
    541   typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
    542                       false, GraphTraits<const RegionNode*> >
    543             const_element_iterator;
    544 
    545   element_iterator element_begin();
    546   element_iterator element_end();
    547 
    548   const_element_iterator element_begin() const;
    549   const_element_iterator element_end() const;
    550   //@}
    551 };
    552 
    553 //===----------------------------------------------------------------------===//
    554 /// @brief Analysis that detects all canonical Regions.
    555 ///
    556 /// The RegionInfo pass detects all canonical regions in a function. The Regions
    557 /// are connected using the parent relation. This builds a Program Structure
    558 /// Tree.
    559 class RegionInfo : public FunctionPass {
    560   typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
    561   typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
    562   typedef SmallPtrSet<Region*, 4> RegionSet;
    563 
    564   RegionInfo(const RegionInfo &) LLVM_DELETED_FUNCTION;
    565   const RegionInfo &operator=(const RegionInfo &) LLVM_DELETED_FUNCTION;
    566 
    567   DominatorTree *DT;
    568   PostDominatorTree *PDT;
    569   DominanceFrontier *DF;
    570 
    571   /// The top level region.
    572   Region *TopLevelRegion;
    573 
    574   /// Map every BB to the smallest region, that contains BB.
    575   BBtoRegionMap BBtoRegion;
    576 
    577   // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
    578   // entry, because it was inherited from exit. In the other case there is an
    579   // edge going from entry to BB without passing exit.
    580   bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
    581                            BasicBlock* exit) const;
    582 
    583   // isRegion - Check if entry and exit surround a valid region, based on
    584   // dominance tree and dominance frontier.
    585   bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
    586 
    587   // insertShortCut - Saves a shortcut pointing from entry to exit.
    588   // This function may extend this shortcut if possible.
    589   void insertShortCut(BasicBlock* entry, BasicBlock* exit,
    590                       BBtoBBMap* ShortCut) const;
    591 
    592   // getNextPostDom - Returns the next BB that postdominates N, while skipping
    593   // all post dominators that cannot finish a canonical region.
    594   DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
    595 
    596   // isTrivialRegion - A region is trivial, if it contains only one BB.
    597   bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
    598 
    599   // createRegion - Creates a single entry single exit region.
    600   Region *createRegion(BasicBlock *entry, BasicBlock *exit);
    601 
    602   // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
    603   void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
    604 
    605   // scanForRegions - Detects regions in F.
    606   void scanForRegions(Function &F, BBtoBBMap *ShortCut);
    607 
    608   // getTopMostParent - Get the top most parent with the same entry block.
    609   Region *getTopMostParent(Region *region);
    610 
    611   // buildRegionsTree - build the region hierarchy after all region detected.
    612   void buildRegionsTree(DomTreeNode *N, Region *region);
    613 
    614   // Calculate - detecte all regions in function and build the region tree.
    615   void Calculate(Function& F);
    616 
    617   void releaseMemory();
    618 
    619   // updateStatistics - Update statistic about created regions.
    620   void updateStatistics(Region *R);
    621 
    622   // isSimple - Check if a region is a simple region with exactly one entry
    623   // edge and exactly one exit edge.
    624   bool isSimple(Region* R) const;
    625 
    626 public:
    627   static char ID;
    628   explicit RegionInfo();
    629 
    630   ~RegionInfo();
    631 
    632   /// @name FunctionPass interface
    633   //@{
    634   virtual bool runOnFunction(Function &F);
    635   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    636   virtual void print(raw_ostream &OS, const Module *) const;
    637   virtual void verifyAnalysis() const;
    638   //@}
    639 
    640   /// @brief Get the smallest region that contains a BasicBlock.
    641   ///
    642   /// @param BB The basic block.
    643   /// @return The smallest region, that contains BB or NULL, if there is no
    644   /// region containing BB.
    645   Region *getRegionFor(BasicBlock *BB) const;
    646 
    647   /// @brief  Set the smallest region that surrounds a basic block.
    648   ///
    649   /// @param BB The basic block surrounded by a region.
    650   /// @param R The smallest region that surrounds BB.
    651   void setRegionFor(BasicBlock *BB, Region *R);
    652 
    653   /// @brief A shortcut for getRegionFor().
    654   ///
    655   /// @param BB The basic block.
    656   /// @return The smallest region, that contains BB or NULL, if there is no
    657   /// region containing BB.
    658   Region *operator[](BasicBlock *BB) const;
    659 
    660   /// @brief Return the exit of the maximal refined region, that starts at a
    661   /// BasicBlock.
    662   ///
    663   /// @param BB The BasicBlock the refined region starts.
    664   BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
    665 
    666   /// @brief Find the smallest region that contains two regions.
    667   ///
    668   /// @param A The first region.
    669   /// @param B The second region.
    670   /// @return The smallest region containing A and B.
    671   Region *getCommonRegion(Region* A, Region *B) const;
    672 
    673   /// @brief Find the smallest region that contains two basic blocks.
    674   ///
    675   /// @param A The first basic block.
    676   /// @param B The second basic block.
    677   /// @return The smallest region that contains A and B.
    678   Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
    679     return getCommonRegion(getRegionFor(A), getRegionFor(B));
    680   }
    681 
    682   /// @brief Find the smallest region that contains a set of regions.
    683   ///
    684   /// @param Regions A vector of regions.
    685   /// @return The smallest region that contains all regions in Regions.
    686   Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
    687 
    688   /// @brief Find the smallest region that contains a set of basic blocks.
    689   ///
    690   /// @param BBs A vector of basic blocks.
    691   /// @return The smallest region that contains all basic blocks in BBS.
    692   Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
    693 
    694   Region *getTopLevelRegion() const {
    695     return TopLevelRegion;
    696   }
    697 
    698   /// @brief Update RegionInfo after a basic block was split.
    699   ///
    700   /// @param NewBB The basic block that was created before OldBB.
    701   /// @param OldBB The old basic block.
    702   void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
    703 
    704   /// @brief Clear the Node Cache for all Regions.
    705   ///
    706   /// @see Region::clearNodeCache()
    707   void clearNodeCache() {
    708     if (TopLevelRegion)
    709       TopLevelRegion->clearNodeCache();
    710   }
    711 };
    712 
    713 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
    714   if (Node.isSubRegion())
    715     return OS << Node.getNodeAs<Region>()->getNameStr();
    716   else
    717     return OS << Node.getNodeAs<BasicBlock>()->getName();
    718 }
    719 } // End llvm namespace
    720 #endif
    721 
    722