Home | History | Annotate | Download | only in MC
      1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "assembler"
     11 #include "llvm/MC/MCAssembler.h"
     12 #include "llvm/ADT/Statistic.h"
     13 #include "llvm/ADT/StringExtras.h"
     14 #include "llvm/ADT/Twine.h"
     15 #include "llvm/MC/MCAsmBackend.h"
     16 #include "llvm/MC/MCAsmLayout.h"
     17 #include "llvm/MC/MCCodeEmitter.h"
     18 #include "llvm/MC/MCContext.h"
     19 #include "llvm/MC/MCDwarf.h"
     20 #include "llvm/MC/MCExpr.h"
     21 #include "llvm/MC/MCFixupKindInfo.h"
     22 #include "llvm/MC/MCObjectWriter.h"
     23 #include "llvm/MC/MCSection.h"
     24 #include "llvm/MC/MCSymbol.h"
     25 #include "llvm/MC/MCValue.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/LEB128.h"
     29 #include "llvm/Support/TargetRegistry.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 
     32 using namespace llvm;
     33 
     34 namespace {
     35 namespace stats {
     36 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
     37 STATISTIC(EmittedRelaxableFragments,
     38           "Number of emitted assembler fragments - relaxable");
     39 STATISTIC(EmittedDataFragments,
     40           "Number of emitted assembler fragments - data");
     41 STATISTIC(EmittedCompactEncodedInstFragments,
     42           "Number of emitted assembler fragments - compact encoded inst");
     43 STATISTIC(EmittedAlignFragments,
     44           "Number of emitted assembler fragments - align");
     45 STATISTIC(EmittedFillFragments,
     46           "Number of emitted assembler fragments - fill");
     47 STATISTIC(EmittedOrgFragments,
     48           "Number of emitted assembler fragments - org");
     49 STATISTIC(evaluateFixup, "Number of evaluated fixups");
     50 STATISTIC(FragmentLayouts, "Number of fragment layouts");
     51 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
     52 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
     53 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
     54 }
     55 }
     56 
     57 // FIXME FIXME FIXME: There are number of places in this file where we convert
     58 // what is a 64-bit assembler value used for computation into a value in the
     59 // object file, which may truncate it. We should detect that truncation where
     60 // invalid and report errors back.
     61 
     62 /* *** */
     63 
     64 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
     65   : Assembler(Asm), LastValidFragment()
     66  {
     67   // Compute the section layout order. Virtual sections must go last.
     68   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
     69     if (!it->getSection().isVirtualSection())
     70       SectionOrder.push_back(&*it);
     71   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
     72     if (it->getSection().isVirtualSection())
     73       SectionOrder.push_back(&*it);
     74 }
     75 
     76 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
     77   const MCSectionData &SD = *F->getParent();
     78   const MCFragment *LastValid = LastValidFragment.lookup(&SD);
     79   if (!LastValid)
     80     return false;
     81   assert(LastValid->getParent() == F->getParent());
     82   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
     83 }
     84 
     85 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
     86   // If this fragment wasn't already valid, we don't need to do anything.
     87   if (!isFragmentValid(F))
     88     return;
     89 
     90   // Otherwise, reset the last valid fragment to the previous fragment
     91   // (if this is the first fragment, it will be NULL).
     92   const MCSectionData &SD = *F->getParent();
     93   LastValidFragment[&SD] = F->getPrevNode();
     94 }
     95 
     96 void MCAsmLayout::ensureValid(const MCFragment *F) const {
     97   MCSectionData &SD = *F->getParent();
     98 
     99   MCFragment *Cur = LastValidFragment[&SD];
    100   if (!Cur)
    101     Cur = &*SD.begin();
    102   else
    103     Cur = Cur->getNextNode();
    104 
    105   // Advance the layout position until the fragment is valid.
    106   while (!isFragmentValid(F)) {
    107     assert(Cur && "Layout bookkeeping error");
    108     const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
    109     Cur = Cur->getNextNode();
    110   }
    111 }
    112 
    113 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
    114   ensureValid(F);
    115   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
    116   return F->Offset;
    117 }
    118 
    119 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
    120   const MCSymbol &S = SD->getSymbol();
    121 
    122   // If this is a variable, then recursively evaluate now.
    123   if (S.isVariable()) {
    124     MCValue Target;
    125     if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this))
    126       report_fatal_error("unable to evaluate offset for variable '" +
    127                          S.getName() + "'");
    128 
    129     // Verify that any used symbols are defined.
    130     if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined())
    131       report_fatal_error("unable to evaluate offset to undefined symbol '" +
    132                          Target.getSymA()->getSymbol().getName() + "'");
    133     if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined())
    134       report_fatal_error("unable to evaluate offset to undefined symbol '" +
    135                          Target.getSymB()->getSymbol().getName() + "'");
    136 
    137     uint64_t Offset = Target.getConstant();
    138     if (Target.getSymA())
    139       Offset += getSymbolOffset(&Assembler.getSymbolData(
    140                                   Target.getSymA()->getSymbol()));
    141     if (Target.getSymB())
    142       Offset -= getSymbolOffset(&Assembler.getSymbolData(
    143                                   Target.getSymB()->getSymbol()));
    144     return Offset;
    145   }
    146 
    147   assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
    148   return getFragmentOffset(SD->getFragment()) + SD->getOffset();
    149 }
    150 
    151 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
    152   // The size is the last fragment's end offset.
    153   const MCFragment &F = SD->getFragmentList().back();
    154   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
    155 }
    156 
    157 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
    158   // Virtual sections have no file size.
    159   if (SD->getSection().isVirtualSection())
    160     return 0;
    161 
    162   // Otherwise, the file size is the same as the address space size.
    163   return getSectionAddressSize(SD);
    164 }
    165 
    166 uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
    167                                            uint64_t FOffset, uint64_t FSize) {
    168   uint64_t BundleSize = Assembler.getBundleAlignSize();
    169   assert(BundleSize > 0 &&
    170          "computeBundlePadding should only be called if bundling is enabled");
    171   uint64_t BundleMask = BundleSize - 1;
    172   uint64_t OffsetInBundle = FOffset & BundleMask;
    173   uint64_t EndOfFragment = OffsetInBundle + FSize;
    174 
    175   // There are two kinds of bundling restrictions:
    176   //
    177   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
    178   //    *end* on a bundle boundary.
    179   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
    180   //    would, add padding until the end of the bundle so that the fragment
    181   //    will start in a new one.
    182   if (F->alignToBundleEnd()) {
    183     // Three possibilities here:
    184     //
    185     // A) The fragment just happens to end at a bundle boundary, so we're good.
    186     // B) The fragment ends before the current bundle boundary: pad it just
    187     //    enough to reach the boundary.
    188     // C) The fragment ends after the current bundle boundary: pad it until it
    189     //    reaches the end of the next bundle boundary.
    190     //
    191     // Note: this code could be made shorter with some modulo trickery, but it's
    192     // intentionally kept in its more explicit form for simplicity.
    193     if (EndOfFragment == BundleSize)
    194       return 0;
    195     else if (EndOfFragment < BundleSize)
    196       return BundleSize - EndOfFragment;
    197     else { // EndOfFragment > BundleSize
    198       return 2 * BundleSize - EndOfFragment;
    199     }
    200   } else if (EndOfFragment > BundleSize)
    201     return BundleSize - OffsetInBundle;
    202   else
    203     return 0;
    204 }
    205 
    206 /* *** */
    207 
    208 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
    209 }
    210 
    211 MCFragment::~MCFragment() {
    212 }
    213 
    214 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
    215   : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)),
    216     LayoutOrder(~(0U))
    217 {
    218   if (Parent)
    219     Parent->getFragmentList().push_back(this);
    220 }
    221 
    222 /* *** */
    223 
    224 MCEncodedFragment::~MCEncodedFragment() {
    225 }
    226 
    227 /* *** */
    228 
    229 MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
    230 }
    231 
    232 /* *** */
    233 
    234 MCSectionData::MCSectionData() : Section(0) {}
    235 
    236 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
    237   : Section(&_Section),
    238     Ordinal(~UINT32_C(0)),
    239     Alignment(1),
    240     BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
    241     HasInstructions(false)
    242 {
    243   if (A)
    244     A->getSectionList().push_back(this);
    245 }
    246 
    247 /* *** */
    248 
    249 MCSymbolData::MCSymbolData() : Symbol(0) {}
    250 
    251 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
    252                            uint64_t _Offset, MCAssembler *A)
    253   : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
    254     IsExternal(false), IsPrivateExtern(false),
    255     CommonSize(0), SymbolSize(0), CommonAlign(0),
    256     Flags(0), Index(0)
    257 {
    258   if (A)
    259     A->getSymbolList().push_back(this);
    260 }
    261 
    262 /* *** */
    263 
    264 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
    265                          MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
    266                          raw_ostream &OS_)
    267   : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(&Writer_),
    268     OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
    269     SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
    270 }
    271 
    272 MCAssembler::~MCAssembler() {
    273 }
    274 
    275 void MCAssembler::setWriter(MCObjectWriter &ObjectWriter) {
    276   delete Writer;
    277   Writer = &ObjectWriter;
    278 }
    279 
    280 void MCAssembler::reset() {
    281   Sections.clear();
    282   Symbols.clear();
    283   SectionMap.clear();
    284   SymbolMap.clear();
    285   IndirectSymbols.clear();
    286   DataRegions.clear();
    287   ThumbFuncs.clear();
    288   RelaxAll = false;
    289   NoExecStack = false;
    290   SubsectionsViaSymbols = false;
    291   ELFHeaderEFlags = 0;
    292 
    293   // reset objects owned by us
    294   getBackend().reset();
    295   getEmitter().reset();
    296   getWriter().reset();
    297 }
    298 
    299 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
    300   // Non-temporary labels should always be visible to the linker.
    301   if (!Symbol.isTemporary())
    302     return true;
    303 
    304   // Absolute temporary labels are never visible.
    305   if (!Symbol.isInSection())
    306     return false;
    307 
    308   // Otherwise, check if the section requires symbols even for temporary labels.
    309   return getBackend().doesSectionRequireSymbols(Symbol.getSection());
    310 }
    311 
    312 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
    313   // Linker visible symbols define atoms.
    314   if (isSymbolLinkerVisible(SD->getSymbol()))
    315     return SD;
    316 
    317   // Absolute and undefined symbols have no defining atom.
    318   if (!SD->getFragment())
    319     return 0;
    320 
    321   // Non-linker visible symbols in sections which can't be atomized have no
    322   // defining atom.
    323   if (!getBackend().isSectionAtomizable(
    324         SD->getFragment()->getParent()->getSection()))
    325     return 0;
    326 
    327   // Otherwise, return the atom for the containing fragment.
    328   return SD->getFragment()->getAtom();
    329 }
    330 
    331 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
    332                                 const MCFixup &Fixup, const MCFragment *DF,
    333                                 MCValue &Target, uint64_t &Value) const {
    334   ++stats::evaluateFixup;
    335 
    336   if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
    337     getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
    338 
    339   bool IsPCRel = Backend.getFixupKindInfo(
    340     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
    341 
    342   bool IsResolved;
    343   if (IsPCRel) {
    344     if (Target.getSymB()) {
    345       IsResolved = false;
    346     } else if (!Target.getSymA()) {
    347       IsResolved = false;
    348     } else {
    349       const MCSymbolRefExpr *A = Target.getSymA();
    350       const MCSymbol &SA = A->getSymbol();
    351       if (A->getKind() != MCSymbolRefExpr::VK_None ||
    352           SA.AliasedSymbol().isUndefined()) {
    353         IsResolved = false;
    354       } else {
    355         const MCSymbolData &DataA = getSymbolData(SA);
    356         IsResolved =
    357           getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
    358                                                              *DF, false, true);
    359       }
    360     }
    361   } else {
    362     IsResolved = Target.isAbsolute();
    363   }
    364 
    365   Value = Target.getConstant();
    366 
    367   if (const MCSymbolRefExpr *A = Target.getSymA()) {
    368     const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
    369     if (Sym.isDefined())
    370       Value += Layout.getSymbolOffset(&getSymbolData(Sym));
    371   }
    372   if (const MCSymbolRefExpr *B = Target.getSymB()) {
    373     const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
    374     if (Sym.isDefined())
    375       Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
    376   }
    377 
    378 
    379   bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
    380                          MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
    381   assert((ShouldAlignPC ? IsPCRel : true) &&
    382     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
    383 
    384   if (IsPCRel) {
    385     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
    386 
    387     // A number of ARM fixups in Thumb mode require that the effective PC
    388     // address be determined as the 32-bit aligned version of the actual offset.
    389     if (ShouldAlignPC) Offset &= ~0x3;
    390     Value -= Offset;
    391   }
    392 
    393   // Let the backend adjust the fixup value if necessary, including whether
    394   // we need a relocation.
    395   Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
    396                             IsResolved);
    397 
    398   return IsResolved;
    399 }
    400 
    401 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
    402                                           const MCFragment &F) const {
    403   switch (F.getKind()) {
    404   case MCFragment::FT_Data:
    405   case MCFragment::FT_Relaxable:
    406   case MCFragment::FT_CompactEncodedInst:
    407     return cast<MCEncodedFragment>(F).getContents().size();
    408   case MCFragment::FT_Fill:
    409     return cast<MCFillFragment>(F).getSize();
    410 
    411   case MCFragment::FT_LEB:
    412     return cast<MCLEBFragment>(F).getContents().size();
    413 
    414   case MCFragment::FT_Align: {
    415     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
    416     unsigned Offset = Layout.getFragmentOffset(&AF);
    417     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
    418     // If we are padding with nops, force the padding to be larger than the
    419     // minimum nop size.
    420     if (Size > 0 && AF.hasEmitNops()) {
    421       while (Size % getBackend().getMinimumNopSize())
    422         Size += AF.getAlignment();
    423     }
    424     if (Size > AF.getMaxBytesToEmit())
    425       return 0;
    426     return Size;
    427   }
    428 
    429   case MCFragment::FT_Org: {
    430     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
    431     int64_t TargetLocation;
    432     if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
    433       report_fatal_error("expected assembly-time absolute expression");
    434 
    435     // FIXME: We need a way to communicate this error.
    436     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
    437     int64_t Size = TargetLocation - FragmentOffset;
    438     if (Size < 0 || Size >= 0x40000000)
    439       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
    440                          "' (at offset '" + Twine(FragmentOffset) + "')");
    441     return Size;
    442   }
    443 
    444   case MCFragment::FT_Dwarf:
    445     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
    446   case MCFragment::FT_DwarfFrame:
    447     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
    448   }
    449 
    450   llvm_unreachable("invalid fragment kind");
    451 }
    452 
    453 void MCAsmLayout::layoutFragment(MCFragment *F) {
    454   MCFragment *Prev = F->getPrevNode();
    455 
    456   // We should never try to recompute something which is valid.
    457   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
    458   // We should never try to compute the fragment layout if its predecessor
    459   // isn't valid.
    460   assert((!Prev || isFragmentValid(Prev)) &&
    461          "Attempt to compute fragment before its predecessor!");
    462 
    463   ++stats::FragmentLayouts;
    464 
    465   // Compute fragment offset and size.
    466   if (Prev)
    467     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
    468   else
    469     F->Offset = 0;
    470   LastValidFragment[F->getParent()] = F;
    471 
    472   // If bundling is enabled and this fragment has instructions in it, it has to
    473   // obey the bundling restrictions. With padding, we'll have:
    474   //
    475   //
    476   //        BundlePadding
    477   //             |||
    478   // -------------------------------------
    479   //   Prev  |##########|       F        |
    480   // -------------------------------------
    481   //                    ^
    482   //                    |
    483   //                    F->Offset
    484   //
    485   // The fragment's offset will point to after the padding, and its computed
    486   // size won't include the padding.
    487   //
    488   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
    489     assert(isa<MCEncodedFragment>(F) &&
    490            "Only MCEncodedFragment implementations have instructions");
    491     uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
    492 
    493     if (FSize > Assembler.getBundleAlignSize())
    494       report_fatal_error("Fragment can't be larger than a bundle size");
    495 
    496     uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
    497     if (RequiredBundlePadding > UINT8_MAX)
    498       report_fatal_error("Padding cannot exceed 255 bytes");
    499     F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
    500     F->Offset += RequiredBundlePadding;
    501   }
    502 }
    503 
    504 /// \brief Write the contents of a fragment to the given object writer. Expects
    505 ///        a MCEncodedFragment.
    506 static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
    507   const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
    508   OW->WriteBytes(EF.getContents());
    509 }
    510 
    511 /// \brief Write the fragment \p F to the output file.
    512 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
    513                           const MCFragment &F) {
    514   MCObjectWriter *OW = &Asm.getWriter();
    515 
    516   // FIXME: Embed in fragments instead?
    517   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
    518 
    519   // Should NOP padding be written out before this fragment?
    520   unsigned BundlePadding = F.getBundlePadding();
    521   if (BundlePadding > 0) {
    522     assert(Asm.isBundlingEnabled() &&
    523            "Writing bundle padding with disabled bundling");
    524     assert(F.hasInstructions() &&
    525            "Writing bundle padding for a fragment without instructions");
    526 
    527     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize);
    528     if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) {
    529       // If the padding itself crosses a bundle boundary, it must be emitted
    530       // in 2 pieces, since even nop instructions must not cross boundaries.
    531       //             v--------------v   <- BundleAlignSize
    532       //        v---------v             <- BundlePadding
    533       // ----------------------------
    534       // | Prev |####|####|    F    |
    535       // ----------------------------
    536       //        ^-------------------^   <- TotalLength
    537       unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize();
    538       if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW))
    539           report_fatal_error("unable to write NOP sequence of " +
    540                              Twine(DistanceToBoundary) + " bytes");
    541       BundlePadding -= DistanceToBoundary;
    542     }
    543     if (!Asm.getBackend().writeNopData(BundlePadding, OW))
    544       report_fatal_error("unable to write NOP sequence of " +
    545                          Twine(BundlePadding) + " bytes");
    546   }
    547 
    548   // This variable (and its dummy usage) is to participate in the assert at
    549   // the end of the function.
    550   uint64_t Start = OW->getStream().tell();
    551   (void) Start;
    552 
    553   ++stats::EmittedFragments;
    554 
    555   switch (F.getKind()) {
    556   case MCFragment::FT_Align: {
    557     ++stats::EmittedAlignFragments;
    558     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
    559     uint64_t Count = FragmentSize / AF.getValueSize();
    560 
    561     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
    562 
    563     // FIXME: This error shouldn't actually occur (the front end should emit
    564     // multiple .align directives to enforce the semantics it wants), but is
    565     // severe enough that we want to report it. How to handle this?
    566     if (Count * AF.getValueSize() != FragmentSize)
    567       report_fatal_error("undefined .align directive, value size '" +
    568                         Twine(AF.getValueSize()) +
    569                         "' is not a divisor of padding size '" +
    570                         Twine(FragmentSize) + "'");
    571 
    572     // See if we are aligning with nops, and if so do that first to try to fill
    573     // the Count bytes.  Then if that did not fill any bytes or there are any
    574     // bytes left to fill use the Value and ValueSize to fill the rest.
    575     // If we are aligning with nops, ask that target to emit the right data.
    576     if (AF.hasEmitNops()) {
    577       if (!Asm.getBackend().writeNopData(Count, OW))
    578         report_fatal_error("unable to write nop sequence of " +
    579                           Twine(Count) + " bytes");
    580       break;
    581     }
    582 
    583     // Otherwise, write out in multiples of the value size.
    584     for (uint64_t i = 0; i != Count; ++i) {
    585       switch (AF.getValueSize()) {
    586       default: llvm_unreachable("Invalid size!");
    587       case 1: OW->Write8 (uint8_t (AF.getValue())); break;
    588       case 2: OW->Write16(uint16_t(AF.getValue())); break;
    589       case 4: OW->Write32(uint32_t(AF.getValue())); break;
    590       case 8: OW->Write64(uint64_t(AF.getValue())); break;
    591       }
    592     }
    593     break;
    594   }
    595 
    596   case MCFragment::FT_Data:
    597     ++stats::EmittedDataFragments;
    598     writeFragmentContents(F, OW);
    599     break;
    600 
    601   case MCFragment::FT_Relaxable:
    602     ++stats::EmittedRelaxableFragments;
    603     writeFragmentContents(F, OW);
    604     break;
    605 
    606   case MCFragment::FT_CompactEncodedInst:
    607     ++stats::EmittedCompactEncodedInstFragments;
    608     writeFragmentContents(F, OW);
    609     break;
    610 
    611   case MCFragment::FT_Fill: {
    612     ++stats::EmittedFillFragments;
    613     const MCFillFragment &FF = cast<MCFillFragment>(F);
    614 
    615     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
    616 
    617     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
    618       switch (FF.getValueSize()) {
    619       default: llvm_unreachable("Invalid size!");
    620       case 1: OW->Write8 (uint8_t (FF.getValue())); break;
    621       case 2: OW->Write16(uint16_t(FF.getValue())); break;
    622       case 4: OW->Write32(uint32_t(FF.getValue())); break;
    623       case 8: OW->Write64(uint64_t(FF.getValue())); break;
    624       }
    625     }
    626     break;
    627   }
    628 
    629   case MCFragment::FT_LEB: {
    630     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
    631     OW->WriteBytes(LF.getContents().str());
    632     break;
    633   }
    634 
    635   case MCFragment::FT_Org: {
    636     ++stats::EmittedOrgFragments;
    637     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
    638 
    639     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
    640       OW->Write8(uint8_t(OF.getValue()));
    641 
    642     break;
    643   }
    644 
    645   case MCFragment::FT_Dwarf: {
    646     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
    647     OW->WriteBytes(OF.getContents().str());
    648     break;
    649   }
    650   case MCFragment::FT_DwarfFrame: {
    651     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
    652     OW->WriteBytes(CF.getContents().str());
    653     break;
    654   }
    655   }
    656 
    657   assert(OW->getStream().tell() - Start == FragmentSize &&
    658          "The stream should advance by fragment size");
    659 }
    660 
    661 void MCAssembler::writeSectionData(const MCSectionData *SD,
    662                                    const MCAsmLayout &Layout) const {
    663   // Ignore virtual sections.
    664   if (SD->getSection().isVirtualSection()) {
    665     assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
    666 
    667     // Check that contents are only things legal inside a virtual section.
    668     for (MCSectionData::const_iterator it = SD->begin(),
    669            ie = SD->end(); it != ie; ++it) {
    670       switch (it->getKind()) {
    671       default: llvm_unreachable("Invalid fragment in virtual section!");
    672       case MCFragment::FT_Data: {
    673         // Check that we aren't trying to write a non-zero contents (or fixups)
    674         // into a virtual section. This is to support clients which use standard
    675         // directives to fill the contents of virtual sections.
    676         const MCDataFragment &DF = cast<MCDataFragment>(*it);
    677         assert(DF.fixup_begin() == DF.fixup_end() &&
    678                "Cannot have fixups in virtual section!");
    679         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
    680           assert(DF.getContents()[i] == 0 &&
    681                  "Invalid data value for virtual section!");
    682         break;
    683       }
    684       case MCFragment::FT_Align:
    685         // Check that we aren't trying to write a non-zero value into a virtual
    686         // section.
    687         assert((!cast<MCAlignFragment>(it)->getValueSize() ||
    688                 !cast<MCAlignFragment>(it)->getValue()) &&
    689                "Invalid align in virtual section!");
    690         break;
    691       case MCFragment::FT_Fill:
    692         assert(!cast<MCFillFragment>(it)->getValueSize() &&
    693                "Invalid fill in virtual section!");
    694         break;
    695       }
    696     }
    697 
    698     return;
    699   }
    700 
    701   uint64_t Start = getWriter().getStream().tell();
    702   (void)Start;
    703 
    704   for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
    705        it != ie; ++it)
    706     writeFragment(*this, Layout, *it);
    707 
    708   assert(getWriter().getStream().tell() - Start ==
    709          Layout.getSectionAddressSize(SD));
    710 }
    711 
    712 
    713 uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout,
    714                                   MCFragment &F,
    715                                   const MCFixup &Fixup) {
    716    // Evaluate the fixup.
    717    MCValue Target;
    718    uint64_t FixedValue;
    719    if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
    720      // The fixup was unresolved, we need a relocation. Inform the object
    721      // writer of the relocation, and give it an opportunity to adjust the
    722      // fixup value if need be.
    723      getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
    724    }
    725    return FixedValue;
    726  }
    727 
    728 void MCAssembler::Finish() {
    729   DEBUG_WITH_TYPE("mc-dump", {
    730       llvm::errs() << "assembler backend - pre-layout\n--\n";
    731       dump(); });
    732 
    733   // Create the layout object.
    734   MCAsmLayout Layout(*this);
    735 
    736   // Create dummy fragments and assign section ordinals.
    737   unsigned SectionIndex = 0;
    738   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
    739     // Create dummy fragments to eliminate any empty sections, this simplifies
    740     // layout.
    741     if (it->getFragmentList().empty())
    742       new MCDataFragment(it);
    743 
    744     it->setOrdinal(SectionIndex++);
    745   }
    746 
    747   // Assign layout order indices to sections and fragments.
    748   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
    749     MCSectionData *SD = Layout.getSectionOrder()[i];
    750     SD->setLayoutOrder(i);
    751 
    752     unsigned FragmentIndex = 0;
    753     for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
    754          iFrag != iFragEnd; ++iFrag)
    755       iFrag->setLayoutOrder(FragmentIndex++);
    756   }
    757 
    758   // Layout until everything fits.
    759   while (layoutOnce(Layout))
    760     continue;
    761 
    762   DEBUG_WITH_TYPE("mc-dump", {
    763       llvm::errs() << "assembler backend - post-relaxation\n--\n";
    764       dump(); });
    765 
    766   // Finalize the layout, including fragment lowering.
    767   finishLayout(Layout);
    768 
    769   DEBUG_WITH_TYPE("mc-dump", {
    770       llvm::errs() << "assembler backend - final-layout\n--\n";
    771       dump(); });
    772 
    773   uint64_t StartOffset = OS.tell();
    774 
    775   // Allow the object writer a chance to perform post-layout binding (for
    776   // example, to set the index fields in the symbol data).
    777   getWriter().ExecutePostLayoutBinding(*this, Layout);
    778 
    779   // Evaluate and apply the fixups, generating relocation entries as necessary.
    780   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
    781     for (MCSectionData::iterator it2 = it->begin(),
    782            ie2 = it->end(); it2 != ie2; ++it2) {
    783       MCEncodedFragmentWithFixups *F =
    784         dyn_cast<MCEncodedFragmentWithFixups>(it2);
    785       if (F) {
    786         for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
    787              ie3 = F->fixup_end(); it3 != ie3; ++it3) {
    788           MCFixup &Fixup = *it3;
    789           uint64_t FixedValue = handleFixup(Layout, *F, Fixup);
    790           getBackend().applyFixup(Fixup, F->getContents().data(),
    791                                   F->getContents().size(), FixedValue);
    792         }
    793       }
    794     }
    795   }
    796 
    797   // Write the object file.
    798   getWriter().WriteObject(*this, Layout);
    799 
    800   stats::ObjectBytes += OS.tell() - StartOffset;
    801 }
    802 
    803 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
    804                                        const MCRelaxableFragment *DF,
    805                                        const MCAsmLayout &Layout) const {
    806   // If we cannot resolve the fixup value, it requires relaxation.
    807   MCValue Target;
    808   uint64_t Value;
    809   if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
    810     return true;
    811 
    812   return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
    813 }
    814 
    815 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
    816                                           const MCAsmLayout &Layout) const {
    817   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
    818   // are intentionally pushing out inst fragments, or because we relaxed a
    819   // previous instruction to one that doesn't need relaxation.
    820   if (!getBackend().mayNeedRelaxation(F->getInst()))
    821     return false;
    822 
    823   for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
    824        ie = F->fixup_end(); it != ie; ++it)
    825     if (fixupNeedsRelaxation(*it, F, Layout))
    826       return true;
    827 
    828   return false;
    829 }
    830 
    831 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
    832                                    MCRelaxableFragment &F) {
    833   if (!fragmentNeedsRelaxation(&F, Layout))
    834     return false;
    835 
    836   ++stats::RelaxedInstructions;
    837 
    838   // FIXME-PERF: We could immediately lower out instructions if we can tell
    839   // they are fully resolved, to avoid retesting on later passes.
    840 
    841   // Relax the fragment.
    842 
    843   MCInst Relaxed;
    844   getBackend().relaxInstruction(F.getInst(), Relaxed);
    845 
    846   // Encode the new instruction.
    847   //
    848   // FIXME-PERF: If it matters, we could let the target do this. It can
    849   // probably do so more efficiently in many cases.
    850   SmallVector<MCFixup, 4> Fixups;
    851   SmallString<256> Code;
    852   raw_svector_ostream VecOS(Code);
    853   getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
    854   VecOS.flush();
    855 
    856   // Update the fragment.
    857   F.setInst(Relaxed);
    858   F.getContents() = Code;
    859   F.getFixups() = Fixups;
    860 
    861   return true;
    862 }
    863 
    864 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
    865   int64_t Value = 0;
    866   uint64_t OldSize = LF.getContents().size();
    867   bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
    868   (void)IsAbs;
    869   assert(IsAbs);
    870   SmallString<8> &Data = LF.getContents();
    871   Data.clear();
    872   raw_svector_ostream OSE(Data);
    873   if (LF.isSigned())
    874     encodeSLEB128(Value, OSE);
    875   else
    876     encodeULEB128(Value, OSE);
    877   OSE.flush();
    878   return OldSize != LF.getContents().size();
    879 }
    880 
    881 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
    882                                      MCDwarfLineAddrFragment &DF) {
    883   int64_t AddrDelta = 0;
    884   uint64_t OldSize = DF.getContents().size();
    885   bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
    886   (void)IsAbs;
    887   assert(IsAbs);
    888   int64_t LineDelta;
    889   LineDelta = DF.getLineDelta();
    890   SmallString<8> &Data = DF.getContents();
    891   Data.clear();
    892   raw_svector_ostream OSE(Data);
    893   MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
    894   OSE.flush();
    895   return OldSize != Data.size();
    896 }
    897 
    898 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
    899                                               MCDwarfCallFrameFragment &DF) {
    900   int64_t AddrDelta = 0;
    901   uint64_t OldSize = DF.getContents().size();
    902   bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
    903   (void)IsAbs;
    904   assert(IsAbs);
    905   SmallString<8> &Data = DF.getContents();
    906   Data.clear();
    907   raw_svector_ostream OSE(Data);
    908   MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
    909   OSE.flush();
    910   return OldSize != Data.size();
    911 }
    912 
    913 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
    914   // Holds the first fragment which needed relaxing during this layout. It will
    915   // remain NULL if none were relaxed.
    916   // When a fragment is relaxed, all the fragments following it should get
    917   // invalidated because their offset is going to change.
    918   MCFragment *FirstRelaxedFragment = NULL;
    919 
    920   // Attempt to relax all the fragments in the section.
    921   for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
    922     // Check if this is a fragment that needs relaxation.
    923     bool RelaxedFrag = false;
    924     switch(I->getKind()) {
    925     default:
    926       break;
    927     case MCFragment::FT_Relaxable:
    928       assert(!getRelaxAll() &&
    929              "Did not expect a MCRelaxableFragment in RelaxAll mode");
    930       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
    931       break;
    932     case MCFragment::FT_Dwarf:
    933       RelaxedFrag = relaxDwarfLineAddr(Layout,
    934                                        *cast<MCDwarfLineAddrFragment>(I));
    935       break;
    936     case MCFragment::FT_DwarfFrame:
    937       RelaxedFrag =
    938         relaxDwarfCallFrameFragment(Layout,
    939                                     *cast<MCDwarfCallFrameFragment>(I));
    940       break;
    941     case MCFragment::FT_LEB:
    942       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
    943       break;
    944     }
    945     if (RelaxedFrag && !FirstRelaxedFragment)
    946       FirstRelaxedFragment = I;
    947   }
    948   if (FirstRelaxedFragment) {
    949     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
    950     return true;
    951   }
    952   return false;
    953 }
    954 
    955 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
    956   ++stats::RelaxationSteps;
    957 
    958   bool WasRelaxed = false;
    959   for (iterator it = begin(), ie = end(); it != ie; ++it) {
    960     MCSectionData &SD = *it;
    961     while (layoutSectionOnce(Layout, SD))
    962       WasRelaxed = true;
    963   }
    964 
    965   return WasRelaxed;
    966 }
    967 
    968 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
    969   // The layout is done. Mark every fragment as valid.
    970   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
    971     Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
    972   }
    973 }
    974 
    975 // Debugging methods
    976 
    977 namespace llvm {
    978 
    979 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
    980   OS << "<MCFixup" << " Offset:" << AF.getOffset()
    981      << " Value:" << *AF.getValue()
    982      << " Kind:" << AF.getKind() << ">";
    983   return OS;
    984 }
    985 
    986 }
    987 
    988 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    989 void MCFragment::dump() {
    990   raw_ostream &OS = llvm::errs();
    991 
    992   OS << "<";
    993   switch (getKind()) {
    994   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
    995   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
    996   case MCFragment::FT_CompactEncodedInst:
    997     OS << "MCCompactEncodedInstFragment"; break;
    998   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
    999   case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
   1000   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
   1001   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
   1002   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
   1003   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
   1004   }
   1005 
   1006   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
   1007      << " Offset:" << Offset
   1008      << " HasInstructions:" << hasInstructions()
   1009      << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
   1010 
   1011   switch (getKind()) {
   1012   case MCFragment::FT_Align: {
   1013     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
   1014     if (AF->hasEmitNops())
   1015       OS << " (emit nops)";
   1016     OS << "\n       ";
   1017     OS << " Alignment:" << AF->getAlignment()
   1018        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
   1019        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
   1020     break;
   1021   }
   1022   case MCFragment::FT_Data:  {
   1023     const MCDataFragment *DF = cast<MCDataFragment>(this);
   1024     OS << "\n       ";
   1025     OS << " Contents:[";
   1026     const SmallVectorImpl<char> &Contents = DF->getContents();
   1027     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
   1028       if (i) OS << ",";
   1029       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
   1030     }
   1031     OS << "] (" << Contents.size() << " bytes)";
   1032 
   1033     if (DF->fixup_begin() != DF->fixup_end()) {
   1034       OS << ",\n       ";
   1035       OS << " Fixups:[";
   1036       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
   1037              ie = DF->fixup_end(); it != ie; ++it) {
   1038         if (it != DF->fixup_begin()) OS << ",\n                ";
   1039         OS << *it;
   1040       }
   1041       OS << "]";
   1042     }
   1043     break;
   1044   }
   1045   case MCFragment::FT_CompactEncodedInst: {
   1046     const MCCompactEncodedInstFragment *CEIF =
   1047       cast<MCCompactEncodedInstFragment>(this);
   1048     OS << "\n       ";
   1049     OS << " Contents:[";
   1050     const SmallVectorImpl<char> &Contents = CEIF->getContents();
   1051     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
   1052       if (i) OS << ",";
   1053       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
   1054     }
   1055     OS << "] (" << Contents.size() << " bytes)";
   1056     break;
   1057   }
   1058   case MCFragment::FT_Fill:  {
   1059     const MCFillFragment *FF = cast<MCFillFragment>(this);
   1060     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
   1061        << " Size:" << FF->getSize();
   1062     break;
   1063   }
   1064   case MCFragment::FT_Relaxable:  {
   1065     const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
   1066     OS << "\n       ";
   1067     OS << " Inst:";
   1068     F->getInst().dump_pretty(OS);
   1069     break;
   1070   }
   1071   case MCFragment::FT_Org:  {
   1072     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
   1073     OS << "\n       ";
   1074     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
   1075     break;
   1076   }
   1077   case MCFragment::FT_Dwarf:  {
   1078     const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
   1079     OS << "\n       ";
   1080     OS << " AddrDelta:" << OF->getAddrDelta()
   1081        << " LineDelta:" << OF->getLineDelta();
   1082     break;
   1083   }
   1084   case MCFragment::FT_DwarfFrame:  {
   1085     const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
   1086     OS << "\n       ";
   1087     OS << " AddrDelta:" << CF->getAddrDelta();
   1088     break;
   1089   }
   1090   case MCFragment::FT_LEB: {
   1091     const MCLEBFragment *LF = cast<MCLEBFragment>(this);
   1092     OS << "\n       ";
   1093     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
   1094     break;
   1095   }
   1096   }
   1097   OS << ">";
   1098 }
   1099 
   1100 void MCSectionData::dump() {
   1101   raw_ostream &OS = llvm::errs();
   1102 
   1103   OS << "<MCSectionData";
   1104   OS << " Alignment:" << getAlignment()
   1105      << " Fragments:[\n      ";
   1106   for (iterator it = begin(), ie = end(); it != ie; ++it) {
   1107     if (it != begin()) OS << ",\n      ";
   1108     it->dump();
   1109   }
   1110   OS << "]>";
   1111 }
   1112 
   1113 void MCSymbolData::dump() {
   1114   raw_ostream &OS = llvm::errs();
   1115 
   1116   OS << "<MCSymbolData Symbol:" << getSymbol()
   1117      << " Fragment:" << getFragment() << " Offset:" << getOffset()
   1118      << " Flags:" << getFlags() << " Index:" << getIndex();
   1119   if (isCommon())
   1120     OS << " (common, size:" << getCommonSize()
   1121        << " align: " << getCommonAlignment() << ")";
   1122   if (isExternal())
   1123     OS << " (external)";
   1124   if (isPrivateExtern())
   1125     OS << " (private extern)";
   1126   OS << ">";
   1127 }
   1128 
   1129 void MCAssembler::dump() {
   1130   raw_ostream &OS = llvm::errs();
   1131 
   1132   OS << "<MCAssembler\n";
   1133   OS << "  Sections:[\n    ";
   1134   for (iterator it = begin(), ie = end(); it != ie; ++it) {
   1135     if (it != begin()) OS << ",\n    ";
   1136     it->dump();
   1137   }
   1138   OS << "],\n";
   1139   OS << "  Symbols:[";
   1140 
   1141   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
   1142     if (it != symbol_begin()) OS << ",\n           ";
   1143     it->dump();
   1144   }
   1145   OS << "]>\n";
   1146 }
   1147 #endif
   1148 
   1149 // anchors for MC*Fragment vtables
   1150 void MCEncodedFragment::anchor() { }
   1151 void MCEncodedFragmentWithFixups::anchor() { }
   1152 void MCDataFragment::anchor() { }
   1153 void MCCompactEncodedInstFragment::anchor() { }
   1154 void MCRelaxableFragment::anchor() { }
   1155 void MCAlignFragment::anchor() { }
   1156 void MCFillFragment::anchor() { }
   1157 void MCOrgFragment::anchor() { }
   1158 void MCLEBFragment::anchor() { }
   1159 void MCDwarfLineAddrFragment::anchor() { }
   1160 void MCDwarfCallFrameFragment::anchor() { }
   1161