Home | History | Annotate | Download | only in Analysis
      1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  Note that the
     12 // loops identified may actually be several natural loops that share the same
     13 // header node... not just a single natural loop.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/Analysis/Dominators.h"
     21 #include "llvm/Analysis/LoopInfoImpl.h"
     22 #include "llvm/Analysis/LoopIterator.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/Assembly/Writer.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Metadata.h"
     28 #include "llvm/Support/CFG.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/Debug.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
     35 template class llvm::LoopBase<BasicBlock, Loop>;
     36 template class llvm::LoopInfoBase<BasicBlock, Loop>;
     37 
     38 // Always verify loopinfo if expensive checking is enabled.
     39 #ifdef XDEBUG
     40 static bool VerifyLoopInfo = true;
     41 #else
     42 static bool VerifyLoopInfo = false;
     43 #endif
     44 static cl::opt<bool,true>
     45 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
     46                 cl::desc("Verify loop info (time consuming)"));
     47 
     48 char LoopInfo::ID = 0;
     49 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
     50 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     51 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
     52 
     53 //===----------------------------------------------------------------------===//
     54 // Loop implementation
     55 //
     56 
     57 /// isLoopInvariant - Return true if the specified value is loop invariant
     58 ///
     59 bool Loop::isLoopInvariant(Value *V) const {
     60   if (Instruction *I = dyn_cast<Instruction>(V))
     61     return !contains(I);
     62   return true;  // All non-instructions are loop invariant
     63 }
     64 
     65 /// hasLoopInvariantOperands - Return true if all the operands of the
     66 /// specified instruction are loop invariant.
     67 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
     68   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
     69     if (!isLoopInvariant(I->getOperand(i)))
     70       return false;
     71 
     72   return true;
     73 }
     74 
     75 /// makeLoopInvariant - If the given value is an instruciton inside of the
     76 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     77 /// Return true if the value after any hoisting is loop invariant. This
     78 /// function can be used as a slightly more aggressive replacement for
     79 /// isLoopInvariant.
     80 ///
     81 /// If InsertPt is specified, it is the point to hoist instructions to.
     82 /// If null, the terminator of the loop preheader is used.
     83 ///
     84 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
     85                              Instruction *InsertPt) const {
     86   if (Instruction *I = dyn_cast<Instruction>(V))
     87     return makeLoopInvariant(I, Changed, InsertPt);
     88   return true;  // All non-instructions are loop-invariant.
     89 }
     90 
     91 /// makeLoopInvariant - If the given instruction is inside of the
     92 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     93 /// Return true if the instruction after any hoisting is loop invariant. This
     94 /// function can be used as a slightly more aggressive replacement for
     95 /// isLoopInvariant.
     96 ///
     97 /// If InsertPt is specified, it is the point to hoist instructions to.
     98 /// If null, the terminator of the loop preheader is used.
     99 ///
    100 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
    101                              Instruction *InsertPt) const {
    102   // Test if the value is already loop-invariant.
    103   if (isLoopInvariant(I))
    104     return true;
    105   if (!isSafeToSpeculativelyExecute(I))
    106     return false;
    107   if (I->mayReadFromMemory())
    108     return false;
    109   // The landingpad instruction is immobile.
    110   if (isa<LandingPadInst>(I))
    111     return false;
    112   // Determine the insertion point, unless one was given.
    113   if (!InsertPt) {
    114     BasicBlock *Preheader = getLoopPreheader();
    115     // Without a preheader, hoisting is not feasible.
    116     if (!Preheader)
    117       return false;
    118     InsertPt = Preheader->getTerminator();
    119   }
    120   // Don't hoist instructions with loop-variant operands.
    121   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    122     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
    123       return false;
    124 
    125   // Hoist.
    126   I->moveBefore(InsertPt);
    127   Changed = true;
    128   return true;
    129 }
    130 
    131 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    132 /// induction variable: an integer recurrence that starts at 0 and increments
    133 /// by one each time through the loop.  If so, return the phi node that
    134 /// corresponds to it.
    135 ///
    136 /// The IndVarSimplify pass transforms loops to have a canonical induction
    137 /// variable.
    138 ///
    139 PHINode *Loop::getCanonicalInductionVariable() const {
    140   BasicBlock *H = getHeader();
    141 
    142   BasicBlock *Incoming = 0, *Backedge = 0;
    143   pred_iterator PI = pred_begin(H);
    144   assert(PI != pred_end(H) &&
    145          "Loop must have at least one backedge!");
    146   Backedge = *PI++;
    147   if (PI == pred_end(H)) return 0;  // dead loop
    148   Incoming = *PI++;
    149   if (PI != pred_end(H)) return 0;  // multiple backedges?
    150 
    151   if (contains(Incoming)) {
    152     if (contains(Backedge))
    153       return 0;
    154     std::swap(Incoming, Backedge);
    155   } else if (!contains(Backedge))
    156     return 0;
    157 
    158   // Loop over all of the PHI nodes, looking for a canonical indvar.
    159   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
    160     PHINode *PN = cast<PHINode>(I);
    161     if (ConstantInt *CI =
    162         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
    163       if (CI->isNullValue())
    164         if (Instruction *Inc =
    165             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
    166           if (Inc->getOpcode() == Instruction::Add &&
    167                 Inc->getOperand(0) == PN)
    168             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
    169               if (CI->equalsInt(1))
    170                 return PN;
    171   }
    172   return 0;
    173 }
    174 
    175 /// isLCSSAForm - Return true if the Loop is in LCSSA form
    176 bool Loop::isLCSSAForm(DominatorTree &DT) const {
    177   // Sort the blocks vector so that we can use binary search to do quick
    178   // lookups.
    179   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
    180 
    181   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
    182     BasicBlock *BB = *BI;
    183     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
    184       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
    185            ++UI) {
    186         User *U = *UI;
    187         BasicBlock *UserBB = cast<Instruction>(U)->getParent();
    188         if (PHINode *P = dyn_cast<PHINode>(U))
    189           UserBB = P->getIncomingBlock(UI);
    190 
    191         // Check the current block, as a fast-path, before checking whether
    192         // the use is anywhere in the loop.  Most values are used in the same
    193         // block they are defined in.  Also, blocks not reachable from the
    194         // entry are special; uses in them don't need to go through PHIs.
    195         if (UserBB != BB &&
    196             !LoopBBs.count(UserBB) &&
    197             DT.isReachableFromEntry(UserBB))
    198           return false;
    199       }
    200   }
    201 
    202   return true;
    203 }
    204 
    205 /// isLoopSimplifyForm - Return true if the Loop is in the form that
    206 /// the LoopSimplify form transforms loops to, which is sometimes called
    207 /// normal form.
    208 bool Loop::isLoopSimplifyForm() const {
    209   // Normal-form loops have a preheader, a single backedge, and all of their
    210   // exits have all their predecessors inside the loop.
    211   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
    212 }
    213 
    214 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    215 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
    216 bool Loop::isSafeToClone() const {
    217   // Return false if any loop blocks contain indirectbrs, or there are any calls
    218   // to noduplicate functions.
    219   for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
    220     if (isa<IndirectBrInst>((*I)->getTerminator())) {
    221       return false;
    222     } else if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
    223       if (II->hasFnAttr(Attribute::NoDuplicate))
    224         return false;
    225     }
    226 
    227     for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
    228       if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
    229         if (CI->hasFnAttr(Attribute::NoDuplicate))
    230           return false;
    231       }
    232     }
    233   }
    234   return true;
    235 }
    236 
    237 bool Loop::isAnnotatedParallel() const {
    238 
    239   BasicBlock *latch = getLoopLatch();
    240   if (latch == NULL)
    241     return false;
    242 
    243   MDNode *desiredLoopIdMetadata =
    244     latch->getTerminator()->getMetadata("llvm.loop.parallel");
    245 
    246   if (!desiredLoopIdMetadata)
    247       return false;
    248 
    249   // The loop branch contains the parallel loop metadata. In order to ensure
    250   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
    251   // dependencies (thus converted the loop back to a sequential loop), check
    252   // that all the memory instructions in the loop contain parallelism metadata
    253   // that point to the same unique "loop id metadata" the loop branch does.
    254   for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
    255     for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
    256          II != EE; II++) {
    257 
    258       if (!II->mayReadOrWriteMemory())
    259         continue;
    260 
    261       if (!II->getMetadata("llvm.mem.parallel_loop_access"))
    262         return false;
    263 
    264       // The memory instruction can refer to the loop identifier metadata
    265       // directly or indirectly through another list metadata (in case of
    266       // nested parallel loops). The loop identifier metadata refers to
    267       // itself so we can check both cases with the same routine.
    268       MDNode *loopIdMD =
    269           dyn_cast<MDNode>(II->getMetadata("llvm.mem.parallel_loop_access"));
    270       bool loopIdMDFound = false;
    271       for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
    272         if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
    273           loopIdMDFound = true;
    274           break;
    275         }
    276       }
    277 
    278       if (!loopIdMDFound)
    279         return false;
    280     }
    281   }
    282   return true;
    283 }
    284 
    285 
    286 /// hasDedicatedExits - Return true if no exit block for the loop
    287 /// has a predecessor that is outside the loop.
    288 bool Loop::hasDedicatedExits() const {
    289   // Sort the blocks vector so that we can use binary search to do quick
    290   // lookups.
    291   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
    292   // Each predecessor of each exit block of a normal loop is contained
    293   // within the loop.
    294   SmallVector<BasicBlock *, 4> ExitBlocks;
    295   getExitBlocks(ExitBlocks);
    296   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    297     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
    298          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
    299       if (!LoopBBs.count(*PI))
    300         return false;
    301   // All the requirements are met.
    302   return true;
    303 }
    304 
    305 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    306 /// These are the blocks _outside of the current loop_ which are branched to.
    307 /// This assumes that loop exits are in canonical form.
    308 ///
    309 void
    310 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
    311   assert(hasDedicatedExits() &&
    312          "getUniqueExitBlocks assumes the loop has canonical form exits!");
    313 
    314   // Sort the blocks vector so that we can use binary search to do quick
    315   // lookups.
    316   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
    317   std::sort(LoopBBs.begin(), LoopBBs.end());
    318 
    319   SmallVector<BasicBlock *, 32> switchExitBlocks;
    320 
    321   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
    322 
    323     BasicBlock *current = *BI;
    324     switchExitBlocks.clear();
    325 
    326     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
    327       // If block is inside the loop then it is not a exit block.
    328       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    329         continue;
    330 
    331       pred_iterator PI = pred_begin(*I);
    332       BasicBlock *firstPred = *PI;
    333 
    334       // If current basic block is this exit block's first predecessor
    335       // then only insert exit block in to the output ExitBlocks vector.
    336       // This ensures that same exit block is not inserted twice into
    337       // ExitBlocks vector.
    338       if (current != firstPred)
    339         continue;
    340 
    341       // If a terminator has more then two successors, for example SwitchInst,
    342       // then it is possible that there are multiple edges from current block
    343       // to one exit block.
    344       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
    345         ExitBlocks.push_back(*I);
    346         continue;
    347       }
    348 
    349       // In case of multiple edges from current block to exit block, collect
    350       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
    351       // duplicate edges.
    352       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
    353           == switchExitBlocks.end()) {
    354         switchExitBlocks.push_back(*I);
    355         ExitBlocks.push_back(*I);
    356       }
    357     }
    358   }
    359 }
    360 
    361 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    362 /// block, return that block. Otherwise return null.
    363 BasicBlock *Loop::getUniqueExitBlock() const {
    364   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
    365   getUniqueExitBlocks(UniqueExitBlocks);
    366   if (UniqueExitBlocks.size() == 1)
    367     return UniqueExitBlocks[0];
    368   return 0;
    369 }
    370 
    371 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    372 void Loop::dump() const {
    373   print(dbgs());
    374 }
    375 #endif
    376 
    377 //===----------------------------------------------------------------------===//
    378 // UnloopUpdater implementation
    379 //
    380 
    381 namespace {
    382 /// Find the new parent loop for all blocks within the "unloop" whose last
    383 /// backedges has just been removed.
    384 class UnloopUpdater {
    385   Loop *Unloop;
    386   LoopInfo *LI;
    387 
    388   LoopBlocksDFS DFS;
    389 
    390   // Map unloop's immediate subloops to their nearest reachable parents. Nested
    391   // loops within these subloops will not change parents. However, an immediate
    392   // subloop's new parent will be the nearest loop reachable from either its own
    393   // exits *or* any of its nested loop's exits.
    394   DenseMap<Loop*, Loop*> SubloopParents;
    395 
    396   // Flag the presence of an irreducible backedge whose destination is a block
    397   // directly contained by the original unloop.
    398   bool FoundIB;
    399 
    400 public:
    401   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
    402     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
    403 
    404   void updateBlockParents();
    405 
    406   void removeBlocksFromAncestors();
    407 
    408   void updateSubloopParents();
    409 
    410 protected:
    411   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
    412 };
    413 } // end anonymous namespace
    414 
    415 /// updateBlockParents - Update the parent loop for all blocks that are directly
    416 /// contained within the original "unloop".
    417 void UnloopUpdater::updateBlockParents() {
    418   if (Unloop->getNumBlocks()) {
    419     // Perform a post order CFG traversal of all blocks within this loop,
    420     // propagating the nearest loop from sucessors to predecessors.
    421     LoopBlocksTraversal Traversal(DFS, LI);
    422     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    423            POE = Traversal.end(); POI != POE; ++POI) {
    424 
    425       Loop *L = LI->getLoopFor(*POI);
    426       Loop *NL = getNearestLoop(*POI, L);
    427 
    428       if (NL != L) {
    429         // For reducible loops, NL is now an ancestor of Unloop.
    430         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
    431                "uninitialized successor");
    432         LI->changeLoopFor(*POI, NL);
    433       }
    434       else {
    435         // Or the current block is part of a subloop, in which case its parent
    436         // is unchanged.
    437         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
    438       }
    439     }
    440   }
    441   // Each irreducible loop within the unloop induces a round of iteration using
    442   // the DFS result cached by Traversal.
    443   bool Changed = FoundIB;
    444   for (unsigned NIters = 0; Changed; ++NIters) {
    445     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
    446 
    447     // Iterate over the postorder list of blocks, propagating the nearest loop
    448     // from successors to predecessors as before.
    449     Changed = false;
    450     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
    451            POE = DFS.endPostorder(); POI != POE; ++POI) {
    452 
    453       Loop *L = LI->getLoopFor(*POI);
    454       Loop *NL = getNearestLoop(*POI, L);
    455       if (NL != L) {
    456         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
    457                "uninitialized successor");
    458         LI->changeLoopFor(*POI, NL);
    459         Changed = true;
    460       }
    461     }
    462   }
    463 }
    464 
    465 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
    466 /// their new parents.
    467 void UnloopUpdater::removeBlocksFromAncestors() {
    468   // Remove all unloop's blocks (including those in nested subloops) from
    469   // ancestors below the new parent loop.
    470   for (Loop::block_iterator BI = Unloop->block_begin(),
    471          BE = Unloop->block_end(); BI != BE; ++BI) {
    472     Loop *OuterParent = LI->getLoopFor(*BI);
    473     if (Unloop->contains(OuterParent)) {
    474       while (OuterParent->getParentLoop() != Unloop)
    475         OuterParent = OuterParent->getParentLoop();
    476       OuterParent = SubloopParents[OuterParent];
    477     }
    478     // Remove blocks from former Ancestors except Unloop itself which will be
    479     // deleted.
    480     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
    481          OldParent = OldParent->getParentLoop()) {
    482       assert(OldParent && "new loop is not an ancestor of the original");
    483       OldParent->removeBlockFromLoop(*BI);
    484     }
    485   }
    486 }
    487 
    488 /// updateSubloopParents - Update the parent loop for all subloops directly
    489 /// nested within unloop.
    490 void UnloopUpdater::updateSubloopParents() {
    491   while (!Unloop->empty()) {
    492     Loop *Subloop = *llvm::prior(Unloop->end());
    493     Unloop->removeChildLoop(llvm::prior(Unloop->end()));
    494 
    495     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
    496     if (Loop *Parent = SubloopParents[Subloop])
    497       Parent->addChildLoop(Subloop);
    498     else
    499       LI->addTopLevelLoop(Subloop);
    500   }
    501 }
    502 
    503 /// getNearestLoop - Return the nearest parent loop among this block's
    504 /// successors. If a successor is a subloop header, consider its parent to be
    505 /// the nearest parent of the subloop's exits.
    506 ///
    507 /// For subloop blocks, simply update SubloopParents and return NULL.
    508 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
    509 
    510   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
    511   // is considered uninitialized.
    512   Loop *NearLoop = BBLoop;
    513 
    514   Loop *Subloop = 0;
    515   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
    516     Subloop = NearLoop;
    517     // Find the subloop ancestor that is directly contained within Unloop.
    518     while (Subloop->getParentLoop() != Unloop) {
    519       Subloop = Subloop->getParentLoop();
    520       assert(Subloop && "subloop is not an ancestor of the original loop");
    521     }
    522     // Get the current nearest parent of the Subloop exits, initially Unloop.
    523     NearLoop =
    524       SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
    525   }
    526 
    527   succ_iterator I = succ_begin(BB), E = succ_end(BB);
    528   if (I == E) {
    529     assert(!Subloop && "subloop blocks must have a successor");
    530     NearLoop = 0; // unloop blocks may now exit the function.
    531   }
    532   for (; I != E; ++I) {
    533     if (*I == BB)
    534       continue; // self loops are uninteresting
    535 
    536     Loop *L = LI->getLoopFor(*I);
    537     if (L == Unloop) {
    538       // This successor has not been processed. This path must lead to an
    539       // irreducible backedge.
    540       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
    541       FoundIB = true;
    542     }
    543     if (L != Unloop && Unloop->contains(L)) {
    544       // Successor is in a subloop.
    545       if (Subloop)
    546         continue; // Branching within subloops. Ignore it.
    547 
    548       // BB branches from the original into a subloop header.
    549       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
    550 
    551       // Get the current nearest parent of the Subloop's exits.
    552       L = SubloopParents[L];
    553       // L could be Unloop if the only exit was an irreducible backedge.
    554     }
    555     if (L == Unloop) {
    556       continue;
    557     }
    558     // Handle critical edges from Unloop into a sibling loop.
    559     if (L && !L->contains(Unloop)) {
    560       L = L->getParentLoop();
    561     }
    562     // Remember the nearest parent loop among successors or subloop exits.
    563     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
    564       NearLoop = L;
    565   }
    566   if (Subloop) {
    567     SubloopParents[Subloop] = NearLoop;
    568     return BBLoop;
    569   }
    570   return NearLoop;
    571 }
    572 
    573 //===----------------------------------------------------------------------===//
    574 // LoopInfo implementation
    575 //
    576 bool LoopInfo::runOnFunction(Function &) {
    577   releaseMemory();
    578   LI.Analyze(getAnalysis<DominatorTree>().getBase());
    579   return false;
    580 }
    581 
    582 /// updateUnloop - The last backedge has been removed from a loop--now the
    583 /// "unloop". Find a new parent for the blocks contained within unloop and
    584 /// update the loop tree. We don't necessarily have valid dominators at this
    585 /// point, but LoopInfo is still valid except for the removal of this loop.
    586 ///
    587 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
    588 /// checking first is illegal.
    589 void LoopInfo::updateUnloop(Loop *Unloop) {
    590 
    591   // First handle the special case of no parent loop to simplify the algorithm.
    592   if (!Unloop->getParentLoop()) {
    593     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
    594     for (Loop::block_iterator I = Unloop->block_begin(),
    595          E = Unloop->block_end(); I != E; ++I) {
    596 
    597       // Don't reparent blocks in subloops.
    598       if (getLoopFor(*I) != Unloop)
    599         continue;
    600 
    601       // Blocks no longer have a parent but are still referenced by Unloop until
    602       // the Unloop object is deleted.
    603       LI.changeLoopFor(*I, 0);
    604     }
    605 
    606     // Remove the loop from the top-level LoopInfo object.
    607     for (LoopInfo::iterator I = LI.begin();; ++I) {
    608       assert(I != LI.end() && "Couldn't find loop");
    609       if (*I == Unloop) {
    610         LI.removeLoop(I);
    611         break;
    612       }
    613     }
    614 
    615     // Move all of the subloops to the top-level.
    616     while (!Unloop->empty())
    617       LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
    618 
    619     return;
    620   }
    621 
    622   // Update the parent loop for all blocks within the loop. Blocks within
    623   // subloops will not change parents.
    624   UnloopUpdater Updater(Unloop, this);
    625   Updater.updateBlockParents();
    626 
    627   // Remove blocks from former ancestor loops.
    628   Updater.removeBlocksFromAncestors();
    629 
    630   // Add direct subloops as children in their new parent loop.
    631   Updater.updateSubloopParents();
    632 
    633   // Remove unloop from its parent loop.
    634   Loop *ParentLoop = Unloop->getParentLoop();
    635   for (Loop::iterator I = ParentLoop->begin();; ++I) {
    636     assert(I != ParentLoop->end() && "Couldn't find loop");
    637     if (*I == Unloop) {
    638       ParentLoop->removeChildLoop(I);
    639       break;
    640     }
    641   }
    642 }
    643 
    644 void LoopInfo::verifyAnalysis() const {
    645   // LoopInfo is a FunctionPass, but verifying every loop in the function
    646   // each time verifyAnalysis is called is very expensive. The
    647   // -verify-loop-info option can enable this. In order to perform some
    648   // checking by default, LoopPass has been taught to call verifyLoop
    649   // manually during loop pass sequences.
    650 
    651   if (!VerifyLoopInfo) return;
    652 
    653   DenseSet<const Loop*> Loops;
    654   for (iterator I = begin(), E = end(); I != E; ++I) {
    655     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
    656     (*I)->verifyLoopNest(&Loops);
    657   }
    658 
    659   // Verify that blocks are mapped to valid loops.
    660   for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
    661          E = LI.BBMap.end(); I != E; ++I) {
    662     assert(Loops.count(I->second) && "orphaned loop");
    663     assert(I->second->contains(I->first) && "orphaned block");
    664   }
    665 }
    666 
    667 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
    668   AU.setPreservesAll();
    669   AU.addRequired<DominatorTree>();
    670 }
    671 
    672 void LoopInfo::print(raw_ostream &OS, const Module*) const {
    673   LI.print(OS);
    674 }
    675 
    676 //===----------------------------------------------------------------------===//
    677 // LoopBlocksDFS implementation
    678 //
    679 
    680 /// Traverse the loop blocks and store the DFS result.
    681 /// Useful for clients that just want the final DFS result and don't need to
    682 /// visit blocks during the initial traversal.
    683 void LoopBlocksDFS::perform(LoopInfo *LI) {
    684   LoopBlocksTraversal Traversal(*this, LI);
    685   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    686          POE = Traversal.end(); POI != POE; ++POI) ;
    687 }
    688