Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a class to represent arbitrary precision integral
     11 // constant values and operations on them.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ADT_APINT_H
     16 #define LLVM_ADT_APINT_H
     17 
     18 #include "llvm/ADT/ArrayRef.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include <cassert>
     22 #include <climits>
     23 #include <cstring>
     24 #include <string>
     25 
     26 namespace llvm {
     27   class Deserializer;
     28   class FoldingSetNodeID;
     29   class Serializer;
     30   class StringRef;
     31   class hash_code;
     32   class raw_ostream;
     33 
     34   template<typename T>
     35   class SmallVectorImpl;
     36 
     37   // An unsigned host type used as a single part of a multi-part
     38   // bignum.
     39   typedef uint64_t integerPart;
     40 
     41   const unsigned int host_char_bit = 8;
     42   const unsigned int integerPartWidth = host_char_bit *
     43     static_cast<unsigned int>(sizeof(integerPart));
     44 
     45 //===----------------------------------------------------------------------===//
     46 //                              APInt Class
     47 //===----------------------------------------------------------------------===//
     48 
     49 /// APInt - This class represents arbitrary precision constant integral values.
     50 /// It is a functional replacement for common case unsigned integer type like
     51 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
     52 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
     53 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
     54 /// and methods to manipulate integer values of any bit-width. It supports both
     55 /// the typical integer arithmetic and comparison operations as well as bitwise
     56 /// manipulation.
     57 ///
     58 /// The class has several invariants worth noting:
     59 ///   * All bit, byte, and word positions are zero-based.
     60 ///   * Once the bit width is set, it doesn't change except by the Truncate,
     61 ///     SignExtend, or ZeroExtend operations.
     62 ///   * All binary operators must be on APInt instances of the same bit width.
     63 ///     Attempting to use these operators on instances with different bit
     64 ///     widths will yield an assertion.
     65 ///   * The value is stored canonically as an unsigned value. For operations
     66 ///     where it makes a difference, there are both signed and unsigned variants
     67 ///     of the operation. For example, sdiv and udiv. However, because the bit
     68 ///     widths must be the same, operations such as Mul and Add produce the same
     69 ///     results regardless of whether the values are interpreted as signed or
     70 ///     not.
     71 ///   * In general, the class tries to follow the style of computation that LLVM
     72 ///     uses in its IR. This simplifies its use for LLVM.
     73 ///
     74 /// @brief Class for arbitrary precision integers.
     75 class APInt {
     76   unsigned BitWidth;      ///< The number of bits in this APInt.
     77 
     78   /// This union is used to store the integer value. When the
     79   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
     80   union {
     81     uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
     82     uint64_t *pVal;  ///< Used to store the >64 bits integer value.
     83   };
     84 
     85   /// This enum is used to hold the constants we needed for APInt.
     86   enum {
     87     /// Bits in a word
     88     APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
     89                           CHAR_BIT,
     90     /// Byte size of a word
     91     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
     92   };
     93 
     94   /// This constructor is used only internally for speed of construction of
     95   /// temporaries. It is unsafe for general use so it is not public.
     96   /// @brief Fast internal constructor
     97   APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
     98 
     99   /// @returns true if the number of bits <= 64, false otherwise.
    100   /// @brief Determine if this APInt just has one word to store value.
    101   bool isSingleWord() const {
    102     return BitWidth <= APINT_BITS_PER_WORD;
    103   }
    104 
    105   /// @returns the word position for the specified bit position.
    106   /// @brief Determine which word a bit is in.
    107   static unsigned whichWord(unsigned bitPosition) {
    108     return bitPosition / APINT_BITS_PER_WORD;
    109   }
    110 
    111   /// @returns the bit position in a word for the specified bit position
    112   /// in the APInt.
    113   /// @brief Determine which bit in a word a bit is in.
    114   static unsigned whichBit(unsigned bitPosition) {
    115     return bitPosition % APINT_BITS_PER_WORD;
    116   }
    117 
    118   /// This method generates and returns a uint64_t (word) mask for a single
    119   /// bit at a specific bit position. This is used to mask the bit in the
    120   /// corresponding word.
    121   /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
    122   /// @brief Get a single bit mask.
    123   static uint64_t maskBit(unsigned bitPosition) {
    124     return 1ULL << whichBit(bitPosition);
    125   }
    126 
    127   /// This method is used internally to clear the to "N" bits in the high order
    128   /// word that are not used by the APInt. This is needed after the most
    129   /// significant word is assigned a value to ensure that those bits are
    130   /// zero'd out.
    131   /// @brief Clear unused high order bits
    132   APInt& clearUnusedBits() {
    133     // Compute how many bits are used in the final word
    134     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
    135     if (wordBits == 0)
    136       // If all bits are used, we want to leave the value alone. This also
    137       // avoids the undefined behavior of >> when the shift is the same size as
    138       // the word size (64).
    139       return *this;
    140 
    141     // Mask out the high bits.
    142     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    143     if (isSingleWord())
    144       VAL &= mask;
    145     else
    146       pVal[getNumWords() - 1] &= mask;
    147     return *this;
    148   }
    149 
    150   /// @returns the corresponding word for the specified bit position.
    151   /// @brief Get the word corresponding to a bit position
    152   uint64_t getWord(unsigned bitPosition) const {
    153     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
    154   }
    155 
    156   /// Converts a string into a number.  The string must be non-empty
    157   /// and well-formed as a number of the given base. The bit-width
    158   /// must be sufficient to hold the result.
    159   ///
    160   /// This is used by the constructors that take string arguments.
    161   ///
    162   /// StringRef::getAsInteger is superficially similar but (1) does
    163   /// not assume that the string is well-formed and (2) grows the
    164   /// result to hold the input.
    165   ///
    166   /// @param radix 2, 8, 10, 16, or 36
    167   /// @brief Convert a char array into an APInt
    168   void fromString(unsigned numBits, StringRef str, uint8_t radix);
    169 
    170   /// This is used by the toString method to divide by the radix. It simply
    171   /// provides a more convenient form of divide for internal use since KnuthDiv
    172   /// has specific constraints on its inputs. If those constraints are not met
    173   /// then it provides a simpler form of divide.
    174   /// @brief An internal division function for dividing APInts.
    175   static void divide(const APInt LHS, unsigned lhsWords,
    176                      const APInt &RHS, unsigned rhsWords,
    177                      APInt *Quotient, APInt *Remainder);
    178 
    179   /// out-of-line slow case for inline constructor
    180   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
    181 
    182   /// shared code between two array constructors
    183   void initFromArray(ArrayRef<uint64_t> array);
    184 
    185   /// out-of-line slow case for inline copy constructor
    186   void initSlowCase(const APInt& that);
    187 
    188   /// out-of-line slow case for shl
    189   APInt shlSlowCase(unsigned shiftAmt) const;
    190 
    191   /// out-of-line slow case for operator&
    192   APInt AndSlowCase(const APInt& RHS) const;
    193 
    194   /// out-of-line slow case for operator|
    195   APInt OrSlowCase(const APInt& RHS) const;
    196 
    197   /// out-of-line slow case for operator^
    198   APInt XorSlowCase(const APInt& RHS) const;
    199 
    200   /// out-of-line slow case for operator=
    201   APInt& AssignSlowCase(const APInt& RHS);
    202 
    203   /// out-of-line slow case for operator==
    204   bool EqualSlowCase(const APInt& RHS) const;
    205 
    206   /// out-of-line slow case for operator==
    207   bool EqualSlowCase(uint64_t Val) const;
    208 
    209   /// out-of-line slow case for countLeadingZeros
    210   unsigned countLeadingZerosSlowCase() const;
    211 
    212   /// out-of-line slow case for countTrailingOnes
    213   unsigned countTrailingOnesSlowCase() const;
    214 
    215   /// out-of-line slow case for countPopulation
    216   unsigned countPopulationSlowCase() const;
    217 
    218 public:
    219   /// @name Constructors
    220   /// @{
    221   /// If isSigned is true then val is treated as if it were a signed value
    222   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
    223   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
    224   /// the range of val are zero filled).
    225   /// @param numBits the bit width of the constructed APInt
    226   /// @param val the initial value of the APInt
    227   /// @param isSigned how to treat signedness of val
    228   /// @brief Create a new APInt of numBits width, initialized as val.
    229   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    230     : BitWidth(numBits), VAL(0) {
    231     assert(BitWidth && "bitwidth too small");
    232     if (isSingleWord())
    233       VAL = val;
    234     else
    235       initSlowCase(numBits, val, isSigned);
    236     clearUnusedBits();
    237   }
    238 
    239   /// Note that bigVal.size() can be smaller or larger than the corresponding
    240   /// bit width but any extraneous bits will be dropped.
    241   /// @param numBits the bit width of the constructed APInt
    242   /// @param bigVal a sequence of words to form the initial value of the APInt
    243   /// @brief Construct an APInt of numBits width, initialized as bigVal[].
    244   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
    245   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
    246   /// deprecated because this constructor is prone to ambiguity with the
    247   /// APInt(unsigned, uint64_t, bool) constructor.
    248   ///
    249   /// If this overload is ever deleted, care should be taken to prevent calls
    250   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
    251   /// constructor.
    252   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
    253 
    254   /// This constructor interprets the string \p str in the given radix. The
    255   /// interpretation stops when the first character that is not suitable for the
    256   /// radix is encountered, or the end of the string. Acceptable radix values
    257   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
    258   /// string to require more bits than numBits.
    259   ///
    260   /// @param numBits the bit width of the constructed APInt
    261   /// @param str the string to be interpreted
    262   /// @param radix the radix to use for the conversion
    263   /// @brief Construct an APInt from a string representation.
    264   APInt(unsigned numBits, StringRef str, uint8_t radix);
    265 
    266   /// Simply makes *this a copy of that.
    267   /// @brief Copy Constructor.
    268   APInt(const APInt& that)
    269     : BitWidth(that.BitWidth), VAL(0) {
    270     assert(BitWidth && "bitwidth too small");
    271     if (isSingleWord())
    272       VAL = that.VAL;
    273     else
    274       initSlowCase(that);
    275   }
    276 
    277 #if LLVM_HAS_RVALUE_REFERENCES
    278   /// @brief Move Constructor.
    279   APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
    280     that.BitWidth = 0;
    281   }
    282 #endif
    283 
    284   /// @brief Destructor.
    285   ~APInt() {
    286     if (!isSingleWord())
    287       delete [] pVal;
    288   }
    289 
    290   /// Default constructor that creates an uninitialized APInt.  This is useful
    291   ///  for object deserialization (pair this with the static method Read).
    292   explicit APInt() : BitWidth(1) {}
    293 
    294   /// Profile - Used to insert APInt objects, or objects that contain APInt
    295   ///  objects, into FoldingSets.
    296   void Profile(FoldingSetNodeID& id) const;
    297 
    298   /// @}
    299   /// @name Value Tests
    300   /// @{
    301   /// This tests the high bit of this APInt to determine if it is set.
    302   /// @returns true if this APInt is negative, false otherwise
    303   /// @brief Determine sign of this APInt.
    304   bool isNegative() const {
    305     return (*this)[BitWidth - 1];
    306   }
    307 
    308   /// This tests the high bit of the APInt to determine if it is unset.
    309   /// @brief Determine if this APInt Value is non-negative (>= 0)
    310   bool isNonNegative() const {
    311     return !isNegative();
    312   }
    313 
    314   /// This tests if the value of this APInt is positive (> 0). Note
    315   /// that 0 is not a positive value.
    316   /// @returns true if this APInt is positive.
    317   /// @brief Determine if this APInt Value is positive.
    318   bool isStrictlyPositive() const {
    319     return isNonNegative() && !!*this;
    320   }
    321 
    322   /// This checks to see if the value has all bits of the APInt are set or not.
    323   /// @brief Determine if all bits are set
    324   bool isAllOnesValue() const {
    325     return countPopulation() == BitWidth;
    326   }
    327 
    328   /// This checks to see if the value of this APInt is the maximum unsigned
    329   /// value for the APInt's bit width.
    330   /// @brief Determine if this is the largest unsigned value.
    331   bool isMaxValue() const {
    332     return countPopulation() == BitWidth;
    333   }
    334 
    335   /// This checks to see if the value of this APInt is the maximum signed
    336   /// value for the APInt's bit width.
    337   /// @brief Determine if this is the largest signed value.
    338   bool isMaxSignedValue() const {
    339     return BitWidth == 1 ? VAL == 0 :
    340                           !isNegative() && countPopulation() == BitWidth - 1;
    341   }
    342 
    343   /// This checks to see if the value of this APInt is the minimum unsigned
    344   /// value for the APInt's bit width.
    345   /// @brief Determine if this is the smallest unsigned value.
    346   bool isMinValue() const {
    347     return !*this;
    348   }
    349 
    350   /// This checks to see if the value of this APInt is the minimum signed
    351   /// value for the APInt's bit width.
    352   /// @brief Determine if this is the smallest signed value.
    353   bool isMinSignedValue() const {
    354     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
    355   }
    356 
    357   /// @brief Check if this APInt has an N-bits unsigned integer value.
    358   bool isIntN(unsigned N) const {
    359     assert(N && "N == 0 ???");
    360     return getActiveBits() <= N;
    361   }
    362 
    363   /// @brief Check if this APInt has an N-bits signed integer value.
    364   bool isSignedIntN(unsigned N) const {
    365     assert(N && "N == 0 ???");
    366     return getMinSignedBits() <= N;
    367   }
    368 
    369   /// @returns true if the argument APInt value is a power of two > 0.
    370   bool isPowerOf2() const {
    371     if (isSingleWord())
    372       return isPowerOf2_64(VAL);
    373     return countPopulationSlowCase() == 1;
    374   }
    375 
    376   /// isSignBit - Return true if this is the value returned by getSignBit.
    377   bool isSignBit() const { return isMinSignedValue(); }
    378 
    379   /// This converts the APInt to a boolean value as a test against zero.
    380   /// @brief Boolean conversion function.
    381   bool getBoolValue() const {
    382     return !!*this;
    383   }
    384 
    385   /// getLimitedValue - If this value is smaller than the specified limit,
    386   /// return it, otherwise return the limit value.  This causes the value
    387   /// to saturate to the limit.
    388   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    389     return (getActiveBits() > 64 || getZExtValue() > Limit) ?
    390       Limit :  getZExtValue();
    391   }
    392 
    393   /// @}
    394   /// @name Value Generators
    395   /// @{
    396   /// @brief Gets maximum unsigned value of APInt for specific bit width.
    397   static APInt getMaxValue(unsigned numBits) {
    398     return getAllOnesValue(numBits);
    399   }
    400 
    401   /// @brief Gets maximum signed value of APInt for a specific bit width.
    402   static APInt getSignedMaxValue(unsigned numBits) {
    403     APInt API = getAllOnesValue(numBits);
    404     API.clearBit(numBits - 1);
    405     return API;
    406   }
    407 
    408   /// @brief Gets minimum unsigned value of APInt for a specific bit width.
    409   static APInt getMinValue(unsigned numBits) {
    410     return APInt(numBits, 0);
    411   }
    412 
    413   /// @brief Gets minimum signed value of APInt for a specific bit width.
    414   static APInt getSignedMinValue(unsigned numBits) {
    415     APInt API(numBits, 0);
    416     API.setBit(numBits - 1);
    417     return API;
    418   }
    419 
    420   /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
    421   /// it helps code readability when we want to get a SignBit.
    422   /// @brief Get the SignBit for a specific bit width.
    423   static APInt getSignBit(unsigned BitWidth) {
    424     return getSignedMinValue(BitWidth);
    425   }
    426 
    427   /// @returns the all-ones value for an APInt of the specified bit-width.
    428   /// @brief Get the all-ones value.
    429   static APInt getAllOnesValue(unsigned numBits) {
    430     return APInt(numBits, UINT64_MAX, true);
    431   }
    432 
    433   /// @returns the '0' value for an APInt of the specified bit-width.
    434   /// @brief Get the '0' value.
    435   static APInt getNullValue(unsigned numBits) {
    436     return APInt(numBits, 0);
    437   }
    438 
    439   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    440   /// the low bits and right shift to the least significant bit.
    441   /// @returns the high "numBits" bits of this APInt.
    442   APInt getHiBits(unsigned numBits) const;
    443 
    444   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    445   /// the high bits.
    446   /// @returns the low "numBits" bits of this APInt.
    447   APInt getLoBits(unsigned numBits) const;
    448 
    449   /// getOneBitSet - Return an APInt with exactly one bit set in the result.
    450   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    451     APInt Res(numBits, 0);
    452     Res.setBit(BitNo);
    453     return Res;
    454   }
    455 
    456   /// Constructs an APInt value that has a contiguous range of bits set. The
    457   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
    458   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
    459   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
    460   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
    461   /// @param numBits the intended bit width of the result
    462   /// @param loBit the index of the lowest bit set.
    463   /// @param hiBit the index of the highest bit set.
    464   /// @returns An APInt value with the requested bits set.
    465   /// @brief Get a value with a block of bits set.
    466   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    467     assert(hiBit <= numBits && "hiBit out of range");
    468     assert(loBit < numBits && "loBit out of range");
    469     if (hiBit < loBit)
    470       return getLowBitsSet(numBits, hiBit) |
    471              getHighBitsSet(numBits, numBits-loBit);
    472     return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
    473   }
    474 
    475   /// Constructs an APInt value that has the top hiBitsSet bits set.
    476   /// @param numBits the bitwidth of the result
    477   /// @param hiBitsSet the number of high-order bits set in the result.
    478   /// @brief Get a value with high bits set
    479   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    480     assert(hiBitsSet <= numBits && "Too many bits to set!");
    481     // Handle a degenerate case, to avoid shifting by word size
    482     if (hiBitsSet == 0)
    483       return APInt(numBits, 0);
    484     unsigned shiftAmt = numBits - hiBitsSet;
    485     // For small values, return quickly
    486     if (numBits <= APINT_BITS_PER_WORD)
    487       return APInt(numBits, ~0ULL << shiftAmt);
    488     return getAllOnesValue(numBits).shl(shiftAmt);
    489   }
    490 
    491   /// Constructs an APInt value that has the bottom loBitsSet bits set.
    492   /// @param numBits the bitwidth of the result
    493   /// @param loBitsSet the number of low-order bits set in the result.
    494   /// @brief Get a value with low bits set
    495   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    496     assert(loBitsSet <= numBits && "Too many bits to set!");
    497     // Handle a degenerate case, to avoid shifting by word size
    498     if (loBitsSet == 0)
    499       return APInt(numBits, 0);
    500     if (loBitsSet == APINT_BITS_PER_WORD)
    501       return APInt(numBits, UINT64_MAX);
    502     // For small values, return quickly.
    503     if (loBitsSet <= APINT_BITS_PER_WORD)
    504       return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
    505     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
    506   }
    507 
    508   /// \brief Return a value containing V broadcasted over NewLen bits.
    509   static APInt getSplat(unsigned NewLen, const APInt &V) {
    510     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
    511 
    512     APInt Val = V.zextOrSelf(NewLen);
    513     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
    514       Val |= Val << I;
    515 
    516     return Val;
    517   }
    518 
    519   /// \brief Determine if two APInts have the same value, after zero-extending
    520   /// one of them (if needed!) to ensure that the bit-widths match.
    521   static bool isSameValue(const APInt &I1, const APInt &I2) {
    522     if (I1.getBitWidth() == I2.getBitWidth())
    523       return I1 == I2;
    524 
    525     if (I1.getBitWidth() > I2.getBitWidth())
    526       return I1 == I2.zext(I1.getBitWidth());
    527 
    528     return I1.zext(I2.getBitWidth()) == I2;
    529   }
    530 
    531   /// \brief Overload to compute a hash_code for an APInt value.
    532   friend hash_code hash_value(const APInt &Arg);
    533 
    534   /// This function returns a pointer to the internal storage of the APInt.
    535   /// This is useful for writing out the APInt in binary form without any
    536   /// conversions.
    537   const uint64_t* getRawData() const {
    538     if (isSingleWord())
    539       return &VAL;
    540     return &pVal[0];
    541   }
    542 
    543   /// @}
    544   /// @name Unary Operators
    545   /// @{
    546   /// @returns a new APInt value representing *this incremented by one
    547   /// @brief Postfix increment operator.
    548   const APInt operator++(int) {
    549     APInt API(*this);
    550     ++(*this);
    551     return API;
    552   }
    553 
    554   /// @returns *this incremented by one
    555   /// @brief Prefix increment operator.
    556   APInt& operator++();
    557 
    558   /// @returns a new APInt representing *this decremented by one.
    559   /// @brief Postfix decrement operator.
    560   const APInt operator--(int) {
    561     APInt API(*this);
    562     --(*this);
    563     return API;
    564   }
    565 
    566   /// @returns *this decremented by one.
    567   /// @brief Prefix decrement operator.
    568   APInt& operator--();
    569 
    570   /// Performs a bitwise complement operation on this APInt.
    571   /// @returns an APInt that is the bitwise complement of *this
    572   /// @brief Unary bitwise complement operator.
    573   APInt operator~() const {
    574     APInt Result(*this);
    575     Result.flipAllBits();
    576     return Result;
    577   }
    578 
    579   /// Negates *this using two's complement logic.
    580   /// @returns An APInt value representing the negation of *this.
    581   /// @brief Unary negation operator
    582   APInt operator-() const {
    583     return APInt(BitWidth, 0) - (*this);
    584   }
    585 
    586   /// Performs logical negation operation on this APInt.
    587   /// @returns true if *this is zero, false otherwise.
    588   /// @brief Logical negation operator.
    589   bool operator!() const {
    590     if (isSingleWord())
    591       return !VAL;
    592 
    593     for (unsigned i = 0; i != getNumWords(); ++i)
    594       if (pVal[i])
    595         return false;
    596     return true;
    597   }
    598 
    599   /// @}
    600   /// @name Assignment Operators
    601   /// @{
    602   /// @returns *this after assignment of RHS.
    603   /// @brief Copy assignment operator.
    604   APInt& operator=(const APInt& RHS) {
    605     // If the bitwidths are the same, we can avoid mucking with memory
    606     if (isSingleWord() && RHS.isSingleWord()) {
    607       VAL = RHS.VAL;
    608       BitWidth = RHS.BitWidth;
    609       return clearUnusedBits();
    610     }
    611 
    612     return AssignSlowCase(RHS);
    613   }
    614 
    615 #if LLVM_HAS_RVALUE_REFERENCES
    616   /// @brief Move assignment operator.
    617   APInt& operator=(APInt&& that) {
    618     if (!isSingleWord())
    619       delete [] pVal;
    620 
    621     BitWidth = that.BitWidth;
    622     VAL = that.VAL;
    623 
    624     that.BitWidth = 0;
    625 
    626     return *this;
    627   }
    628 #endif
    629 
    630   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
    631   /// the bit width, the excess bits are truncated. If the bit width is larger
    632   /// than 64, the value is zero filled in the unspecified high order bits.
    633   /// @returns *this after assignment of RHS value.
    634   /// @brief Assignment operator.
    635   APInt& operator=(uint64_t RHS);
    636 
    637   /// Performs a bitwise AND operation on this APInt and RHS. The result is
    638   /// assigned to *this.
    639   /// @returns *this after ANDing with RHS.
    640   /// @brief Bitwise AND assignment operator.
    641   APInt& operator&=(const APInt& RHS);
    642 
    643   /// Performs a bitwise OR operation on this APInt and RHS. The result is
    644   /// assigned *this;
    645   /// @returns *this after ORing with RHS.
    646   /// @brief Bitwise OR assignment operator.
    647   APInt& operator|=(const APInt& RHS);
    648 
    649   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
    650   /// logically zero-extended or truncated to match the bit-width of
    651   /// the LHS.
    652   ///
    653   /// @brief Bitwise OR assignment operator.
    654   APInt& operator|=(uint64_t RHS) {
    655     if (isSingleWord()) {
    656       VAL |= RHS;
    657       clearUnusedBits();
    658     } else {
    659       pVal[0] |= RHS;
    660     }
    661     return *this;
    662   }
    663 
    664   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
    665   /// assigned to *this.
    666   /// @returns *this after XORing with RHS.
    667   /// @brief Bitwise XOR assignment operator.
    668   APInt& operator^=(const APInt& RHS);
    669 
    670   /// Multiplies this APInt by RHS and assigns the result to *this.
    671   /// @returns *this
    672   /// @brief Multiplication assignment operator.
    673   APInt& operator*=(const APInt& RHS);
    674 
    675   /// Adds RHS to *this and assigns the result to *this.
    676   /// @returns *this
    677   /// @brief Addition assignment operator.
    678   APInt& operator+=(const APInt& RHS);
    679 
    680   /// Subtracts RHS from *this and assigns the result to *this.
    681   /// @returns *this
    682   /// @brief Subtraction assignment operator.
    683   APInt& operator-=(const APInt& RHS);
    684 
    685   /// Shifts *this left by shiftAmt and assigns the result to *this.
    686   /// @returns *this after shifting left by shiftAmt
    687   /// @brief Left-shift assignment function.
    688   APInt& operator<<=(unsigned shiftAmt) {
    689     *this = shl(shiftAmt);
    690     return *this;
    691   }
    692 
    693   /// @}
    694   /// @name Binary Operators
    695   /// @{
    696   /// Performs a bitwise AND operation on *this and RHS.
    697   /// @returns An APInt value representing the bitwise AND of *this and RHS.
    698   /// @brief Bitwise AND operator.
    699   APInt operator&(const APInt& RHS) const {
    700     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    701     if (isSingleWord())
    702       return APInt(getBitWidth(), VAL & RHS.VAL);
    703     return AndSlowCase(RHS);
    704   }
    705   APInt And(const APInt& RHS) const {
    706     return this->operator&(RHS);
    707   }
    708 
    709   /// Performs a bitwise OR operation on *this and RHS.
    710   /// @returns An APInt value representing the bitwise OR of *this and RHS.
    711   /// @brief Bitwise OR operator.
    712   APInt operator|(const APInt& RHS) const {
    713     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    714     if (isSingleWord())
    715       return APInt(getBitWidth(), VAL | RHS.VAL);
    716     return OrSlowCase(RHS);
    717   }
    718   APInt Or(const APInt& RHS) const {
    719     return this->operator|(RHS);
    720   }
    721 
    722   /// Performs a bitwise XOR operation on *this and RHS.
    723   /// @returns An APInt value representing the bitwise XOR of *this and RHS.
    724   /// @brief Bitwise XOR operator.
    725   APInt operator^(const APInt& RHS) const {
    726     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    727     if (isSingleWord())
    728       return APInt(BitWidth, VAL ^ RHS.VAL);
    729     return XorSlowCase(RHS);
    730   }
    731   APInt Xor(const APInt& RHS) const {
    732     return this->operator^(RHS);
    733   }
    734 
    735   /// Multiplies this APInt by RHS and returns the result.
    736   /// @brief Multiplication operator.
    737   APInt operator*(const APInt& RHS) const;
    738 
    739   /// Adds RHS to this APInt and returns the result.
    740   /// @brief Addition operator.
    741   APInt operator+(const APInt& RHS) const;
    742   APInt operator+(uint64_t RHS) const {
    743     return (*this) + APInt(BitWidth, RHS);
    744   }
    745 
    746   /// Subtracts RHS from this APInt and returns the result.
    747   /// @brief Subtraction operator.
    748   APInt operator-(const APInt& RHS) const;
    749   APInt operator-(uint64_t RHS) const {
    750     return (*this) - APInt(BitWidth, RHS);
    751   }
    752 
    753   APInt operator<<(unsigned Bits) const {
    754     return shl(Bits);
    755   }
    756 
    757   APInt operator<<(const APInt &Bits) const {
    758     return shl(Bits);
    759   }
    760 
    761   /// Arithmetic right-shift this APInt by shiftAmt.
    762   /// @brief Arithmetic right-shift function.
    763   APInt ashr(unsigned shiftAmt) const;
    764 
    765   /// Logical right-shift this APInt by shiftAmt.
    766   /// @brief Logical right-shift function.
    767   APInt lshr(unsigned shiftAmt) const;
    768 
    769   /// Left-shift this APInt by shiftAmt.
    770   /// @brief Left-shift function.
    771   APInt shl(unsigned shiftAmt) const {
    772     assert(shiftAmt <= BitWidth && "Invalid shift amount");
    773     if (isSingleWord()) {
    774       if (shiftAmt >= BitWidth)
    775         return APInt(BitWidth, 0); // avoid undefined shift results
    776       return APInt(BitWidth, VAL << shiftAmt);
    777     }
    778     return shlSlowCase(shiftAmt);
    779   }
    780 
    781   /// @brief Rotate left by rotateAmt.
    782   APInt rotl(unsigned rotateAmt) const;
    783 
    784   /// @brief Rotate right by rotateAmt.
    785   APInt rotr(unsigned rotateAmt) const;
    786 
    787   /// Arithmetic right-shift this APInt by shiftAmt.
    788   /// @brief Arithmetic right-shift function.
    789   APInt ashr(const APInt &shiftAmt) const;
    790 
    791   /// Logical right-shift this APInt by shiftAmt.
    792   /// @brief Logical right-shift function.
    793   APInt lshr(const APInt &shiftAmt) const;
    794 
    795   /// Left-shift this APInt by shiftAmt.
    796   /// @brief Left-shift function.
    797   APInt shl(const APInt &shiftAmt) const;
    798 
    799   /// @brief Rotate left by rotateAmt.
    800   APInt rotl(const APInt &rotateAmt) const;
    801 
    802   /// @brief Rotate right by rotateAmt.
    803   APInt rotr(const APInt &rotateAmt) const;
    804 
    805   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
    806   /// RHS are treated as unsigned quantities for purposes of this division.
    807   /// @returns a new APInt value containing the division result
    808   /// @brief Unsigned division operation.
    809   APInt udiv(const APInt &RHS) const;
    810 
    811   /// Signed divide this APInt by APInt RHS.
    812   /// @brief Signed division function for APInt.
    813   APInt sdiv(const APInt &RHS) const;
    814 
    815   /// Perform an unsigned remainder operation on this APInt with RHS being the
    816   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
    817   /// of this operation. Note that this is a true remainder operation and not
    818   /// a modulo operation because the sign follows the sign of the dividend
    819   /// which is *this.
    820   /// @returns a new APInt value containing the remainder result
    821   /// @brief Unsigned remainder operation.
    822   APInt urem(const APInt &RHS) const;
    823 
    824   /// Signed remainder operation on APInt.
    825   /// @brief Function for signed remainder operation.
    826   APInt srem(const APInt &RHS) const;
    827 
    828   /// Sometimes it is convenient to divide two APInt values and obtain both the
    829   /// quotient and remainder. This function does both operations in the same
    830   /// computation making it a little more efficient. The pair of input arguments
    831   /// may overlap with the pair of output arguments. It is safe to call
    832   /// udivrem(X, Y, X, Y), for example.
    833   /// @brief Dual division/remainder interface.
    834   static void udivrem(const APInt &LHS, const APInt &RHS,
    835                       APInt &Quotient, APInt &Remainder);
    836 
    837   static void sdivrem(const APInt &LHS, const APInt &RHS,
    838                       APInt &Quotient, APInt &Remainder);
    839 
    840 
    841   // Operations that return overflow indicators.
    842   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
    843   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
    844   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
    845   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
    846   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
    847   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
    848   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
    849   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
    850 
    851   /// @returns the bit value at bitPosition
    852   /// @brief Array-indexing support.
    853   bool operator[](unsigned bitPosition) const {
    854     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    855     return (maskBit(bitPosition) &
    856             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
    857   }
    858 
    859   /// @}
    860   /// @name Comparison Operators
    861   /// @{
    862   /// Compares this APInt with RHS for the validity of the equality
    863   /// relationship.
    864   /// @brief Equality operator.
    865   bool operator==(const APInt& RHS) const {
    866     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    867     if (isSingleWord())
    868       return VAL == RHS.VAL;
    869     return EqualSlowCase(RHS);
    870   }
    871 
    872   /// Compares this APInt with a uint64_t for the validity of the equality
    873   /// relationship.
    874   /// @returns true if *this == Val
    875   /// @brief Equality operator.
    876   bool operator==(uint64_t Val) const {
    877     if (isSingleWord())
    878       return VAL == Val;
    879     return EqualSlowCase(Val);
    880   }
    881 
    882   /// Compares this APInt with RHS for the validity of the equality
    883   /// relationship.
    884   /// @returns true if *this == Val
    885   /// @brief Equality comparison.
    886   bool eq(const APInt &RHS) const {
    887     return (*this) == RHS;
    888   }
    889 
    890   /// Compares this APInt with RHS for the validity of the inequality
    891   /// relationship.
    892   /// @returns true if *this != Val
    893   /// @brief Inequality operator.
    894   bool operator!=(const APInt& RHS) const {
    895     return !((*this) == RHS);
    896   }
    897 
    898   /// Compares this APInt with a uint64_t for the validity of the inequality
    899   /// relationship.
    900   /// @returns true if *this != Val
    901   /// @brief Inequality operator.
    902   bool operator!=(uint64_t Val) const {
    903     return !((*this) == Val);
    904   }
    905 
    906   /// Compares this APInt with RHS for the validity of the inequality
    907   /// relationship.
    908   /// @returns true if *this != Val
    909   /// @brief Inequality comparison
    910   bool ne(const APInt &RHS) const {
    911     return !((*this) == RHS);
    912   }
    913 
    914   /// Regards both *this and RHS as unsigned quantities and compares them for
    915   /// the validity of the less-than relationship.
    916   /// @returns true if *this < RHS when both are considered unsigned.
    917   /// @brief Unsigned less than comparison
    918   bool ult(const APInt &RHS) const;
    919 
    920   /// Regards both *this as an unsigned quantity and compares it with RHS for
    921   /// the validity of the less-than relationship.
    922   /// @returns true if *this < RHS when considered unsigned.
    923   /// @brief Unsigned less than comparison
    924   bool ult(uint64_t RHS) const {
    925     return ult(APInt(getBitWidth(), RHS));
    926   }
    927 
    928   /// Regards both *this and RHS as signed quantities and compares them for
    929   /// validity of the less-than relationship.
    930   /// @returns true if *this < RHS when both are considered signed.
    931   /// @brief Signed less than comparison
    932   bool slt(const APInt& RHS) const;
    933 
    934   /// Regards both *this as a signed quantity and compares it with RHS for
    935   /// the validity of the less-than relationship.
    936   /// @returns true if *this < RHS when considered signed.
    937   /// @brief Signed less than comparison
    938   bool slt(uint64_t RHS) const {
    939     return slt(APInt(getBitWidth(), RHS));
    940   }
    941 
    942   /// Regards both *this and RHS as unsigned quantities and compares them for
    943   /// validity of the less-or-equal relationship.
    944   /// @returns true if *this <= RHS when both are considered unsigned.
    945   /// @brief Unsigned less or equal comparison
    946   bool ule(const APInt& RHS) const {
    947     return ult(RHS) || eq(RHS);
    948   }
    949 
    950   /// Regards both *this as an unsigned quantity and compares it with RHS for
    951   /// the validity of the less-or-equal relationship.
    952   /// @returns true if *this <= RHS when considered unsigned.
    953   /// @brief Unsigned less or equal comparison
    954   bool ule(uint64_t RHS) const {
    955     return ule(APInt(getBitWidth(), RHS));
    956   }
    957 
    958   /// Regards both *this and RHS as signed quantities and compares them for
    959   /// validity of the less-or-equal relationship.
    960   /// @returns true if *this <= RHS when both are considered signed.
    961   /// @brief Signed less or equal comparison
    962   bool sle(const APInt& RHS) const {
    963     return slt(RHS) || eq(RHS);
    964   }
    965 
    966   /// Regards both *this as a signed quantity and compares it with RHS for
    967   /// the validity of the less-or-equal relationship.
    968   /// @returns true if *this <= RHS when considered signed.
    969   /// @brief Signed less or equal comparison
    970   bool sle(uint64_t RHS) const {
    971     return sle(APInt(getBitWidth(), RHS));
    972   }
    973 
    974   /// Regards both *this and RHS as unsigned quantities and compares them for
    975   /// the validity of the greater-than relationship.
    976   /// @returns true if *this > RHS when both are considered unsigned.
    977   /// @brief Unsigned greather than comparison
    978   bool ugt(const APInt& RHS) const {
    979     return !ult(RHS) && !eq(RHS);
    980   }
    981 
    982   /// Regards both *this as an unsigned quantity and compares it with RHS for
    983   /// the validity of the greater-than relationship.
    984   /// @returns true if *this > RHS when considered unsigned.
    985   /// @brief Unsigned greater than comparison
    986   bool ugt(uint64_t RHS) const {
    987     return ugt(APInt(getBitWidth(), RHS));
    988   }
    989 
    990   /// Regards both *this and RHS as signed quantities and compares them for
    991   /// the validity of the greater-than relationship.
    992   /// @returns true if *this > RHS when both are considered signed.
    993   /// @brief Signed greather than comparison
    994   bool sgt(const APInt& RHS) const {
    995     return !slt(RHS) && !eq(RHS);
    996   }
    997 
    998   /// Regards both *this as a signed quantity and compares it with RHS for
    999   /// the validity of the greater-than relationship.
   1000   /// @returns true if *this > RHS when considered signed.
   1001   /// @brief Signed greater than comparison
   1002   bool sgt(uint64_t RHS) const {
   1003     return sgt(APInt(getBitWidth(), RHS));
   1004   }
   1005 
   1006   /// Regards both *this and RHS as unsigned quantities and compares them for
   1007   /// validity of the greater-or-equal relationship.
   1008   /// @returns true if *this >= RHS when both are considered unsigned.
   1009   /// @brief Unsigned greater or equal comparison
   1010   bool uge(const APInt& RHS) const {
   1011     return !ult(RHS);
   1012   }
   1013 
   1014   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1015   /// the validity of the greater-or-equal relationship.
   1016   /// @returns true if *this >= RHS when considered unsigned.
   1017   /// @brief Unsigned greater or equal comparison
   1018   bool uge(uint64_t RHS) const {
   1019     return uge(APInt(getBitWidth(), RHS));
   1020   }
   1021 
   1022   /// Regards both *this and RHS as signed quantities and compares them for
   1023   /// validity of the greater-or-equal relationship.
   1024   /// @returns true if *this >= RHS when both are considered signed.
   1025   /// @brief Signed greather or equal comparison
   1026   bool sge(const APInt& RHS) const {
   1027     return !slt(RHS);
   1028   }
   1029 
   1030   /// Regards both *this as a signed quantity and compares it with RHS for
   1031   /// the validity of the greater-or-equal relationship.
   1032   /// @returns true if *this >= RHS when considered signed.
   1033   /// @brief Signed greater or equal comparison
   1034   bool sge(uint64_t RHS) const {
   1035     return sge(APInt(getBitWidth(), RHS));
   1036   }
   1037 
   1038 
   1039 
   1040 
   1041   /// This operation tests if there are any pairs of corresponding bits
   1042   /// between this APInt and RHS that are both set.
   1043   bool intersects(const APInt &RHS) const {
   1044     return (*this & RHS) != 0;
   1045   }
   1046 
   1047   /// @}
   1048   /// @name Resizing Operators
   1049   /// @{
   1050   /// Truncate the APInt to a specified width. It is an error to specify a width
   1051   /// that is greater than or equal to the current width.
   1052   /// @brief Truncate to new width.
   1053   APInt trunc(unsigned width) const;
   1054 
   1055   /// This operation sign extends the APInt to a new width. If the high order
   1056   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
   1057   /// It is an error to specify a width that is less than or equal to the
   1058   /// current width.
   1059   /// @brief Sign extend to a new width.
   1060   APInt sext(unsigned width) const;
   1061 
   1062   /// This operation zero extends the APInt to a new width. The high order bits
   1063   /// are filled with 0 bits.  It is an error to specify a width that is less
   1064   /// than or equal to the current width.
   1065   /// @brief Zero extend to a new width.
   1066   APInt zext(unsigned width) const;
   1067 
   1068   /// Make this APInt have the bit width given by \p width. The value is sign
   1069   /// extended, truncated, or left alone to make it that width.
   1070   /// @brief Sign extend or truncate to width
   1071   APInt sextOrTrunc(unsigned width) const;
   1072 
   1073   /// Make this APInt have the bit width given by \p width. The value is zero
   1074   /// extended, truncated, or left alone to make it that width.
   1075   /// @brief Zero extend or truncate to width
   1076   APInt zextOrTrunc(unsigned width) const;
   1077 
   1078   /// Make this APInt have the bit width given by \p width. The value is sign
   1079   /// extended, or left alone to make it that width.
   1080   /// @brief Sign extend or truncate to width
   1081   APInt sextOrSelf(unsigned width) const;
   1082 
   1083   /// Make this APInt have the bit width given by \p width. The value is zero
   1084   /// extended, or left alone to make it that width.
   1085   /// @brief Zero extend or truncate to width
   1086   APInt zextOrSelf(unsigned width) const;
   1087 
   1088   /// @}
   1089   /// @name Bit Manipulation Operators
   1090   /// @{
   1091   /// @brief Set every bit to 1.
   1092   void setAllBits() {
   1093     if (isSingleWord())
   1094       VAL = UINT64_MAX;
   1095     else {
   1096       // Set all the bits in all the words.
   1097       for (unsigned i = 0; i < getNumWords(); ++i)
   1098         pVal[i] = UINT64_MAX;
   1099     }
   1100     // Clear the unused ones
   1101     clearUnusedBits();
   1102   }
   1103 
   1104   /// Set the given bit to 1 whose position is given as "bitPosition".
   1105   /// @brief Set a given bit to 1.
   1106   void setBit(unsigned bitPosition);
   1107 
   1108   /// @brief Set every bit to 0.
   1109   void clearAllBits() {
   1110     if (isSingleWord())
   1111       VAL = 0;
   1112     else
   1113       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
   1114   }
   1115 
   1116   /// Set the given bit to 0 whose position is given as "bitPosition".
   1117   /// @brief Set a given bit to 0.
   1118   void clearBit(unsigned bitPosition);
   1119 
   1120   /// @brief Toggle every bit to its opposite value.
   1121   void flipAllBits() {
   1122     if (isSingleWord())
   1123       VAL ^= UINT64_MAX;
   1124     else {
   1125       for (unsigned i = 0; i < getNumWords(); ++i)
   1126         pVal[i] ^= UINT64_MAX;
   1127     }
   1128     clearUnusedBits();
   1129   }
   1130 
   1131   /// Toggle a given bit to its opposite value whose position is given
   1132   /// as "bitPosition".
   1133   /// @brief Toggles a given bit to its opposite value.
   1134   void flipBit(unsigned bitPosition);
   1135 
   1136   /// @}
   1137   /// @name Value Characterization Functions
   1138   /// @{
   1139 
   1140   /// @returns the total number of bits.
   1141   unsigned getBitWidth() const {
   1142     return BitWidth;
   1143   }
   1144 
   1145   /// Here one word's bitwidth equals to that of uint64_t.
   1146   /// @returns the number of words to hold the integer value of this APInt.
   1147   /// @brief Get the number of words.
   1148   unsigned getNumWords() const {
   1149     return getNumWords(BitWidth);
   1150   }
   1151 
   1152   /// Here one word's bitwidth equals to that of uint64_t.
   1153   /// @returns the number of words to hold the integer value with a
   1154   /// given bit width.
   1155   /// @brief Get the number of words.
   1156   static unsigned getNumWords(unsigned BitWidth) {
   1157     return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
   1158   }
   1159 
   1160   /// This function returns the number of active bits which is defined as the
   1161   /// bit width minus the number of leading zeros. This is used in several
   1162   /// computations to see how "wide" the value is.
   1163   /// @brief Compute the number of active bits in the value
   1164   unsigned getActiveBits() const {
   1165     return BitWidth - countLeadingZeros();
   1166   }
   1167 
   1168   /// This function returns the number of active words in the value of this
   1169   /// APInt. This is used in conjunction with getActiveData to extract the raw
   1170   /// value of the APInt.
   1171   unsigned getActiveWords() const {
   1172     unsigned numActiveBits = getActiveBits();
   1173     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
   1174   }
   1175 
   1176   /// Computes the minimum bit width for this APInt while considering it to be
   1177   /// a signed (and probably negative) value. If the value is not negative,
   1178   /// this function returns the same value as getActiveBits()+1. Otherwise, it
   1179   /// returns the smallest bit width that will retain the negative value. For
   1180   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
   1181   /// for -1, this function will always return 1.
   1182   /// @brief Get the minimum bit size for this signed APInt
   1183   unsigned getMinSignedBits() const {
   1184     if (isNegative())
   1185       return BitWidth - countLeadingOnes() + 1;
   1186     return getActiveBits()+1;
   1187   }
   1188 
   1189   /// This method attempts to return the value of this APInt as a zero extended
   1190   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
   1191   /// uint64_t. Otherwise an assertion will result.
   1192   /// @brief Get zero extended value
   1193   uint64_t getZExtValue() const {
   1194     if (isSingleWord())
   1195       return VAL;
   1196     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
   1197     return pVal[0];
   1198   }
   1199 
   1200   /// This method attempts to return the value of this APInt as a sign extended
   1201   /// int64_t. The bit width must be <= 64 or the value must fit within an
   1202   /// int64_t. Otherwise an assertion will result.
   1203   /// @brief Get sign extended value
   1204   int64_t getSExtValue() const {
   1205     if (isSingleWord())
   1206       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
   1207                      (APINT_BITS_PER_WORD - BitWidth);
   1208     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
   1209     return int64_t(pVal[0]);
   1210   }
   1211 
   1212   /// This method determines how many bits are required to hold the APInt
   1213   /// equivalent of the string given by \p str.
   1214   /// @brief Get bits required for string value.
   1215   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
   1216 
   1217   /// countLeadingZeros - This function is an APInt version of the
   1218   /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
   1219   /// of zeros from the most significant bit to the first one bit.
   1220   /// @returns BitWidth if the value is zero, otherwise
   1221   /// returns the number of zeros from the most significant bit to the first
   1222   /// one bits.
   1223   unsigned countLeadingZeros() const {
   1224     if (isSingleWord()) {
   1225       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
   1226       return CountLeadingZeros_64(VAL) - unusedBits;
   1227     }
   1228     return countLeadingZerosSlowCase();
   1229   }
   1230 
   1231   /// countLeadingOnes - This function is an APInt version of the
   1232   /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
   1233   /// of ones from the most significant bit to the first zero bit.
   1234   /// @returns 0 if the high order bit is not set, otherwise
   1235   /// returns the number of 1 bits from the most significant to the least
   1236   /// @brief Count the number of leading one bits.
   1237   unsigned countLeadingOnes() const;
   1238 
   1239   /// Computes the number of leading bits of this APInt that are equal to its
   1240   /// sign bit.
   1241   unsigned getNumSignBits() const {
   1242     return isNegative() ? countLeadingOnes() : countLeadingZeros();
   1243   }
   1244 
   1245   /// countTrailingZeros - This function is an APInt version of the
   1246   /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
   1247   /// the number of zeros from the least significant bit to the first set bit.
   1248   /// @returns BitWidth if the value is zero, otherwise
   1249   /// returns the number of zeros from the least significant bit to the first
   1250   /// one bit.
   1251   /// @brief Count the number of trailing zero bits.
   1252   unsigned countTrailingZeros() const;
   1253 
   1254   /// countTrailingOnes - This function is an APInt version of the
   1255   /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
   1256   /// the number of ones from the least significant bit to the first zero bit.
   1257   /// @returns BitWidth if the value is all ones, otherwise
   1258   /// returns the number of ones from the least significant bit to the first
   1259   /// zero bit.
   1260   /// @brief Count the number of trailing one bits.
   1261   unsigned countTrailingOnes() const {
   1262     if (isSingleWord())
   1263       return CountTrailingOnes_64(VAL);
   1264     return countTrailingOnesSlowCase();
   1265   }
   1266 
   1267   /// countPopulation - This function is an APInt version of the
   1268   /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
   1269   /// of 1 bits in the APInt value.
   1270   /// @returns 0 if the value is zero, otherwise returns the number of set
   1271   /// bits.
   1272   /// @brief Count the number of bits set.
   1273   unsigned countPopulation() const {
   1274     if (isSingleWord())
   1275       return CountPopulation_64(VAL);
   1276     return countPopulationSlowCase();
   1277   }
   1278 
   1279   /// @}
   1280   /// @name Conversion Functions
   1281   /// @{
   1282   void print(raw_ostream &OS, bool isSigned) const;
   1283 
   1284   /// toString - Converts an APInt to a string and append it to Str.  Str is
   1285   /// commonly a SmallString.
   1286   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
   1287                 bool formatAsCLiteral = false) const;
   1288 
   1289   /// Considers the APInt to be unsigned and converts it into a string in the
   1290   /// radix given. The radix can be 2, 8, 10 16, or 36.
   1291   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1292     toString(Str, Radix, false, false);
   1293   }
   1294 
   1295   /// Considers the APInt to be signed and converts it into a string in the
   1296   /// radix given. The radix can be 2, 8, 10, 16, or 36.
   1297   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1298     toString(Str, Radix, true, false);
   1299   }
   1300 
   1301   /// toString - This returns the APInt as a std::string.  Note that this is an
   1302   /// inefficient method.  It is better to pass in a SmallVector/SmallString
   1303   /// to the methods above to avoid thrashing the heap for the string.
   1304   std::string toString(unsigned Radix, bool Signed) const;
   1305 
   1306 
   1307   /// @returns a byte-swapped representation of this APInt Value.
   1308   APInt byteSwap() const;
   1309 
   1310   /// @brief Converts this APInt to a double value.
   1311   double roundToDouble(bool isSigned) const;
   1312 
   1313   /// @brief Converts this unsigned APInt to a double value.
   1314   double roundToDouble() const {
   1315     return roundToDouble(false);
   1316   }
   1317 
   1318   /// @brief Converts this signed APInt to a double value.
   1319   double signedRoundToDouble() const {
   1320     return roundToDouble(true);
   1321   }
   1322 
   1323   /// The conversion does not do a translation from integer to double, it just
   1324   /// re-interprets the bits as a double. Note that it is valid to do this on
   1325   /// any bit width. Exactly 64 bits will be translated.
   1326   /// @brief Converts APInt bits to a double
   1327   double bitsToDouble() const {
   1328     union {
   1329       uint64_t I;
   1330       double D;
   1331     } T;
   1332     T.I = (isSingleWord() ? VAL : pVal[0]);
   1333     return T.D;
   1334   }
   1335 
   1336   /// The conversion does not do a translation from integer to float, it just
   1337   /// re-interprets the bits as a float. Note that it is valid to do this on
   1338   /// any bit width. Exactly 32 bits will be translated.
   1339   /// @brief Converts APInt bits to a double
   1340   float bitsToFloat() const {
   1341     union {
   1342       unsigned I;
   1343       float F;
   1344     } T;
   1345     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
   1346     return T.F;
   1347   }
   1348 
   1349   /// The conversion does not do a translation from double to integer, it just
   1350   /// re-interprets the bits of the double.
   1351   /// @brief Converts a double to APInt bits.
   1352   static APInt doubleToBits(double V) {
   1353     union {
   1354       uint64_t I;
   1355       double D;
   1356     } T;
   1357     T.D = V;
   1358     return APInt(sizeof T * CHAR_BIT, T.I);
   1359   }
   1360 
   1361   /// The conversion does not do a translation from float to integer, it just
   1362   /// re-interprets the bits of the float.
   1363   /// @brief Converts a float to APInt bits.
   1364   static APInt floatToBits(float V) {
   1365     union {
   1366       unsigned I;
   1367       float F;
   1368     } T;
   1369     T.F = V;
   1370     return APInt(sizeof T * CHAR_BIT, T.I);
   1371   }
   1372 
   1373   /// @}
   1374   /// @name Mathematics Operations
   1375   /// @{
   1376 
   1377   /// @returns the floor log base 2 of this APInt.
   1378   unsigned logBase2() const {
   1379     return BitWidth - 1 - countLeadingZeros();
   1380   }
   1381 
   1382   /// @returns the ceil log base 2 of this APInt.
   1383   unsigned ceilLogBase2() const {
   1384     return BitWidth - (*this - 1).countLeadingZeros();
   1385   }
   1386 
   1387   /// @returns the log base 2 of this APInt if its an exact power of two, -1
   1388   /// otherwise
   1389   int32_t exactLogBase2() const {
   1390     if (!isPowerOf2())
   1391       return -1;
   1392     return logBase2();
   1393   }
   1394 
   1395   /// @brief Compute the square root
   1396   APInt sqrt() const;
   1397 
   1398   /// If *this is < 0 then return -(*this), otherwise *this;
   1399   /// @brief Get the absolute value;
   1400   APInt abs() const {
   1401     if (isNegative())
   1402       return -(*this);
   1403     return *this;
   1404   }
   1405 
   1406   /// @returns the multiplicative inverse for a given modulo.
   1407   APInt multiplicativeInverse(const APInt& modulo) const;
   1408 
   1409   /// @}
   1410   /// @name Support for division by constant
   1411   /// @{
   1412 
   1413   /// Calculate the magic number for signed division by a constant.
   1414   struct ms;
   1415   ms magic() const;
   1416 
   1417   /// Calculate the magic number for unsigned division by a constant.
   1418   struct mu;
   1419   mu magicu(unsigned LeadingZeros = 0) const;
   1420 
   1421   /// @}
   1422   /// @name Building-block Operations for APInt and APFloat
   1423   /// @{
   1424 
   1425   // These building block operations operate on a representation of
   1426   // arbitrary precision, two's-complement, bignum integer values.
   1427   // They should be sufficient to implement APInt and APFloat bignum
   1428   // requirements.  Inputs are generally a pointer to the base of an
   1429   // array of integer parts, representing an unsigned bignum, and a
   1430   // count of how many parts there are.
   1431 
   1432   /// Sets the least significant part of a bignum to the input value,
   1433   /// and zeroes out higher parts.  */
   1434   static void tcSet(integerPart *, integerPart, unsigned int);
   1435 
   1436   /// Assign one bignum to another.
   1437   static void tcAssign(integerPart *, const integerPart *, unsigned int);
   1438 
   1439   /// Returns true if a bignum is zero, false otherwise.
   1440   static bool tcIsZero(const integerPart *, unsigned int);
   1441 
   1442   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
   1443   static int tcExtractBit(const integerPart *, unsigned int bit);
   1444 
   1445   /// Copy the bit vector of width srcBITS from SRC, starting at bit
   1446   /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
   1447   /// becomes the least significant bit of DST.  All high bits above
   1448   /// srcBITS in DST are zero-filled.
   1449   static void tcExtract(integerPart *, unsigned int dstCount,
   1450                         const integerPart *,
   1451                         unsigned int srcBits, unsigned int srcLSB);
   1452 
   1453   /// Set the given bit of a bignum.  Zero-based.
   1454   static void tcSetBit(integerPart *, unsigned int bit);
   1455 
   1456   /// Clear the given bit of a bignum.  Zero-based.
   1457   static void tcClearBit(integerPart *, unsigned int bit);
   1458 
   1459   /// Returns the bit number of the least or most significant set bit
   1460   /// of a number.  If the input number has no bits set -1U is
   1461   /// returned.
   1462   static unsigned int tcLSB(const integerPart *, unsigned int);
   1463   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
   1464 
   1465   /// Negate a bignum in-place.
   1466   static void tcNegate(integerPart *, unsigned int);
   1467 
   1468   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
   1469   /// carry flag.
   1470   static integerPart tcAdd(integerPart *, const integerPart *,
   1471                            integerPart carry, unsigned);
   1472 
   1473   /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
   1474   /// carry flag.
   1475   static integerPart tcSubtract(integerPart *, const integerPart *,
   1476                                 integerPart carry, unsigned);
   1477 
   1478   ///  DST += SRC * MULTIPLIER + PART   if add is true
   1479   ///  DST  = SRC * MULTIPLIER + PART   if add is false
   1480   ///
   1481   ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
   1482   ///  they must start at the same point, i.e. DST == SRC.
   1483   ///
   1484   ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
   1485   ///  returned.  Otherwise DST is filled with the least significant
   1486   ///  DSTPARTS parts of the result, and if all of the omitted higher
   1487   ///  parts were zero return zero, otherwise overflow occurred and
   1488   ///  return one.
   1489   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
   1490                             integerPart multiplier, integerPart carry,
   1491                             unsigned int srcParts, unsigned int dstParts,
   1492                             bool add);
   1493 
   1494   /// DST = LHS * RHS, where DST has the same width as the operands
   1495   /// and is filled with the least significant parts of the result.
   1496   /// Returns one if overflow occurred, otherwise zero.  DST must be
   1497   /// disjoint from both operands.
   1498   static int tcMultiply(integerPart *, const integerPart *,
   1499                         const integerPart *, unsigned);
   1500 
   1501   /// DST = LHS * RHS, where DST has width the sum of the widths of
   1502   /// the operands.  No overflow occurs.  DST must be disjoint from
   1503   /// both operands. Returns the number of parts required to hold the
   1504   /// result.
   1505   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
   1506                                      const integerPart *, unsigned, unsigned);
   1507 
   1508   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
   1509   /// Otherwise set LHS to LHS / RHS with the fractional part
   1510   /// discarded, set REMAINDER to the remainder, return zero.  i.e.
   1511   ///
   1512   ///  OLD_LHS = RHS * LHS + REMAINDER
   1513   ///
   1514   ///  SCRATCH is a bignum of the same size as the operands and result
   1515   ///  for use by the routine; its contents need not be initialized
   1516   ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
   1517   ///  distinct.
   1518   static int tcDivide(integerPart *lhs, const integerPart *rhs,
   1519                       integerPart *remainder, integerPart *scratch,
   1520                       unsigned int parts);
   1521 
   1522   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
   1523   /// There are no restrictions on COUNT.
   1524   static void tcShiftLeft(integerPart *, unsigned int parts,
   1525                           unsigned int count);
   1526 
   1527   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
   1528   /// There are no restrictions on COUNT.
   1529   static void tcShiftRight(integerPart *, unsigned int parts,
   1530                            unsigned int count);
   1531 
   1532   /// The obvious AND, OR and XOR and complement operations.
   1533   static void tcAnd(integerPart *, const integerPart *, unsigned int);
   1534   static void tcOr(integerPart *, const integerPart *, unsigned int);
   1535   static void tcXor(integerPart *, const integerPart *, unsigned int);
   1536   static void tcComplement(integerPart *, unsigned int);
   1537 
   1538   /// Comparison (unsigned) of two bignums.
   1539   static int tcCompare(const integerPart *, const integerPart *,
   1540                        unsigned int);
   1541 
   1542   /// Increment a bignum in-place.  Return the carry flag.
   1543   static integerPart tcIncrement(integerPart *, unsigned int);
   1544 
   1545   /// Set the least significant BITS and clear the rest.
   1546   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
   1547                                         unsigned int bits);
   1548 
   1549   /// @brief debug method
   1550   void dump() const;
   1551 
   1552   /// @}
   1553 };
   1554 
   1555 /// Magic data for optimising signed division by a constant.
   1556 struct APInt::ms {
   1557   APInt m;  ///< magic number
   1558   unsigned s;  ///< shift amount
   1559 };
   1560 
   1561 /// Magic data for optimising unsigned division by a constant.
   1562 struct APInt::mu {
   1563   APInt m;     ///< magic number
   1564   bool a;      ///< add indicator
   1565   unsigned s;  ///< shift amount
   1566 };
   1567 
   1568 inline bool operator==(uint64_t V1, const APInt& V2) {
   1569   return V2 == V1;
   1570 }
   1571 
   1572 inline bool operator!=(uint64_t V1, const APInt& V2) {
   1573   return V2 != V1;
   1574 }
   1575 
   1576 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
   1577   I.print(OS, true);
   1578   return OS;
   1579 }
   1580 
   1581 namespace APIntOps {
   1582 
   1583 /// @brief Determine the smaller of two APInts considered to be signed.
   1584 inline APInt smin(const APInt &A, const APInt &B) {
   1585   return A.slt(B) ? A : B;
   1586 }
   1587 
   1588 /// @brief Determine the larger of two APInts considered to be signed.
   1589 inline APInt smax(const APInt &A, const APInt &B) {
   1590   return A.sgt(B) ? A : B;
   1591 }
   1592 
   1593 /// @brief Determine the smaller of two APInts considered to be signed.
   1594 inline APInt umin(const APInt &A, const APInt &B) {
   1595   return A.ult(B) ? A : B;
   1596 }
   1597 
   1598 /// @brief Determine the larger of two APInts considered to be unsigned.
   1599 inline APInt umax(const APInt &A, const APInt &B) {
   1600   return A.ugt(B) ? A : B;
   1601 }
   1602 
   1603 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
   1604 inline bool isIntN(unsigned N, const APInt& APIVal) {
   1605   return APIVal.isIntN(N);
   1606 }
   1607 
   1608 /// @brief Check if the specified APInt has a N-bits signed integer value.
   1609 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
   1610   return APIVal.isSignedIntN(N);
   1611 }
   1612 
   1613 /// @returns true if the argument APInt value is a sequence of ones
   1614 /// starting at the least significant bit with the remainder zero.
   1615 inline bool isMask(unsigned numBits, const APInt& APIVal) {
   1616   return numBits <= APIVal.getBitWidth() &&
   1617     APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
   1618 }
   1619 
   1620 /// @returns true if the argument APInt value contains a sequence of ones
   1621 /// with the remainder zero.
   1622 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
   1623   return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
   1624 }
   1625 
   1626 /// @returns a byte-swapped representation of the specified APInt Value.
   1627 inline APInt byteSwap(const APInt& APIVal) {
   1628   return APIVal.byteSwap();
   1629 }
   1630 
   1631 /// @returns the floor log base 2 of the specified APInt value.
   1632 inline unsigned logBase2(const APInt& APIVal) {
   1633   return APIVal.logBase2();
   1634 }
   1635 
   1636 /// GreatestCommonDivisor - This function returns the greatest common
   1637 /// divisor of the two APInt values using Euclid's algorithm.
   1638 /// @returns the greatest common divisor of Val1 and Val2
   1639 /// @brief Compute GCD of two APInt values.
   1640 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
   1641 
   1642 /// Treats the APInt as an unsigned value for conversion purposes.
   1643 /// @brief Converts the given APInt to a double value.
   1644 inline double RoundAPIntToDouble(const APInt& APIVal) {
   1645   return APIVal.roundToDouble();
   1646 }
   1647 
   1648 /// Treats the APInt as a signed value for conversion purposes.
   1649 /// @brief Converts the given APInt to a double value.
   1650 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
   1651   return APIVal.signedRoundToDouble();
   1652 }
   1653 
   1654 /// @brief Converts the given APInt to a float vlalue.
   1655 inline float RoundAPIntToFloat(const APInt& APIVal) {
   1656   return float(RoundAPIntToDouble(APIVal));
   1657 }
   1658 
   1659 /// Treast the APInt as a signed value for conversion purposes.
   1660 /// @brief Converts the given APInt to a float value.
   1661 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
   1662   return float(APIVal.signedRoundToDouble());
   1663 }
   1664 
   1665 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
   1666 /// @brief Converts the given double value into a APInt.
   1667 APInt RoundDoubleToAPInt(double Double, unsigned width);
   1668 
   1669 /// RoundFloatToAPInt - Converts a float value into an APInt value.
   1670 /// @brief Converts a float value into a APInt.
   1671 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
   1672   return RoundDoubleToAPInt(double(Float), width);
   1673 }
   1674 
   1675 /// Arithmetic right-shift the APInt by shiftAmt.
   1676 /// @brief Arithmetic right-shift function.
   1677 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
   1678   return LHS.ashr(shiftAmt);
   1679 }
   1680 
   1681 /// Logical right-shift the APInt by shiftAmt.
   1682 /// @brief Logical right-shift function.
   1683 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
   1684   return LHS.lshr(shiftAmt);
   1685 }
   1686 
   1687 /// Left-shift the APInt by shiftAmt.
   1688 /// @brief Left-shift function.
   1689 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
   1690   return LHS.shl(shiftAmt);
   1691 }
   1692 
   1693 /// Signed divide APInt LHS by APInt RHS.
   1694 /// @brief Signed division function for APInt.
   1695 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
   1696   return LHS.sdiv(RHS);
   1697 }
   1698 
   1699 /// Unsigned divide APInt LHS by APInt RHS.
   1700 /// @brief Unsigned division function for APInt.
   1701 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
   1702   return LHS.udiv(RHS);
   1703 }
   1704 
   1705 /// Signed remainder operation on APInt.
   1706 /// @brief Function for signed remainder operation.
   1707 inline APInt srem(const APInt& LHS, const APInt& RHS) {
   1708   return LHS.srem(RHS);
   1709 }
   1710 
   1711 /// Unsigned remainder operation on APInt.
   1712 /// @brief Function for unsigned remainder operation.
   1713 inline APInt urem(const APInt& LHS, const APInt& RHS) {
   1714   return LHS.urem(RHS);
   1715 }
   1716 
   1717 /// Performs multiplication on APInt values.
   1718 /// @brief Function for multiplication operation.
   1719 inline APInt mul(const APInt& LHS, const APInt& RHS) {
   1720   return LHS * RHS;
   1721 }
   1722 
   1723 /// Performs addition on APInt values.
   1724 /// @brief Function for addition operation.
   1725 inline APInt add(const APInt& LHS, const APInt& RHS) {
   1726   return LHS + RHS;
   1727 }
   1728 
   1729 /// Performs subtraction on APInt values.
   1730 /// @brief Function for subtraction operation.
   1731 inline APInt sub(const APInt& LHS, const APInt& RHS) {
   1732   return LHS - RHS;
   1733 }
   1734 
   1735 /// Performs bitwise AND operation on APInt LHS and
   1736 /// APInt RHS.
   1737 /// @brief Bitwise AND function for APInt.
   1738 inline APInt And(const APInt& LHS, const APInt& RHS) {
   1739   return LHS & RHS;
   1740 }
   1741 
   1742 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
   1743 /// @brief Bitwise OR function for APInt.
   1744 inline APInt Or(const APInt& LHS, const APInt& RHS) {
   1745   return LHS | RHS;
   1746 }
   1747 
   1748 /// Performs bitwise XOR operation on APInt.
   1749 /// @brief Bitwise XOR function for APInt.
   1750 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
   1751   return LHS ^ RHS;
   1752 }
   1753 
   1754 /// Performs a bitwise complement operation on APInt.
   1755 /// @brief Bitwise complement function.
   1756 inline APInt Not(const APInt& APIVal) {
   1757   return ~APIVal;
   1758 }
   1759 
   1760 } // End of APIntOps namespace
   1761 
   1762   // See friend declaration above. This additional declaration is required in
   1763   // order to compile LLVM with IBM xlC compiler.
   1764   hash_code hash_value(const APInt &Arg);
   1765 } // End of llvm namespace
   1766 
   1767 #endif
   1768