1 /* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkMatrix44_DEFINED 9 #define SkMatrix44_DEFINED 10 11 #include "SkMatrix.h" 12 #include "SkScalar.h" 13 14 #ifdef SK_MSCALAR_IS_DOUBLE 15 #ifdef SK_MSCALAR_IS_FLOAT 16 #error "can't define MSCALAR both as DOUBLE and FLOAT" 17 #endif 18 typedef double SkMScalar; 19 20 static inline double SkFloatToMScalar(float x) { 21 return static_cast<double>(x); 22 } 23 static inline float SkMScalarToFloat(double x) { 24 return static_cast<float>(x); 25 } 26 static inline double SkDoubleToMScalar(double x) { 27 return x; 28 } 29 static inline double SkMScalarToDouble(double x) { 30 return x; 31 } 32 static const SkMScalar SK_MScalarPI = 3.141592653589793; 33 #elif defined SK_MSCALAR_IS_FLOAT 34 #ifdef SK_MSCALAR_IS_DOUBLE 35 #error "can't define MSCALAR both as DOUBLE and FLOAT" 36 #endif 37 typedef float SkMScalar; 38 39 static inline float SkFloatToMScalar(float x) { 40 return x; 41 } 42 static inline float SkMScalarToFloat(float x) { 43 return x; 44 } 45 static inline float SkDoubleToMScalar(double x) { 46 return static_cast<float>(x); 47 } 48 static inline double SkMScalarToDouble(float x) { 49 return static_cast<double>(x); 50 } 51 static const SkMScalar SK_MScalarPI = 3.14159265f; 52 #endif 53 54 #define SkMScalarToScalar SkMScalarToFloat 55 #define SkScalarToMScalar SkFloatToMScalar 56 57 static const SkMScalar SK_MScalar1 = 1; 58 59 /////////////////////////////////////////////////////////////////////////////// 60 61 struct SkVector4 { 62 SkScalar fData[4]; 63 64 SkVector4() { 65 this->set(0, 0, 0, 1); 66 } 67 SkVector4(const SkVector4& src) { 68 memcpy(fData, src.fData, sizeof(fData)); 69 } 70 SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { 71 fData[0] = x; 72 fData[1] = y; 73 fData[2] = z; 74 fData[3] = w; 75 } 76 77 SkVector4& operator=(const SkVector4& src) { 78 memcpy(fData, src.fData, sizeof(fData)); 79 return *this; 80 } 81 82 bool operator==(const SkVector4& v) { 83 return fData[0] == v.fData[0] && fData[1] == v.fData[1] && 84 fData[2] == v.fData[2] && fData[3] == v.fData[3]; 85 } 86 bool operator!=(const SkVector4& v) { 87 return !(*this == v); 88 } 89 bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { 90 return fData[0] == x && fData[1] == y && 91 fData[2] == z && fData[3] == w; 92 } 93 94 void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { 95 fData[0] = x; 96 fData[1] = y; 97 fData[2] = z; 98 fData[3] = w; 99 } 100 }; 101 102 class SK_API SkMatrix44 { 103 public: 104 105 enum Uninitialized_Constructor { 106 kUninitialized_Constructor 107 }; 108 enum Identity_Constructor { 109 kIdentity_Constructor 110 }; 111 112 SkMatrix44(Uninitialized_Constructor) { } 113 SkMatrix44(Identity_Constructor) { this->setIdentity(); } 114 115 // DEPRECATED: use the constructors that take an enum 116 SkMatrix44() { this->setIdentity(); } 117 118 SkMatrix44(const SkMatrix44& src) { 119 memcpy(fMat, src.fMat, sizeof(fMat)); 120 fTypeMask = src.fTypeMask; 121 } 122 123 SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) { 124 this->setConcat(a, b); 125 } 126 127 SkMatrix44& operator=(const SkMatrix44& src) { 128 memcpy(fMat, src.fMat, sizeof(fMat)); 129 fTypeMask = src.fTypeMask; 130 return *this; 131 } 132 133 bool operator==(const SkMatrix44& other) const; 134 bool operator!=(const SkMatrix44& other) const { 135 return !(other == *this); 136 } 137 138 SkMatrix44(const SkMatrix&); 139 SkMatrix44& operator=(const SkMatrix& src); 140 operator SkMatrix() const; 141 142 /** 143 * Return a reference to a const identity matrix 144 */ 145 static const SkMatrix44& I(); 146 147 enum TypeMask { 148 kIdentity_Mask = 0, 149 kTranslate_Mask = 0x01, //!< set if the matrix has translation 150 kScale_Mask = 0x02, //!< set if the matrix has any scale != 1 151 kAffine_Mask = 0x04, //!< set if the matrix skews or rotates 152 kPerspective_Mask = 0x08 //!< set if the matrix is in perspective 153 }; 154 155 /** 156 * Returns a bitfield describing the transformations the matrix may 157 * perform. The bitfield is computed conservatively, so it may include 158 * false positives. For example, when kPerspective_Mask is true, all 159 * other bits may be set to true even in the case of a pure perspective 160 * transform. 161 */ 162 inline TypeMask getType() const { 163 if (fTypeMask & kUnknown_Mask) { 164 fTypeMask = this->computeTypeMask(); 165 } 166 SkASSERT(!(fTypeMask & kUnknown_Mask)); 167 return (TypeMask)fTypeMask; 168 } 169 170 /** 171 * Return true if the matrix is identity. 172 */ 173 inline bool isIdentity() const { 174 return kIdentity_Mask == this->getType(); 175 } 176 177 /** 178 * Return true if the matrix contains translate or is identity. 179 */ 180 inline bool isTranslate() const { 181 return !(this->getType() & ~kTranslate_Mask); 182 } 183 184 /** 185 * Return true if the matrix only contains scale or translate or is identity. 186 */ 187 inline bool isScaleTranslate() const { 188 return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); 189 } 190 191 void setIdentity(); 192 inline void reset() { this->setIdentity();} 193 194 /** 195 * get a value from the matrix. The row,col parameters work as follows: 196 * (0, 0) scale-x 197 * (0, 3) translate-x 198 * (3, 0) perspective-x 199 */ 200 inline SkMScalar get(int row, int col) const { 201 SkASSERT((unsigned)row <= 3); 202 SkASSERT((unsigned)col <= 3); 203 return fMat[col][row]; 204 } 205 206 /** 207 * set a value in the matrix. The row,col parameters work as follows: 208 * (0, 0) scale-x 209 * (0, 3) translate-x 210 * (3, 0) perspective-x 211 */ 212 inline void set(int row, int col, SkMScalar value) { 213 SkASSERT((unsigned)row <= 3); 214 SkASSERT((unsigned)col <= 3); 215 fMat[col][row] = value; 216 this->dirtyTypeMask(); 217 } 218 219 inline double getDouble(int row, int col) const { 220 return SkMScalarToDouble(this->get(row, col)); 221 } 222 inline void setDouble(int row, int col, double value) { 223 this->set(row, col, SkDoubleToMScalar(value)); 224 } 225 226 /** These methods allow one to efficiently read matrix entries into an 227 * array. The given array must have room for exactly 16 entries. Whenever 228 * possible, they will try to use memcpy rather than an entry-by-entry 229 * copy. 230 */ 231 void asColMajorf(float[]) const; 232 void asColMajord(double[]) const; 233 void asRowMajorf(float[]) const; 234 void asRowMajord(double[]) const; 235 236 /** These methods allow one to efficiently set all matrix entries from an 237 * array. The given array must have room for exactly 16 entries. Whenever 238 * possible, they will try to use memcpy rather than an entry-by-entry 239 * copy. 240 */ 241 void setColMajorf(const float[]); 242 void setColMajord(const double[]); 243 void setRowMajorf(const float[]); 244 void setRowMajord(const double[]); 245 246 #ifdef SK_MSCALAR_IS_FLOAT 247 void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); } 248 void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); } 249 #else 250 void setColMajor(const SkMScalar data[]) { this->setColMajord(data); } 251 void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); } 252 #endif 253 254 void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02, 255 SkMScalar m10, SkMScalar m11, SkMScalar m12, 256 SkMScalar m20, SkMScalar m21, SkMScalar m22); 257 258 void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); 259 void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); 260 void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); 261 262 void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); 263 void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); 264 void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); 265 266 inline void setScale(SkMScalar scale) { 267 this->setScale(scale, scale, scale); 268 } 269 inline void preScale(SkMScalar scale) { 270 this->preScale(scale, scale, scale); 271 } 272 inline void postScale(SkMScalar scale) { 273 this->postScale(scale, scale, scale); 274 } 275 276 void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z, 277 SkMScalar degrees) { 278 this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180); 279 } 280 281 /** Rotate about the vector [x,y,z]. If that vector is not unit-length, 282 it will be automatically resized. 283 */ 284 void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z, 285 SkMScalar radians); 286 /** Rotate about the vector [x,y,z]. Does not check the length of the 287 vector, assuming it is unit-length. 288 */ 289 void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z, 290 SkMScalar radians); 291 292 void setConcat(const SkMatrix44& a, const SkMatrix44& b); 293 inline void preConcat(const SkMatrix44& m) { 294 this->setConcat(*this, m); 295 } 296 inline void postConcat(const SkMatrix44& m) { 297 this->setConcat(m, *this); 298 } 299 300 friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) { 301 return SkMatrix44(a, b); 302 } 303 304 /** If this is invertible, return that in inverse and return true. If it is 305 not invertible, return false and ignore the inverse parameter. 306 */ 307 bool invert(SkMatrix44* inverse) const; 308 309 /** Transpose this matrix in place. */ 310 void transpose(); 311 312 /** Apply the matrix to the src vector, returning the new vector in dst. 313 It is legal for src and dst to point to the same memory. 314 */ 315 void mapScalars(const SkScalar src[4], SkScalar dst[4]) const; 316 inline void mapScalars(SkScalar vec[4]) const { 317 this->mapScalars(vec, vec); 318 } 319 320 // DEPRECATED: call mapScalars() 321 void map(const SkScalar src[4], SkScalar dst[4]) const { 322 this->mapScalars(src, dst); 323 } 324 // DEPRECATED: call mapScalars() 325 void map(SkScalar vec[4]) const { 326 this->mapScalars(vec, vec); 327 } 328 329 #ifdef SK_MSCALAR_IS_DOUBLE 330 void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const; 331 #elif defined SK_MSCALAR_IS_FLOAT 332 inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const { 333 this->mapScalars(src, dst); 334 } 335 #endif 336 inline void mapMScalars(SkMScalar vec[4]) const { 337 this->mapMScalars(vec, vec); 338 } 339 340 friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) { 341 SkVector4 dst; 342 m.map(src.fData, dst.fData); 343 return dst; 344 } 345 346 /** 347 * map an array of [x, y, 0, 1] through the matrix, returning an array 348 * of [x', y', z', w']. 349 * 350 * @param src2 array of [x, y] pairs, with implied z=0 and w=1 351 * @param count number of [x, y] pairs in src2 352 * @param dst4 array of [x', y', z', w'] quads as the output. 353 */ 354 void map2(const float src2[], int count, float dst4[]) const; 355 void map2(const double src2[], int count, double dst4[]) const; 356 357 void dump() const; 358 359 double determinant() const; 360 361 private: 362 SkMScalar fMat[4][4]; 363 mutable unsigned fTypeMask; 364 365 enum { 366 kUnknown_Mask = 0x80, 367 368 kAllPublic_Masks = 0xF 369 }; 370 371 SkMScalar transX() const { return fMat[3][0]; } 372 SkMScalar transY() const { return fMat[3][1]; } 373 SkMScalar transZ() const { return fMat[3][2]; } 374 375 SkMScalar scaleX() const { return fMat[0][0]; } 376 SkMScalar scaleY() const { return fMat[1][1]; } 377 SkMScalar scaleZ() const { return fMat[2][2]; } 378 379 SkMScalar perspX() const { return fMat[0][3]; } 380 SkMScalar perspY() const { return fMat[1][3]; } 381 SkMScalar perspZ() const { return fMat[2][3]; } 382 383 int computeTypeMask() const; 384 385 inline void dirtyTypeMask() { 386 fTypeMask = kUnknown_Mask; 387 } 388 389 inline void setTypeMask(int mask) { 390 SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask)); 391 fTypeMask = mask; 392 } 393 394 /** 395 * Does not take the time to 'compute' the typemask. Only returns true if 396 * we already know that this matrix is identity. 397 */ 398 inline bool isTriviallyIdentity() const { 399 return 0 == fTypeMask; 400 } 401 }; 402 403 #endif 404