Home | History | Annotate | Download | only in dec
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // This code is licensed under the same terms as WebM:
      4 //  Software License Agreement:  http://www.webmproject.org/license/software/
      5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
      6 // -----------------------------------------------------------------------------
      7 //
      8 // main entry for the decoder
      9 //
     10 // Authors: Vikas Arora (vikaas.arora (at) gmail.com)
     11 //          Jyrki Alakuijala (jyrki (at) google.com)
     12 
     13 #include <stdio.h>
     14 #include <stdlib.h>
     15 #include "./vp8li.h"
     16 #include "../dsp/lossless.h"
     17 #include "../dsp/yuv.h"
     18 #include "../utils/huffman.h"
     19 #include "../utils/utils.h"
     20 
     21 #if defined(__cplusplus) || defined(c_plusplus)
     22 extern "C" {
     23 #endif
     24 
     25 #define NUM_ARGB_CACHE_ROWS          16
     26 
     27 static const int kCodeLengthLiterals = 16;
     28 static const int kCodeLengthRepeatCode = 16;
     29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
     30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
     31 
     32 // -----------------------------------------------------------------------------
     33 //  Five Huffman codes are used at each meta code:
     34 //  1. green + length prefix codes + color cache codes,
     35 //  2. alpha,
     36 //  3. red,
     37 //  4. blue, and,
     38 //  5. distance prefix codes.
     39 typedef enum {
     40   GREEN = 0,
     41   RED   = 1,
     42   BLUE  = 2,
     43   ALPHA = 3,
     44   DIST  = 4
     45 } HuffIndex;
     46 
     47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
     48   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
     49   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
     50   NUM_DISTANCE_CODES
     51 };
     52 
     53 
     54 #define NUM_CODE_LENGTH_CODES       19
     55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
     56   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
     57 };
     58 
     59 #define CODE_TO_PLANE_CODES        120
     60 static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
     61    0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
     62    0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
     63    0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
     64    0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
     65    0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
     66    0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
     67    0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
     68    0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
     69    0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
     70    0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
     71    0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
     72    0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
     73 };
     74 
     75 static int DecodeImageStream(int xsize, int ysize,
     76                              int is_level0,
     77                              VP8LDecoder* const dec,
     78                              uint32_t** const decoded_data);
     79 
     80 //------------------------------------------------------------------------------
     81 
     82 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
     83   return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
     84 }
     85 
     86 static int ReadImageInfo(VP8LBitReader* const br,
     87                          int* const width, int* const height,
     88                          int* const has_alpha) {
     89   const uint8_t signature = VP8LReadBits(br, 8);
     90   if (!VP8LCheckSignature(&signature, 1)) {
     91     return 0;
     92   }
     93   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
     94   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
     95   *has_alpha = VP8LReadBits(br, 1);
     96   VP8LReadBits(br, VP8L_VERSION_BITS);  // Read/ignore the version number.
     97   return 1;
     98 }
     99 
    100 int VP8LGetInfo(const uint8_t* data, size_t data_size,
    101                 int* const width, int* const height, int* const has_alpha) {
    102   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
    103     return 0;         // not enough data
    104   } else {
    105     int w, h, a;
    106     VP8LBitReader br;
    107     VP8LInitBitReader(&br, data, data_size);
    108     if (!ReadImageInfo(&br, &w, &h, &a)) {
    109       return 0;
    110     }
    111     if (width != NULL) *width = w;
    112     if (height != NULL) *height = h;
    113     if (has_alpha != NULL) *has_alpha = a;
    114     return 1;
    115   }
    116 }
    117 
    118 //------------------------------------------------------------------------------
    119 
    120 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
    121                                        VP8LBitReader* const br) {
    122   int extra_bits, offset;
    123   if (distance_symbol < 4) {
    124     return distance_symbol + 1;
    125   }
    126   extra_bits = (distance_symbol - 2) >> 1;
    127   offset = (2 + (distance_symbol & 1)) << extra_bits;
    128   return offset + VP8LReadBits(br, extra_bits) + 1;
    129 }
    130 
    131 static WEBP_INLINE int GetCopyLength(int length_symbol,
    132                                      VP8LBitReader* const br) {
    133   // Length and distance prefixes are encoded the same way.
    134   return GetCopyDistance(length_symbol, br);
    135 }
    136 
    137 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
    138   if (plane_code > CODE_TO_PLANE_CODES) {
    139     return plane_code - CODE_TO_PLANE_CODES;
    140   } else {
    141     const int dist_code = code_to_plane_lut[plane_code - 1];
    142     const int yoffset = dist_code >> 4;
    143     const int xoffset = 8 - (dist_code & 0xf);
    144     const int dist = yoffset * xsize + xoffset;
    145     return (dist >= 1) ? dist : 1;
    146   }
    147 }
    148 
    149 //------------------------------------------------------------------------------
    150 // Decodes the next Huffman code from bit-stream.
    151 // FillBitWindow(br) needs to be called at minimum every second call
    152 // to ReadSymbol, in order to pre-fetch enough bits.
    153 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
    154                                   VP8LBitReader* const br) {
    155   const HuffmanTreeNode* node = tree->root_;
    156   int num_bits = 0;
    157   uint32_t bits = VP8LPrefetchBits(br);
    158   assert(node != NULL);
    159   while (!HuffmanTreeNodeIsLeaf(node)) {
    160     node = HuffmanTreeNextNode(node, bits & 1);
    161     bits >>= 1;
    162     ++num_bits;
    163   }
    164   VP8LDiscardBits(br, num_bits);
    165   return node->symbol_;
    166 }
    167 
    168 static int ReadHuffmanCodeLengths(
    169     VP8LDecoder* const dec, const int* const code_length_code_lengths,
    170     int num_symbols, int* const code_lengths) {
    171   int ok = 0;
    172   VP8LBitReader* const br = &dec->br_;
    173   int symbol;
    174   int max_symbol;
    175   int prev_code_len = DEFAULT_CODE_LENGTH;
    176   HuffmanTree tree;
    177 
    178   if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
    179                                 NUM_CODE_LENGTH_CODES)) {
    180     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    181     return 0;
    182   }
    183 
    184   if (VP8LReadBits(br, 1)) {    // use length
    185     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
    186     max_symbol = 2 + VP8LReadBits(br, length_nbits);
    187     if (max_symbol > num_symbols) {
    188       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    189       goto End;
    190     }
    191   } else {
    192     max_symbol = num_symbols;
    193   }
    194 
    195   symbol = 0;
    196   while (symbol < num_symbols) {
    197     int code_len;
    198     if (max_symbol-- == 0) break;
    199     VP8LFillBitWindow(br);
    200     code_len = ReadSymbol(&tree, br);
    201     if (code_len < kCodeLengthLiterals) {
    202       code_lengths[symbol++] = code_len;
    203       if (code_len != 0) prev_code_len = code_len;
    204     } else {
    205       const int use_prev = (code_len == kCodeLengthRepeatCode);
    206       const int slot = code_len - kCodeLengthLiterals;
    207       const int extra_bits = kCodeLengthExtraBits[slot];
    208       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
    209       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
    210       if (symbol + repeat > num_symbols) {
    211         dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    212         goto End;
    213       } else {
    214         const int length = use_prev ? prev_code_len : 0;
    215         while (repeat-- > 0) code_lengths[symbol++] = length;
    216       }
    217     }
    218   }
    219   ok = 1;
    220 
    221  End:
    222   HuffmanTreeRelease(&tree);
    223   return ok;
    224 }
    225 
    226 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
    227                            HuffmanTree* const tree) {
    228   int ok = 0;
    229   VP8LBitReader* const br = &dec->br_;
    230   const int simple_code = VP8LReadBits(br, 1);
    231 
    232   if (simple_code) {  // Read symbols, codes & code lengths directly.
    233     int symbols[2];
    234     int codes[2];
    235     int code_lengths[2];
    236     const int num_symbols = VP8LReadBits(br, 1) + 1;
    237     const int first_symbol_len_code = VP8LReadBits(br, 1);
    238     // The first code is either 1 bit or 8 bit code.
    239     symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
    240     codes[0] = 0;
    241     code_lengths[0] = num_symbols - 1;
    242     // The second code (if present), is always 8 bit long.
    243     if (num_symbols == 2) {
    244       symbols[1] = VP8LReadBits(br, 8);
    245       codes[1] = 1;
    246       code_lengths[1] = num_symbols - 1;
    247     }
    248     ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
    249                                   alphabet_size, num_symbols);
    250   } else {  // Decode Huffman-coded code lengths.
    251     int* code_lengths = NULL;
    252     int i;
    253     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
    254     const int num_codes = VP8LReadBits(br, 4) + 4;
    255     if (num_codes > NUM_CODE_LENGTH_CODES) {
    256       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    257       return 0;
    258     }
    259 
    260     code_lengths =
    261         (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
    262     if (code_lengths == NULL) {
    263       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    264       return 0;
    265     }
    266 
    267     for (i = 0; i < num_codes; ++i) {
    268       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
    269     }
    270     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
    271                                 code_lengths);
    272     if (ok) {
    273       ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
    274     }
    275     free(code_lengths);
    276   }
    277   ok = ok && !br->error_;
    278   if (!ok) {
    279     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    280     return 0;
    281   }
    282   return 1;
    283 }
    284 
    285 static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
    286   if (htree_groups != NULL) {
    287     int i, j;
    288     for (i = 0; i < num_htree_groups; ++i) {
    289       HuffmanTree* const htrees = htree_groups[i].htrees_;
    290       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    291         HuffmanTreeRelease(&htrees[j]);
    292       }
    293     }
    294     free(htree_groups);
    295   }
    296 }
    297 
    298 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
    299                             int color_cache_bits, int allow_recursion) {
    300   int i, j;
    301   VP8LBitReader* const br = &dec->br_;
    302   VP8LMetadata* const hdr = &dec->hdr_;
    303   uint32_t* huffman_image = NULL;
    304   HTreeGroup* htree_groups = NULL;
    305   int num_htree_groups = 1;
    306 
    307   if (allow_recursion && VP8LReadBits(br, 1)) {
    308     // use meta Huffman codes.
    309     const int huffman_precision = VP8LReadBits(br, 3) + 2;
    310     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
    311     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
    312     const int huffman_pixs = huffman_xsize * huffman_ysize;
    313     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
    314                            &huffman_image)) {
    315       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    316       goto Error;
    317     }
    318     hdr->huffman_subsample_bits_ = huffman_precision;
    319     for (i = 0; i < huffman_pixs; ++i) {
    320       // The huffman data is stored in red and green bytes.
    321       const int group = (huffman_image[i] >> 8) & 0xffff;
    322       huffman_image[i] = group;
    323       if (group >= num_htree_groups) {
    324         num_htree_groups = group + 1;
    325       }
    326     }
    327   }
    328 
    329   if (br->error_) goto Error;
    330 
    331   assert(num_htree_groups <= 0x10000);
    332   htree_groups =
    333       (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
    334                                   sizeof(*htree_groups));
    335   if (htree_groups == NULL) {
    336     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    337     goto Error;
    338   }
    339 
    340   for (i = 0; i < num_htree_groups; ++i) {
    341     HuffmanTree* const htrees = htree_groups[i].htrees_;
    342     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    343       int alphabet_size = kAlphabetSize[j];
    344       if (j == 0 && color_cache_bits > 0) {
    345         alphabet_size += 1 << color_cache_bits;
    346       }
    347       if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
    348     }
    349   }
    350 
    351   // All OK. Finalize pointers and return.
    352   hdr->huffman_image_ = huffman_image;
    353   hdr->num_htree_groups_ = num_htree_groups;
    354   hdr->htree_groups_ = htree_groups;
    355   return 1;
    356 
    357  Error:
    358   free(huffman_image);
    359   DeleteHtreeGroups(htree_groups, num_htree_groups);
    360   return 0;
    361 }
    362 
    363 //------------------------------------------------------------------------------
    364 // Scaling.
    365 
    366 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
    367   const int num_channels = 4;
    368   const int in_width = io->mb_w;
    369   const int out_width = io->scaled_width;
    370   const int in_height = io->mb_h;
    371   const int out_height = io->scaled_height;
    372   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
    373   int32_t* work;        // Rescaler work area.
    374   const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
    375   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
    376   const uint64_t memory_size = sizeof(*dec->rescaler) +
    377                                work_size * sizeof(*work) +
    378                                scaled_data_size * sizeof(*scaled_data);
    379   uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
    380   if (memory == NULL) {
    381     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    382     return 0;
    383   }
    384   assert(dec->rescaler_memory == NULL);
    385   dec->rescaler_memory = memory;
    386 
    387   dec->rescaler = (WebPRescaler*)memory;
    388   memory += sizeof(*dec->rescaler);
    389   work = (int32_t*)memory;
    390   memory += work_size * sizeof(*work);
    391   scaled_data = (uint32_t*)memory;
    392 
    393   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
    394                    out_width, out_height, 0, num_channels,
    395                    in_width, out_width, in_height, out_height, work);
    396   return 1;
    397 }
    398 
    399 //------------------------------------------------------------------------------
    400 // Export to ARGB
    401 
    402 // We have special "export" function since we need to convert from BGRA
    403 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
    404                   int rgba_stride, uint8_t* const rgba) {
    405   const uint32_t* const src = (const uint32_t*)rescaler->dst;
    406   const int dst_width = rescaler->dst_width;
    407   int num_lines_out = 0;
    408   while (WebPRescalerHasPendingOutput(rescaler)) {
    409     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
    410     WebPRescalerExportRow(rescaler);
    411     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
    412     ++num_lines_out;
    413   }
    414   return num_lines_out;
    415 }
    416 
    417 // Emit scaled rows.
    418 static int EmitRescaledRows(const VP8LDecoder* const dec,
    419                             const uint32_t* const data, int in_stride, int mb_h,
    420                             uint8_t* const out, int out_stride) {
    421   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
    422   const uint8_t* const in = (const uint8_t*)data;
    423   int num_lines_in = 0;
    424   int num_lines_out = 0;
    425   while (num_lines_in < mb_h) {
    426     const uint8_t* const row_in = in + num_lines_in * in_stride;
    427     uint8_t* const row_out = out + num_lines_out * out_stride;
    428     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
    429                                        row_in, in_stride);
    430     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
    431   }
    432   return num_lines_out;
    433 }
    434 
    435 // Emit rows without any scaling.
    436 static int EmitRows(WEBP_CSP_MODE colorspace,
    437                     const uint32_t* const data, int in_stride,
    438                     int mb_w, int mb_h,
    439                     uint8_t* const out, int out_stride) {
    440   int lines = mb_h;
    441   const uint8_t* row_in = (const uint8_t*)data;
    442   uint8_t* row_out = out;
    443   while (lines-- > 0) {
    444     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
    445     row_in += in_stride;
    446     row_out += out_stride;
    447   }
    448   return mb_h;  // Num rows out == num rows in.
    449 }
    450 
    451 //------------------------------------------------------------------------------
    452 // Export to YUVA
    453 
    454 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
    455                           const WebPDecBuffer* const output) {
    456   const WebPYUVABuffer* const buf = &output->u.YUVA;
    457   // first, the luma plane
    458   {
    459     int i;
    460     uint8_t* const y = buf->y + y_pos * buf->y_stride;
    461     for (i = 0; i < width; ++i) {
    462       const uint32_t p = src[i];
    463       y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
    464     }
    465   }
    466 
    467   // then U/V planes
    468   {
    469     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
    470     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
    471     const int uv_width = width >> 1;
    472     int i;
    473     for (i = 0; i < uv_width; ++i) {
    474       const uint32_t v0 = src[2 * i + 0];
    475       const uint32_t v1 = src[2 * i + 1];
    476       // VP8RGBToU/V expects four accumulated pixels. Hence we need to
    477       // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
    478       const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
    479       const int g = ((v0 >>  7) & 0x1fe) + ((v1 >>  7) & 0x1fe);
    480       const int b = ((v0 <<  1) & 0x1fe) + ((v1 <<  1) & 0x1fe);
    481       if (!(y_pos & 1)) {  // even lines: store values
    482         u[i] = VP8RGBToU(r, g, b);
    483         v[i] = VP8RGBToV(r, g, b);
    484       } else {             // odd lines: average with previous values
    485         const int tmp_u = VP8RGBToU(r, g, b);
    486         const int tmp_v = VP8RGBToV(r, g, b);
    487         // Approximated average-of-four. But it's an acceptable diff.
    488         u[i] = (u[i] + tmp_u + 1) >> 1;
    489         v[i] = (v[i] + tmp_v + 1) >> 1;
    490       }
    491     }
    492     if (width & 1) {       // last pixel
    493       const uint32_t v0 = src[2 * i + 0];
    494       const int r = (v0 >> 14) & 0x3fc;
    495       const int g = (v0 >>  6) & 0x3fc;
    496       const int b = (v0 <<  2) & 0x3fc;
    497       if (!(y_pos & 1)) {  // even lines
    498         u[i] = VP8RGBToU(r, g, b);
    499         v[i] = VP8RGBToV(r, g, b);
    500       } else {             // odd lines (note: we could just skip this)
    501         const int tmp_u = VP8RGBToU(r, g, b);
    502         const int tmp_v = VP8RGBToV(r, g, b);
    503         u[i] = (u[i] + tmp_u + 1) >> 1;
    504         v[i] = (v[i] + tmp_v + 1) >> 1;
    505       }
    506     }
    507   }
    508   // Lastly, store alpha if needed.
    509   if (buf->a != NULL) {
    510     int i;
    511     uint8_t* const a = buf->a + y_pos * buf->a_stride;
    512     for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
    513   }
    514 }
    515 
    516 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
    517   WebPRescaler* const rescaler = dec->rescaler;
    518   const uint32_t* const src = (const uint32_t*)rescaler->dst;
    519   const int dst_width = rescaler->dst_width;
    520   int num_lines_out = 0;
    521   while (WebPRescalerHasPendingOutput(rescaler)) {
    522     WebPRescalerExportRow(rescaler);
    523     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
    524     ++y_pos;
    525     ++num_lines_out;
    526   }
    527   return num_lines_out;
    528 }
    529 
    530 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
    531                                 const uint32_t* const data,
    532                                 int in_stride, int mb_h) {
    533   const uint8_t* const in = (const uint8_t*)data;
    534   int num_lines_in = 0;
    535   int y_pos = dec->last_out_row_;
    536   while (num_lines_in < mb_h) {
    537     const uint8_t* const row_in = in + num_lines_in * in_stride;
    538     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
    539                                        row_in, in_stride);
    540     y_pos += ExportYUVA(dec, y_pos);
    541   }
    542   return y_pos;
    543 }
    544 
    545 static int EmitRowsYUVA(const VP8LDecoder* const dec,
    546                         const uint32_t* const data, int in_stride,
    547                         int mb_w, int num_rows) {
    548   int y_pos = dec->last_out_row_;
    549   const uint8_t* row_in = (const uint8_t*)data;
    550   while (num_rows-- > 0) {
    551     ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
    552     row_in += in_stride;
    553     ++y_pos;
    554   }
    555   return y_pos;
    556 }
    557 
    558 //------------------------------------------------------------------------------
    559 // Cropping.
    560 
    561 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
    562 // crop options. Also updates the input data pointer, so that it points to the
    563 // start of the cropped window.
    564 // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
    565 // Returns true if the crop window is not empty.
    566 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
    567                          const uint32_t** const in_data, int pixel_stride) {
    568   assert(y_start < y_end);
    569   assert(io->crop_left < io->crop_right);
    570   if (y_end > io->crop_bottom) {
    571     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
    572   }
    573   if (y_start < io->crop_top) {
    574     const int delta = io->crop_top - y_start;
    575     y_start = io->crop_top;
    576     *in_data += pixel_stride * delta;
    577   }
    578   if (y_start >= y_end) return 0;  // Crop window is empty.
    579 
    580   *in_data += io->crop_left;
    581 
    582   io->mb_y = y_start - io->crop_top;
    583   io->mb_w = io->crop_right - io->crop_left;
    584   io->mb_h = y_end - y_start;
    585   return 1;  // Non-empty crop window.
    586 }
    587 
    588 //------------------------------------------------------------------------------
    589 
    590 static WEBP_INLINE int GetMetaIndex(
    591     const uint32_t* const image, int xsize, int bits, int x, int y) {
    592   if (bits == 0) return 0;
    593   return image[xsize * (y >> bits) + (x >> bits)];
    594 }
    595 
    596 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
    597                                                    int x, int y) {
    598   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
    599                                       hdr->huffman_subsample_bits_, x, y);
    600   assert(meta_index < hdr->num_htree_groups_);
    601   return hdr->htree_groups_ + meta_index;
    602 }
    603 
    604 //------------------------------------------------------------------------------
    605 // Main loop, with custom row-processing function
    606 
    607 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
    608 
    609 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
    610                                    const uint32_t* const rows) {
    611   int n = dec->next_transform_;
    612   const int cache_pixs = dec->width_ * num_rows;
    613   const int start_row = dec->last_row_;
    614   const int end_row = start_row + num_rows;
    615   const uint32_t* rows_in = rows;
    616   uint32_t* const rows_out = dec->argb_cache_;
    617 
    618   // Inverse transforms.
    619   // TODO: most transforms only need to operate on the cropped region only.
    620   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
    621   while (n-- > 0) {
    622     VP8LTransform* const transform = &dec->transforms_[n];
    623     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
    624     rows_in = rows_out;
    625   }
    626 }
    627 
    628 // Processes (transforms, scales & color-converts) the rows decoded after the
    629 // last call.
    630 static void ProcessRows(VP8LDecoder* const dec, int row) {
    631   const uint32_t* const rows = dec->argb_ + dec->width_ * dec->last_row_;
    632   const int num_rows = row - dec->last_row_;
    633 
    634   if (num_rows <= 0) return;  // Nothing to be done.
    635   ApplyInverseTransforms(dec, num_rows, rows);
    636 
    637   // Emit output.
    638   {
    639     VP8Io* const io = dec->io_;
    640     const uint32_t* rows_data = dec->argb_cache_;
    641     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
    642       // Nothing to output (this time).
    643     } else {
    644       const WebPDecBuffer* const output = dec->output_;
    645       const int in_stride = io->width * sizeof(*rows_data);
    646       if (output->colorspace < MODE_YUV) {  // convert to RGBA
    647         const WebPRGBABuffer* const buf = &output->u.RGBA;
    648         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
    649         const int num_rows_out = io->use_scaling ?
    650             EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
    651                              rgba, buf->stride) :
    652             EmitRows(output->colorspace, rows_data, in_stride,
    653                      io->mb_w, io->mb_h, rgba, buf->stride);
    654         // Update 'last_out_row_'.
    655         dec->last_out_row_ += num_rows_out;
    656       } else {                              // convert to YUVA
    657         dec->last_out_row_ = io->use_scaling ?
    658             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
    659             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
    660       }
    661       assert(dec->last_out_row_ <= output->height);
    662     }
    663   }
    664 
    665   // Update 'last_row_'.
    666   dec->last_row_ = row;
    667   assert(dec->last_row_ <= dec->height_);
    668 }
    669 
    670 static int DecodeImageData(VP8LDecoder* const dec,
    671                            uint32_t* const data, int width, int height,
    672                            ProcessRowsFunc process_func) {
    673   int ok = 1;
    674   int col = 0, row = 0;
    675   VP8LBitReader* const br = &dec->br_;
    676   VP8LMetadata* const hdr = &dec->hdr_;
    677   HTreeGroup* htree_group = hdr->htree_groups_;
    678   uint32_t* src = data;
    679   uint32_t* last_cached = data;
    680   uint32_t* const src_end = data + width * height;
    681   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
    682   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
    683   VP8LColorCache* const color_cache =
    684       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
    685   const int mask = hdr->huffman_mask_;
    686 
    687   assert(htree_group != NULL);
    688 
    689   while (!br->eos_ && src < src_end) {
    690     int code;
    691     // Only update when changing tile. Note we could use the following test:
    692     //   if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
    693     // but that's actually slower and requires storing the previous col/row
    694     if ((col & mask) == 0) {
    695       htree_group = GetHtreeGroupForPos(hdr, col, row);
    696     }
    697     VP8LFillBitWindow(br);
    698     code = ReadSymbol(&htree_group->htrees_[GREEN], br);
    699     if (code < NUM_LITERAL_CODES) {   // Literal.
    700       int red, green, blue, alpha;
    701       red = ReadSymbol(&htree_group->htrees_[RED], br);
    702       green = code;
    703       VP8LFillBitWindow(br);
    704       blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
    705       alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
    706       *src = (alpha << 24) + (red << 16) + (green << 8) + blue;
    707  AdvanceByOne:
    708       ++src;
    709       ++col;
    710       if (col >= width) {
    711         col = 0;
    712         ++row;
    713         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
    714           process_func(dec, row);
    715         }
    716         if (color_cache != NULL) {
    717           while (last_cached < src) {
    718             VP8LColorCacheInsert(color_cache, *last_cached++);
    719           }
    720         }
    721       }
    722     } else if (code < len_code_limit) {           // Backward reference
    723       int dist_code, dist;
    724       const int length_sym = code - NUM_LITERAL_CODES;
    725       const int length = GetCopyLength(length_sym, br);
    726       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
    727       VP8LFillBitWindow(br);
    728       dist_code = GetCopyDistance(dist_symbol, br);
    729       dist = PlaneCodeToDistance(width, dist_code);
    730       if (src - data < dist || src_end - src < length) {
    731         ok = 0;
    732         goto End;
    733       }
    734       {
    735         int i;
    736         for (i = 0; i < length; ++i) src[i] = src[i - dist];
    737         src += length;
    738       }
    739       col += length;
    740       while (col >= width) {
    741         col -= width;
    742         ++row;
    743         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
    744           process_func(dec, row);
    745         }
    746       }
    747       if (src < src_end) {
    748         htree_group = GetHtreeGroupForPos(hdr, col, row);
    749         if (color_cache != NULL) {
    750           while (last_cached < src) {
    751             VP8LColorCacheInsert(color_cache, *last_cached++);
    752           }
    753         }
    754       }
    755     } else if (code < color_cache_limit) {    // Color cache.
    756       const int key = code - len_code_limit;
    757       assert(color_cache != NULL);
    758       while (last_cached < src) {
    759         VP8LColorCacheInsert(color_cache, *last_cached++);
    760       }
    761       *src = VP8LColorCacheLookup(color_cache, key);
    762       goto AdvanceByOne;
    763     } else {    // Not reached.
    764       ok = 0;
    765       goto End;
    766     }
    767     ok = !br->error_;
    768     if (!ok) goto End;
    769   }
    770   // Process the remaining rows corresponding to last row-block.
    771   if (process_func != NULL) process_func(dec, row);
    772 
    773  End:
    774   if (br->error_ || !ok || (br->eos_ && src < src_end)) {
    775     ok = 0;
    776     dec->status_ = (!br->eos_) ?
    777         VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;
    778   } else if (src == src_end) {
    779     dec->state_ = READ_DATA;
    780   }
    781 
    782   return ok;
    783 }
    784 
    785 // -----------------------------------------------------------------------------
    786 // VP8LTransform
    787 
    788 static void ClearTransform(VP8LTransform* const transform) {
    789   free(transform->data_);
    790   transform->data_ = NULL;
    791 }
    792 
    793 // For security reason, we need to remap the color map to span
    794 // the total possible bundled values, and not just the num_colors.
    795 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
    796   int i;
    797   const int final_num_colors = 1 << (8 >> transform->bits_);
    798   uint32_t* const new_color_map =
    799       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
    800                                 sizeof(*new_color_map));
    801   if (new_color_map == NULL) {
    802     return 0;
    803   } else {
    804     uint8_t* const data = (uint8_t*)transform->data_;
    805     uint8_t* const new_data = (uint8_t*)new_color_map;
    806     new_color_map[0] = transform->data_[0];
    807     for (i = 4; i < 4 * num_colors; ++i) {
    808       // Equivalent to AddPixelEq(), on a byte-basis.
    809       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
    810     }
    811     for (; i < 4 * final_num_colors; ++i)
    812       new_data[i] = 0;  // black tail.
    813     free(transform->data_);
    814     transform->data_ = new_color_map;
    815   }
    816   return 1;
    817 }
    818 
    819 static int ReadTransform(int* const xsize, int const* ysize,
    820                          VP8LDecoder* const dec) {
    821   int ok = 1;
    822   VP8LBitReader* const br = &dec->br_;
    823   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
    824   const VP8LImageTransformType type =
    825       (VP8LImageTransformType)VP8LReadBits(br, 2);
    826 
    827   // Each transform type can only be present once in the stream.
    828   if (dec->transforms_seen_ & (1U << type)) {
    829     return 0;  // Already there, let's not accept the second same transform.
    830   }
    831   dec->transforms_seen_ |= (1U << type);
    832 
    833   transform->type_ = type;
    834   transform->xsize_ = *xsize;
    835   transform->ysize_ = *ysize;
    836   transform->data_ = NULL;
    837   ++dec->next_transform_;
    838   assert(dec->next_transform_ <= NUM_TRANSFORMS);
    839 
    840   switch (type) {
    841     case PREDICTOR_TRANSFORM:
    842     case CROSS_COLOR_TRANSFORM:
    843       transform->bits_ = VP8LReadBits(br, 3) + 2;
    844       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
    845                                                transform->bits_),
    846                              VP8LSubSampleSize(transform->ysize_,
    847                                                transform->bits_),
    848                              0, dec, &transform->data_);
    849       break;
    850     case COLOR_INDEXING_TRANSFORM: {
    851        const int num_colors = VP8LReadBits(br, 8) + 1;
    852        const int bits = (num_colors > 16) ? 0
    853                       : (num_colors > 4) ? 1
    854                       : (num_colors > 2) ? 2
    855                       : 3;
    856        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
    857        transform->bits_ = bits;
    858        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
    859        ok = ok && ExpandColorMap(num_colors, transform);
    860       break;
    861     }
    862     case SUBTRACT_GREEN:
    863       break;
    864     default:
    865       assert(0);    // can't happen
    866       break;
    867   }
    868 
    869   return ok;
    870 }
    871 
    872 // -----------------------------------------------------------------------------
    873 // VP8LMetadata
    874 
    875 static void InitMetadata(VP8LMetadata* const hdr) {
    876   assert(hdr);
    877   memset(hdr, 0, sizeof(*hdr));
    878 }
    879 
    880 static void ClearMetadata(VP8LMetadata* const hdr) {
    881   assert(hdr);
    882 
    883   free(hdr->huffman_image_);
    884   DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
    885   VP8LColorCacheClear(&hdr->color_cache_);
    886   InitMetadata(hdr);
    887 }
    888 
    889 // -----------------------------------------------------------------------------
    890 // VP8LDecoder
    891 
    892 VP8LDecoder* VP8LNew(void) {
    893   VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
    894   if (dec == NULL) return NULL;
    895   dec->status_ = VP8_STATUS_OK;
    896   dec->action_ = READ_DIM;
    897   dec->state_ = READ_DIM;
    898   return dec;
    899 }
    900 
    901 void VP8LClear(VP8LDecoder* const dec) {
    902   int i;
    903   if (dec == NULL) return;
    904   ClearMetadata(&dec->hdr_);
    905 
    906   free(dec->argb_);
    907   dec->argb_ = NULL;
    908   for (i = 0; i < dec->next_transform_; ++i) {
    909     ClearTransform(&dec->transforms_[i]);
    910   }
    911   dec->next_transform_ = 0;
    912   dec->transforms_seen_ = 0;
    913 
    914   free(dec->rescaler_memory);
    915   dec->rescaler_memory = NULL;
    916 
    917   dec->output_ = NULL;   // leave no trace behind
    918 }
    919 
    920 void VP8LDelete(VP8LDecoder* const dec) {
    921   if (dec != NULL) {
    922     VP8LClear(dec);
    923     free(dec);
    924   }
    925 }
    926 
    927 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
    928   VP8LMetadata* const hdr = &dec->hdr_;
    929   const int num_bits = hdr->huffman_subsample_bits_;
    930   dec->width_ = width;
    931   dec->height_ = height;
    932 
    933   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
    934   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
    935 }
    936 
    937 static int DecodeImageStream(int xsize, int ysize,
    938                              int is_level0,
    939                              VP8LDecoder* const dec,
    940                              uint32_t** const decoded_data) {
    941   int ok = 1;
    942   int transform_xsize = xsize;
    943   int transform_ysize = ysize;
    944   VP8LBitReader* const br = &dec->br_;
    945   VP8LMetadata* const hdr = &dec->hdr_;
    946   uint32_t* data = NULL;
    947   int color_cache_bits = 0;
    948 
    949   // Read the transforms (may recurse).
    950   if (is_level0) {
    951     while (ok && VP8LReadBits(br, 1)) {
    952       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
    953     }
    954   }
    955 
    956   // Color cache
    957   if (ok && VP8LReadBits(br, 1)) {
    958     color_cache_bits = VP8LReadBits(br, 4);
    959     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
    960     if (!ok) {
    961       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    962       goto End;
    963     }
    964   }
    965 
    966   // Read the Huffman codes (may recurse).
    967   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
    968                               color_cache_bits, is_level0);
    969   if (!ok) {
    970     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    971     goto End;
    972   }
    973 
    974   // Finish setting up the color-cache
    975   if (color_cache_bits > 0) {
    976     hdr->color_cache_size_ = 1 << color_cache_bits;
    977     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
    978       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    979       ok = 0;
    980       goto End;
    981     }
    982   } else {
    983     hdr->color_cache_size_ = 0;
    984   }
    985   UpdateDecoder(dec, transform_xsize, transform_ysize);
    986 
    987   if (is_level0) {   // level 0 complete
    988     dec->state_ = READ_HDR;
    989     goto End;
    990   }
    991 
    992   {
    993     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
    994     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
    995     if (data == NULL) {
    996       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    997       ok = 0;
    998       goto End;
    999     }
   1000   }
   1001 
   1002   // Use the Huffman trees to decode the LZ77 encoded data.
   1003   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
   1004   ok = ok && !br->error_;
   1005 
   1006  End:
   1007 
   1008   if (!ok) {
   1009     free(data);
   1010     ClearMetadata(hdr);
   1011     // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
   1012     // status appropriately.
   1013     if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
   1014       dec->status_ = VP8_STATUS_SUSPENDED;
   1015     }
   1016   } else {
   1017     if (decoded_data != NULL) {
   1018       *decoded_data = data;
   1019     } else {
   1020       // We allocate image data in this function only for transforms. At level 0
   1021       // (that is: not the transforms), we shouldn't have allocated anything.
   1022       assert(data == NULL);
   1023       assert(is_level0);
   1024     }
   1025     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
   1026   }
   1027   return ok;
   1028 }
   1029 
   1030 //------------------------------------------------------------------------------
   1031 // Allocate dec->argb_ and dec->argb_cache_ using dec->width_ and dec->height_
   1032 
   1033 static int AllocateARGBBuffers(VP8LDecoder* const dec, int final_width) {
   1034   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
   1035   // Scratch buffer corresponding to top-prediction row for transforming the
   1036   // first row in the row-blocks.
   1037   const uint64_t cache_top_pixels = final_width;
   1038   // Scratch buffer for temporary BGRA storage.
   1039   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
   1040   const uint64_t total_num_pixels =
   1041       num_pixels + cache_top_pixels + cache_pixels;
   1042 
   1043   assert(dec->width_ <= final_width);
   1044   dec->argb_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(*dec->argb_));
   1045   if (dec->argb_ == NULL) {
   1046     dec->argb_cache_ = NULL;    // for sanity check
   1047     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1048     return 0;
   1049   }
   1050   dec->argb_cache_ = dec->argb_ + num_pixels + cache_top_pixels;
   1051   return 1;
   1052 }
   1053 
   1054 //------------------------------------------------------------------------------
   1055 // Special row-processing that only stores the alpha data.
   1056 
   1057 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
   1058   const int num_rows = row - dec->last_row_;
   1059   const uint32_t* const in = dec->argb_ + dec->width_ * dec->last_row_;
   1060 
   1061   if (num_rows <= 0) return;  // Nothing to be done.
   1062   ApplyInverseTransforms(dec, num_rows, in);
   1063 
   1064   // Extract alpha (which is stored in the green plane).
   1065   {
   1066     const int width = dec->io_->width;      // the final width (!= dec->width_)
   1067     const int cache_pixs = width * num_rows;
   1068     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
   1069     const uint32_t* const src = dec->argb_cache_;
   1070     int i;
   1071     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
   1072   }
   1073 
   1074   dec->last_row_ = dec->last_out_row_ = row;
   1075 }
   1076 
   1077 int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
   1078                                size_t data_size, uint8_t* const output) {
   1079   VP8Io io;
   1080   int ok = 0;
   1081   VP8LDecoder* const dec = VP8LNew();
   1082   if (dec == NULL) return 0;
   1083 
   1084   dec->width_ = width;
   1085   dec->height_ = height;
   1086   dec->io_ = &io;
   1087 
   1088   VP8InitIo(&io);
   1089   WebPInitCustomIo(NULL, &io);    // Just a sanity Init. io won't be used.
   1090   io.opaque = output;
   1091   io.width = width;
   1092   io.height = height;
   1093 
   1094   dec->status_ = VP8_STATUS_OK;
   1095   VP8LInitBitReader(&dec->br_, data, data_size);
   1096 
   1097   dec->action_ = READ_HDR;
   1098   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
   1099 
   1100   // Allocate output (note that dec->width_ may have changed here).
   1101   if (!AllocateARGBBuffers(dec, width)) goto Err;
   1102 
   1103   // Decode (with special row processing).
   1104   dec->action_ = READ_DATA;
   1105   ok = DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
   1106                        ExtractAlphaRows);
   1107 
   1108  Err:
   1109   VP8LDelete(dec);
   1110   return ok;
   1111 }
   1112 
   1113 //------------------------------------------------------------------------------
   1114 
   1115 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
   1116   int width, height, has_alpha;
   1117 
   1118   if (dec == NULL) return 0;
   1119   if (io == NULL) {
   1120     dec->status_ = VP8_STATUS_INVALID_PARAM;
   1121     return 0;
   1122   }
   1123 
   1124   dec->io_ = io;
   1125   dec->status_ = VP8_STATUS_OK;
   1126   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
   1127   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
   1128     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1129     goto Error;
   1130   }
   1131   dec->state_ = READ_DIM;
   1132   io->width = width;
   1133   io->height = height;
   1134 
   1135   dec->action_ = READ_HDR;
   1136   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
   1137   return 1;
   1138 
   1139  Error:
   1140    VP8LClear(dec);
   1141    assert(dec->status_ != VP8_STATUS_OK);
   1142    return 0;
   1143 }
   1144 
   1145 int VP8LDecodeImage(VP8LDecoder* const dec) {
   1146   VP8Io* io = NULL;
   1147   WebPDecParams* params = NULL;
   1148 
   1149   // Sanity checks.
   1150   if (dec == NULL) return 0;
   1151 
   1152   io = dec->io_;
   1153   assert(io != NULL);
   1154   params = (WebPDecParams*)io->opaque;
   1155   assert(params != NULL);
   1156   dec->output_ = params->output;
   1157   assert(dec->output_ != NULL);
   1158 
   1159   // Initialization.
   1160   if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
   1161     dec->status_ = VP8_STATUS_INVALID_PARAM;
   1162     goto Err;
   1163   }
   1164 
   1165   if (!AllocateARGBBuffers(dec, io->width)) goto Err;
   1166 
   1167   if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
   1168 
   1169   // Decode.
   1170   dec->action_ = READ_DATA;
   1171   if (!DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
   1172                        ProcessRows)) {
   1173     goto Err;
   1174   }
   1175 
   1176   // Cleanup.
   1177   params->last_y = dec->last_out_row_;
   1178   VP8LClear(dec);
   1179   return 1;
   1180 
   1181  Err:
   1182   VP8LClear(dec);
   1183   assert(dec->status_ != VP8_STATUS_OK);
   1184   return 0;
   1185 }
   1186 
   1187 //------------------------------------------------------------------------------
   1188 
   1189 #if defined(__cplusplus) || defined(c_plusplus)
   1190 }    // extern "C"
   1191 #endif
   1192