Home | History | Annotate | Download | only in MC
      1 //===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_MC_MCASSEMBLER_H
     11 #define LLVM_MC_MCASSEMBLER_H
     12 
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/SmallPtrSet.h"
     15 #include "llvm/ADT/SmallString.h"
     16 #include "llvm/ADT/ilist.h"
     17 #include "llvm/ADT/ilist_node.h"
     18 #include "llvm/MC/MCFixup.h"
     19 #include "llvm/MC/MCInst.h"
     20 #include "llvm/Support/Casting.h"
     21 #include "llvm/Support/DataTypes.h"
     22 #include <vector> // FIXME: Shouldn't be needed.
     23 
     24 namespace mcld {
     25 class Layout;
     26 }
     27 
     28 namespace llvm {
     29 class raw_ostream;
     30 class MCAsmLayout;
     31 class MCAssembler;
     32 class MCContext;
     33 class MCCodeEmitter;
     34 class MCExpr;
     35 class MCFragment;
     36 class MCObjectWriter;
     37 class MCSection;
     38 class MCSectionData;
     39 class MCSymbol;
     40 class MCSymbolData;
     41 class MCValue;
     42 class MCAsmBackend;
     43 
     44 class MCFragment : public ilist_node<MCFragment> {
     45   friend class MCAsmLayout;
     46   friend class mcld::Layout;
     47 
     48   MCFragment(const MCFragment&) LLVM_DELETED_FUNCTION;
     49   void operator=(const MCFragment&) LLVM_DELETED_FUNCTION;
     50 
     51 public:
     52   enum FragmentType {
     53     FT_Align,
     54     FT_Data,
     55     FT_CompactEncodedInst,
     56     FT_Fill,
     57     FT_Relaxable,
     58     FT_Org,
     59     FT_Dwarf,
     60     FT_DwarfFrame,
     61     FT_LEB,
     62     FT_Region,
     63     FT_Reloc,
     64     FT_Target
     65   };
     66 
     67 private:
     68   FragmentType Kind;
     69 
     70   /// Parent - The data for the section this fragment is in.
     71   MCSectionData *Parent;
     72 
     73   /// Atom - The atom this fragment is in, as represented by it's defining
     74   /// symbol. Atom's are only used by backends which set
     75   /// \see MCAsmBackend::hasReliableSymbolDifference().
     76   MCSymbolData *Atom;
     77 
     78   /// @name Assembler Backend Data
     79   /// @{
     80   //
     81   // FIXME: This could all be kept private to the assembler implementation.
     82 
     83   /// Offset - The offset of this fragment in its section. This is ~0 until
     84   /// initialized.
     85   uint64_t Offset;
     86 
     87   /// LayoutOrder - The layout order of this fragment.
     88   unsigned LayoutOrder;
     89 
     90   /// @}
     91 
     92 protected:
     93   MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
     94 
     95 public:
     96   // Only for sentinel.
     97   MCFragment();
     98   virtual ~MCFragment();
     99 
    100   FragmentType getKind() const { return Kind; }
    101 
    102   MCSectionData *getParent() const { return Parent; }
    103   void setParent(MCSectionData *Value) { Parent = Value; }
    104 
    105   MCSymbolData *getAtom() const { return Atom; }
    106   void setAtom(MCSymbolData *Value) { Atom = Value; }
    107 
    108   unsigned getLayoutOrder() const { return LayoutOrder; }
    109   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
    110 
    111   /// \brief Does this fragment have instructions emitted into it? By default
    112   /// this is false, but specific fragment types may set it to true.
    113   virtual bool hasInstructions() const { return false; }
    114 
    115   /// \brief Should this fragment be placed at the end of an aligned bundle?
    116   virtual bool alignToBundleEnd() const { return false; }
    117   virtual void setAlignToBundleEnd(bool V) { }
    118 
    119   /// \brief Get the padding size that must be inserted before this fragment.
    120   /// Used for bundling. By default, no padding is inserted.
    121   /// Note that padding size is restricted to 8 bits. This is an optimization
    122   /// to reduce the amount of space used for each fragment. In practice, larger
    123   /// padding should never be required.
    124   virtual uint8_t getBundlePadding() const {
    125     return 0;
    126   }
    127 
    128   /// \brief Set the padding size for this fragment. By default it's a no-op,
    129   /// and only some fragments have a meaningful implementation.
    130   virtual void setBundlePadding(uint8_t N) {
    131   }
    132 
    133   void dump();
    134 };
    135 
    136 /// Interface implemented by fragments that contain encoded instructions and/or
    137 /// data.
    138 ///
    139 class MCEncodedFragment : public MCFragment {
    140   virtual void anchor();
    141 
    142   uint8_t BundlePadding;
    143 public:
    144   MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = 0)
    145     : MCFragment(FType, SD), BundlePadding(0)
    146   {
    147   }
    148   virtual ~MCEncodedFragment();
    149 
    150   virtual SmallVectorImpl<char> &getContents() = 0;
    151   virtual const SmallVectorImpl<char> &getContents() const = 0;
    152 
    153   virtual uint8_t getBundlePadding() const {
    154     return BundlePadding;
    155   }
    156 
    157   virtual void setBundlePadding(uint8_t N) {
    158     BundlePadding = N;
    159   }
    160 
    161   static bool classof(const MCFragment *F) {
    162     MCFragment::FragmentType Kind = F->getKind();
    163     switch (Kind) {
    164       default:
    165         return false;
    166       case MCFragment::FT_Relaxable:
    167       case MCFragment::FT_CompactEncodedInst:
    168       case MCFragment::FT_Data:
    169         return true;
    170     }
    171   }
    172 };
    173 
    174 /// Interface implemented by fragments that contain encoded instructions and/or
    175 /// data and also have fixups registered.
    176 ///
    177 class MCEncodedFragmentWithFixups : public MCEncodedFragment {
    178   virtual void anchor();
    179 
    180 public:
    181   MCEncodedFragmentWithFixups(MCFragment::FragmentType FType,
    182                               MCSectionData *SD = 0)
    183     : MCEncodedFragment(FType, SD)
    184   {
    185   }
    186 
    187   virtual ~MCEncodedFragmentWithFixups();
    188 
    189   typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
    190   typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
    191 
    192   virtual SmallVectorImpl<MCFixup> &getFixups() = 0;
    193   virtual const SmallVectorImpl<MCFixup> &getFixups() const = 0;
    194 
    195   virtual fixup_iterator fixup_begin() = 0;
    196   virtual const_fixup_iterator fixup_begin() const  = 0;
    197   virtual fixup_iterator fixup_end() = 0;
    198   virtual const_fixup_iterator fixup_end() const = 0;
    199 
    200   static bool classof(const MCFragment *F) {
    201     MCFragment::FragmentType Kind = F->getKind();
    202     return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data;
    203   }
    204 };
    205 
    206 /// Fragment for data and encoded instructions.
    207 ///
    208 class MCDataFragment : public MCEncodedFragmentWithFixups {
    209   virtual void anchor();
    210 
    211   /// \brief Does this fragment contain encoded instructions anywhere in it?
    212   bool HasInstructions;
    213 
    214   /// \brief Should this fragment be aligned to the end of a bundle?
    215   bool AlignToBundleEnd;
    216 
    217   SmallVector<char, 32> Contents;
    218 
    219   /// Fixups - The list of fixups in this fragment.
    220   SmallVector<MCFixup, 4> Fixups;
    221 public:
    222   MCDataFragment(MCSectionData *SD = 0)
    223     : MCEncodedFragmentWithFixups(FT_Data, SD),
    224       HasInstructions(false), AlignToBundleEnd(false)
    225   {
    226   }
    227 
    228   virtual SmallVectorImpl<char> &getContents() { return Contents; }
    229   virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
    230 
    231   SmallVectorImpl<MCFixup> &getFixups() {
    232     return Fixups;
    233   }
    234 
    235   const SmallVectorImpl<MCFixup> &getFixups() const {
    236     return Fixups;
    237   }
    238 
    239   virtual bool hasInstructions() const { return HasInstructions; }
    240   virtual void setHasInstructions(bool V) { HasInstructions = V; }
    241 
    242   virtual bool alignToBundleEnd() const { return AlignToBundleEnd; }
    243   virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
    244 
    245   fixup_iterator fixup_begin() { return Fixups.begin(); }
    246   const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
    247 
    248   fixup_iterator fixup_end() {return Fixups.end();}
    249   const_fixup_iterator fixup_end() const {return Fixups.end();}
    250 
    251   static bool classof(const MCFragment *F) {
    252     return F->getKind() == MCFragment::FT_Data;
    253   }
    254 };
    255 
    256 /// This is a compact (memory-size-wise) fragment for holding an encoded
    257 /// instruction (non-relaxable) that has no fixups registered. When applicable,
    258 /// it can be used instead of MCDataFragment and lead to lower memory
    259 /// consumption.
    260 ///
    261 class MCCompactEncodedInstFragment : public MCEncodedFragment {
    262   virtual void anchor();
    263 
    264   /// \brief Should this fragment be aligned to the end of a bundle?
    265   bool AlignToBundleEnd;
    266 
    267   SmallVector<char, 4> Contents;
    268 public:
    269   MCCompactEncodedInstFragment(MCSectionData *SD = 0)
    270     : MCEncodedFragment(FT_CompactEncodedInst, SD), AlignToBundleEnd(false)
    271   {
    272   }
    273 
    274   virtual bool hasInstructions() const {
    275     return true;
    276   }
    277 
    278   virtual SmallVectorImpl<char> &getContents() { return Contents; }
    279   virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
    280 
    281   virtual bool alignToBundleEnd() const { return AlignToBundleEnd; }
    282   virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
    283 
    284   static bool classof(const MCFragment *F) {
    285     return F->getKind() == MCFragment::FT_CompactEncodedInst;
    286   }
    287 };
    288 
    289 /// A relaxable fragment holds on to its MCInst, since it may need to be
    290 /// relaxed during the assembler layout and relaxation stage.
    291 ///
    292 class MCRelaxableFragment : public MCEncodedFragmentWithFixups {
    293   virtual void anchor();
    294 
    295   /// Inst - The instruction this is a fragment for.
    296   MCInst Inst;
    297 
    298   /// Contents - Binary data for the currently encoded instruction.
    299   SmallVector<char, 8> Contents;
    300 
    301   /// Fixups - The list of fixups in this fragment.
    302   SmallVector<MCFixup, 1> Fixups;
    303 
    304 public:
    305   MCRelaxableFragment(const MCInst &_Inst, MCSectionData *SD = 0)
    306     : MCEncodedFragmentWithFixups(FT_Relaxable, SD), Inst(_Inst) {
    307   }
    308 
    309   virtual SmallVectorImpl<char> &getContents() { return Contents; }
    310   virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
    311 
    312   const MCInst &getInst() const { return Inst; }
    313   void setInst(const MCInst& Value) { Inst = Value; }
    314 
    315   SmallVectorImpl<MCFixup> &getFixups() {
    316     return Fixups;
    317   }
    318 
    319   const SmallVectorImpl<MCFixup> &getFixups() const {
    320     return Fixups;
    321   }
    322 
    323   virtual bool hasInstructions() const { return true; }
    324 
    325   fixup_iterator fixup_begin() { return Fixups.begin(); }
    326   const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
    327 
    328   fixup_iterator fixup_end() {return Fixups.end();}
    329   const_fixup_iterator fixup_end() const {return Fixups.end();}
    330 
    331   static bool classof(const MCFragment *F) {
    332     return F->getKind() == MCFragment::FT_Relaxable;
    333   }
    334 };
    335 
    336 class MCAlignFragment : public MCFragment {
    337   virtual void anchor();
    338 
    339   /// Alignment - The alignment to ensure, in bytes.
    340   unsigned Alignment;
    341 
    342   /// Value - Value to use for filling padding bytes.
    343   int64_t Value;
    344 
    345   /// ValueSize - The size of the integer (in bytes) of \p Value.
    346   unsigned ValueSize;
    347 
    348   /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
    349   /// cannot be satisfied in this width then this fragment is ignored.
    350   unsigned MaxBytesToEmit;
    351 
    352   /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
    353   /// of using the provided value. The exact interpretation of this flag is
    354   /// target dependent.
    355   bool EmitNops : 1;
    356 
    357 public:
    358   MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
    359                   unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
    360     : MCFragment(FT_Align, SD), Alignment(_Alignment),
    361       Value(_Value),ValueSize(_ValueSize),
    362       MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
    363 
    364   /// @name Accessors
    365   /// @{
    366 
    367   unsigned getAlignment() const { return Alignment; }
    368 
    369   int64_t getValue() const { return Value; }
    370 
    371   unsigned getValueSize() const { return ValueSize; }
    372 
    373   unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
    374 
    375   bool hasEmitNops() const { return EmitNops; }
    376   void setEmitNops(bool Value) { EmitNops = Value; }
    377 
    378   /// @}
    379 
    380   static bool classof(const MCFragment *F) {
    381     return F->getKind() == MCFragment::FT_Align;
    382   }
    383 };
    384 
    385 class MCFillFragment : public MCFragment {
    386   virtual void anchor();
    387 
    388   /// Value - Value to use for filling bytes.
    389   int64_t Value;
    390 
    391   /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
    392   /// this is a virtual fill fragment.
    393   unsigned ValueSize;
    394 
    395   /// Size - The number of bytes to insert.
    396   uint64_t Size;
    397 
    398 public:
    399   MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
    400                  MCSectionData *SD = 0)
    401     : MCFragment(FT_Fill, SD),
    402       Value(_Value), ValueSize(_ValueSize), Size(_Size) {
    403     assert((!ValueSize || (Size % ValueSize) == 0) &&
    404            "Fill size must be a multiple of the value size!");
    405   }
    406 
    407   /// @name Accessors
    408   /// @{
    409 
    410   int64_t getValue() const { return Value; }
    411 
    412   unsigned getValueSize() const { return ValueSize; }
    413 
    414   uint64_t getSize() const { return Size; }
    415 
    416   /// @}
    417 
    418   static bool classof(const MCFragment *F) {
    419     return F->getKind() == MCFragment::FT_Fill;
    420   }
    421 };
    422 
    423 class MCOrgFragment : public MCFragment {
    424   virtual void anchor();
    425 
    426   /// Offset - The offset this fragment should start at.
    427   const MCExpr *Offset;
    428 
    429   /// Value - Value to use for filling bytes.
    430   int8_t Value;
    431 
    432 public:
    433   MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
    434     : MCFragment(FT_Org, SD),
    435       Offset(&_Offset), Value(_Value) {}
    436 
    437   /// @name Accessors
    438   /// @{
    439 
    440   const MCExpr &getOffset() const { return *Offset; }
    441 
    442   uint8_t getValue() const { return Value; }
    443 
    444   /// @}
    445 
    446   static bool classof(const MCFragment *F) {
    447     return F->getKind() == MCFragment::FT_Org;
    448   }
    449 };
    450 
    451 class MCLEBFragment : public MCFragment {
    452   virtual void anchor();
    453 
    454   /// Value - The value this fragment should contain.
    455   const MCExpr *Value;
    456 
    457   /// IsSigned - True if this is a sleb128, false if uleb128.
    458   bool IsSigned;
    459 
    460   SmallString<8> Contents;
    461 public:
    462   MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD)
    463     : MCFragment(FT_LEB, SD),
    464       Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
    465 
    466   /// @name Accessors
    467   /// @{
    468 
    469   const MCExpr &getValue() const { return *Value; }
    470 
    471   bool isSigned() const { return IsSigned; }
    472 
    473   SmallString<8> &getContents() { return Contents; }
    474   const SmallString<8> &getContents() const { return Contents; }
    475 
    476   /// @}
    477 
    478   static bool classof(const MCFragment *F) {
    479     return F->getKind() == MCFragment::FT_LEB;
    480   }
    481 };
    482 
    483 class MCDwarfLineAddrFragment : public MCFragment {
    484   virtual void anchor();
    485 
    486   /// LineDelta - the value of the difference between the two line numbers
    487   /// between two .loc dwarf directives.
    488   int64_t LineDelta;
    489 
    490   /// AddrDelta - The expression for the difference of the two symbols that
    491   /// make up the address delta between two .loc dwarf directives.
    492   const MCExpr *AddrDelta;
    493 
    494   SmallString<8> Contents;
    495 
    496 public:
    497   MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
    498                       MCSectionData *SD)
    499     : MCFragment(FT_Dwarf, SD),
    500       LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
    501 
    502   /// @name Accessors
    503   /// @{
    504 
    505   int64_t getLineDelta() const { return LineDelta; }
    506 
    507   const MCExpr &getAddrDelta() const { return *AddrDelta; }
    508 
    509   SmallString<8> &getContents() { return Contents; }
    510   const SmallString<8> &getContents() const { return Contents; }
    511 
    512   /// @}
    513 
    514   static bool classof(const MCFragment *F) {
    515     return F->getKind() == MCFragment::FT_Dwarf;
    516   }
    517 };
    518 
    519 class MCDwarfCallFrameFragment : public MCFragment {
    520   virtual void anchor();
    521 
    522   /// AddrDelta - The expression for the difference of the two symbols that
    523   /// make up the address delta between two .cfi_* dwarf directives.
    524   const MCExpr *AddrDelta;
    525 
    526   SmallString<8> Contents;
    527 
    528 public:
    529   MCDwarfCallFrameFragment(const MCExpr &_AddrDelta,  MCSectionData *SD)
    530     : MCFragment(FT_DwarfFrame, SD),
    531       AddrDelta(&_AddrDelta) { Contents.push_back(0); }
    532 
    533   /// @name Accessors
    534   /// @{
    535 
    536   const MCExpr &getAddrDelta() const { return *AddrDelta; }
    537 
    538   SmallString<8> &getContents() { return Contents; }
    539   const SmallString<8> &getContents() const { return Contents; }
    540 
    541   /// @}
    542 
    543   static bool classof(const MCFragment *F) {
    544     return F->getKind() == MCFragment::FT_DwarfFrame;
    545   }
    546 };
    547 
    548 // FIXME: Should this be a separate class, or just merged into MCSection? Since
    549 // we anticipate the fast path being through an MCAssembler, the only reason to
    550 // keep it out is for API abstraction.
    551 class MCSectionData : public ilist_node<MCSectionData> {
    552   friend class MCAsmLayout;
    553 
    554   MCSectionData(const MCSectionData&) LLVM_DELETED_FUNCTION;
    555   void operator=(const MCSectionData&) LLVM_DELETED_FUNCTION;
    556 
    557 public:
    558   typedef iplist<MCFragment> FragmentListType;
    559 
    560   typedef FragmentListType::const_iterator const_iterator;
    561   typedef FragmentListType::iterator iterator;
    562 
    563   typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
    564   typedef FragmentListType::reverse_iterator reverse_iterator;
    565 
    566   /// \brief Express the state of bundle locked groups while emitting code.
    567   enum BundleLockStateType {
    568     NotBundleLocked,
    569     BundleLocked,
    570     BundleLockedAlignToEnd
    571   };
    572 private:
    573   FragmentListType Fragments;
    574   const MCSection *Section;
    575 
    576   /// Ordinal - The section index in the assemblers section list.
    577   unsigned Ordinal;
    578 
    579   /// LayoutOrder - The index of this section in the layout order.
    580   unsigned LayoutOrder;
    581 
    582   /// Alignment - The maximum alignment seen in this section.
    583   unsigned Alignment;
    584 
    585   /// \brief Keeping track of bundle-locked state.
    586   BundleLockStateType BundleLockState;
    587 
    588   /// \brief We've seen a bundle_lock directive but not its first instruction
    589   /// yet.
    590   bool BundleGroupBeforeFirstInst;
    591 
    592   /// @name Assembler Backend Data
    593   /// @{
    594   //
    595   // FIXME: This could all be kept private to the assembler implementation.
    596 
    597   /// HasInstructions - Whether this section has had instructions emitted into
    598   /// it.
    599   unsigned HasInstructions : 1;
    600 
    601   /// @}
    602 
    603 public:
    604   // Only for use as sentinel.
    605   MCSectionData();
    606   MCSectionData(const MCSection &Section, MCAssembler *A = 0);
    607 
    608   const MCSection &getSection() const { return *Section; }
    609 
    610   unsigned getAlignment() const { return Alignment; }
    611   void setAlignment(unsigned Value) { Alignment = Value; }
    612 
    613   bool hasInstructions() const { return HasInstructions; }
    614   void setHasInstructions(bool Value) { HasInstructions = Value; }
    615 
    616   unsigned getOrdinal() const { return Ordinal; }
    617   void setOrdinal(unsigned Value) { Ordinal = Value; }
    618 
    619   unsigned getLayoutOrder() const { return LayoutOrder; }
    620   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
    621 
    622   /// @name Fragment Access
    623   /// @{
    624 
    625   const FragmentListType &getFragmentList() const { return Fragments; }
    626   FragmentListType &getFragmentList() { return Fragments; }
    627 
    628   iterator begin() { return Fragments.begin(); }
    629   const_iterator begin() const { return Fragments.begin(); }
    630 
    631   iterator end() { return Fragments.end(); }
    632   const_iterator end() const { return Fragments.end(); }
    633 
    634   reverse_iterator rbegin() { return Fragments.rbegin(); }
    635   const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
    636 
    637   reverse_iterator rend() { return Fragments.rend(); }
    638   const_reverse_iterator rend() const { return Fragments.rend(); }
    639 
    640   size_t size() const { return Fragments.size(); }
    641 
    642   bool empty() const { return Fragments.empty(); }
    643 
    644   bool isBundleLocked() const {
    645     return BundleLockState != NotBundleLocked;
    646   }
    647 
    648   BundleLockStateType getBundleLockState() const {
    649     return BundleLockState;
    650   }
    651 
    652   void setBundleLockState(BundleLockStateType NewState) {
    653     BundleLockState = NewState;
    654   }
    655 
    656   bool isBundleGroupBeforeFirstInst() const {
    657     return BundleGroupBeforeFirstInst;
    658   }
    659 
    660   void setBundleGroupBeforeFirstInst(bool IsFirst) {
    661     BundleGroupBeforeFirstInst = IsFirst;
    662   }
    663 
    664   void dump();
    665 
    666   /// @}
    667 };
    668 
    669 // FIXME: Same concerns as with SectionData.
    670 class MCSymbolData : public ilist_node<MCSymbolData> {
    671 public:
    672   const MCSymbol *Symbol;
    673 
    674   /// Fragment - The fragment this symbol's value is relative to, if any.
    675   MCFragment *Fragment;
    676 
    677   /// Offset - The offset to apply to the fragment address to form this symbol's
    678   /// value.
    679   uint64_t Offset;
    680 
    681   /// IsExternal - True if this symbol is visible outside this translation
    682   /// unit.
    683   unsigned IsExternal : 1;
    684 
    685   /// IsPrivateExtern - True if this symbol is private extern.
    686   unsigned IsPrivateExtern : 1;
    687 
    688   /// CommonSize - The size of the symbol, if it is 'common', or 0.
    689   //
    690   // FIXME: Pack this in with other fields? We could put it in offset, since a
    691   // common symbol can never get a definition.
    692   uint64_t CommonSize;
    693 
    694   /// SymbolSize - An expression describing how to calculate the size of
    695   /// a symbol. If a symbol has no size this field will be NULL.
    696   const MCExpr *SymbolSize;
    697 
    698   /// CommonAlign - The alignment of the symbol, if it is 'common'.
    699   //
    700   // FIXME: Pack this in with other fields?
    701   unsigned CommonAlign;
    702 
    703   /// Flags - The Flags field is used by object file implementations to store
    704   /// additional per symbol information which is not easily classified.
    705   uint32_t Flags;
    706 
    707   /// Index - Index field, for use by the object file implementation.
    708   uint64_t Index;
    709 
    710 public:
    711   // Only for use as sentinel.
    712   MCSymbolData();
    713   MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
    714                MCAssembler *A = 0);
    715 
    716   /// @name Accessors
    717   /// @{
    718 
    719   const MCSymbol &getSymbol() const { return *Symbol; }
    720 
    721   MCFragment *getFragment() const { return Fragment; }
    722   void setFragment(MCFragment *Value) { Fragment = Value; }
    723 
    724   uint64_t getOffset() const { return Offset; }
    725   void setOffset(uint64_t Value) { Offset = Value; }
    726 
    727   /// @}
    728   /// @name Symbol Attributes
    729   /// @{
    730 
    731   bool isExternal() const { return IsExternal; }
    732   void setExternal(bool Value) { IsExternal = Value; }
    733 
    734   bool isPrivateExtern() const { return IsPrivateExtern; }
    735   void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
    736 
    737   /// isCommon - Is this a 'common' symbol.
    738   bool isCommon() const { return CommonSize != 0; }
    739 
    740   /// setCommon - Mark this symbol as being 'common'.
    741   ///
    742   /// \param Size - The size of the symbol.
    743   /// \param Align - The alignment of the symbol.
    744   void setCommon(uint64_t Size, unsigned Align) {
    745     CommonSize = Size;
    746     CommonAlign = Align;
    747   }
    748 
    749   /// getCommonSize - Return the size of a 'common' symbol.
    750   uint64_t getCommonSize() const {
    751     assert(isCommon() && "Not a 'common' symbol!");
    752     return CommonSize;
    753   }
    754 
    755   void setSize(const MCExpr *SS) {
    756     SymbolSize = SS;
    757   }
    758 
    759   const MCExpr *getSize() const {
    760     return SymbolSize;
    761   }
    762 
    763 
    764   /// getCommonAlignment - Return the alignment of a 'common' symbol.
    765   unsigned getCommonAlignment() const {
    766     assert(isCommon() && "Not a 'common' symbol!");
    767     return CommonAlign;
    768   }
    769 
    770   /// getFlags - Get the (implementation defined) symbol flags.
    771   uint32_t getFlags() const { return Flags; }
    772 
    773   /// setFlags - Set the (implementation defined) symbol flags.
    774   void setFlags(uint32_t Value) { Flags = Value; }
    775 
    776   /// modifyFlags - Modify the flags via a mask
    777   void modifyFlags(uint32_t Value, uint32_t Mask) {
    778     Flags = (Flags & ~Mask) | Value;
    779   }
    780 
    781   /// getIndex - Get the (implementation defined) index.
    782   uint64_t getIndex() const { return Index; }
    783 
    784   /// setIndex - Set the (implementation defined) index.
    785   void setIndex(uint64_t Value) { Index = Value; }
    786 
    787   /// @}
    788 
    789   void dump();
    790 };
    791 
    792 // FIXME: This really doesn't belong here. See comments below.
    793 struct IndirectSymbolData {
    794   MCSymbol *Symbol;
    795   MCSectionData *SectionData;
    796 };
    797 
    798 // FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
    799 // to one another.
    800 struct DataRegionData {
    801   // This enum should be kept in sync w/ the mach-o definition in
    802   // llvm/Object/MachOFormat.h.
    803   enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
    804   MCSymbol *Start;
    805   MCSymbol *End;
    806 };
    807 
    808 class MCAssembler {
    809   friend class MCAsmLayout;
    810 
    811 public:
    812   typedef iplist<MCSectionData> SectionDataListType;
    813   typedef iplist<MCSymbolData> SymbolDataListType;
    814 
    815   typedef SectionDataListType::const_iterator const_iterator;
    816   typedef SectionDataListType::iterator iterator;
    817 
    818   typedef SymbolDataListType::const_iterator const_symbol_iterator;
    819   typedef SymbolDataListType::iterator symbol_iterator;
    820 
    821   typedef std::vector<IndirectSymbolData>::const_iterator
    822     const_indirect_symbol_iterator;
    823   typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
    824 
    825   typedef std::vector<DataRegionData>::const_iterator
    826     const_data_region_iterator;
    827   typedef std::vector<DataRegionData>::iterator data_region_iterator;
    828 
    829 private:
    830   MCAssembler(const MCAssembler&) LLVM_DELETED_FUNCTION;
    831   void operator=(const MCAssembler&) LLVM_DELETED_FUNCTION;
    832 
    833   MCContext &Context;
    834 
    835   MCAsmBackend &Backend;
    836 
    837   MCCodeEmitter &Emitter;
    838 
    839   MCObjectWriter *Writer;
    840 
    841   raw_ostream &OS;
    842 
    843   iplist<MCSectionData> Sections;
    844 
    845   iplist<MCSymbolData> Symbols;
    846 
    847   /// The map of sections to their associated assembler backend data.
    848   //
    849   // FIXME: Avoid this indirection?
    850   DenseMap<const MCSection*, MCSectionData*> SectionMap;
    851 
    852   /// The map of symbols to their associated assembler backend data.
    853   //
    854   // FIXME: Avoid this indirection?
    855   DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
    856 
    857   std::vector<IndirectSymbolData> IndirectSymbols;
    858 
    859   std::vector<DataRegionData> DataRegions;
    860 
    861   /// The list of linker options to propagate into the object file.
    862   std::vector<std::vector<std::string> > LinkerOptions;
    863 
    864   /// The set of function symbols for which a .thumb_func directive has
    865   /// been seen.
    866   //
    867   // FIXME: We really would like this in target specific code rather than
    868   // here. Maybe when the relocation stuff moves to target specific,
    869   // this can go with it? The streamer would need some target specific
    870   // refactoring too.
    871   SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
    872 
    873   /// \brief The bundle alignment size currently set in the assembler.
    874   ///
    875   /// By default it's 0, which means bundling is disabled.
    876   unsigned BundleAlignSize;
    877 
    878   unsigned RelaxAll : 1;
    879   unsigned NoExecStack : 1;
    880   unsigned SubsectionsViaSymbols : 1;
    881 
    882   /// ELF specific e_header flags
    883   // It would be good if there were an MCELFAssembler class to hold this.
    884   // ELF header flags are used both by the integrated and standalone assemblers.
    885   // Access to the flags is necessary in cases where assembler directives affect
    886   // which flags to be set.
    887   unsigned ELFHeaderEFlags;
    888 private:
    889   /// Evaluate a fixup to a relocatable expression and the value which should be
    890   /// placed into the fixup.
    891   ///
    892   /// \param Layout The layout to use for evaluation.
    893   /// \param Fixup The fixup to evaluate.
    894   /// \param DF The fragment the fixup is inside.
    895   /// \param Target [out] On return, the relocatable expression the fixup
    896   /// evaluates to.
    897   /// \param Value [out] On return, the value of the fixup as currently laid
    898   /// out.
    899   /// \return Whether the fixup value was fully resolved. This is true if the
    900   /// \p Value result is fixed, otherwise the value may change due to
    901   /// relocation.
    902   bool evaluateFixup(const MCAsmLayout &Layout,
    903                      const MCFixup &Fixup, const MCFragment *DF,
    904                      MCValue &Target, uint64_t &Value) const;
    905 
    906   /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
    907   /// (increased in size, in order to hold its value correctly).
    908   bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF,
    909                             const MCAsmLayout &Layout) const;
    910 
    911   /// Check whether the given fragment needs relaxation.
    912   bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF,
    913                                const MCAsmLayout &Layout) const;
    914 
    915   /// \brief Perform one layout iteration and return true if any offsets
    916   /// were adjusted.
    917   bool layoutOnce(MCAsmLayout &Layout);
    918 
    919   /// \brief Perform one layout iteration of the given section and return true
    920   /// if any offsets were adjusted.
    921   bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
    922 
    923   bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
    924 
    925   bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
    926 
    927   bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
    928   bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
    929                                    MCDwarfCallFrameFragment &DF);
    930 
    931   /// finishLayout - Finalize a layout, including fragment lowering.
    932   void finishLayout(MCAsmLayout &Layout);
    933 
    934   uint64_t handleFixup(const MCAsmLayout &Layout,
    935                        MCFragment &F, const MCFixup &Fixup);
    936 
    937 public:
    938   /// Compute the effective fragment size assuming it is laid out at the given
    939   /// \p SectionAddress and \p FragmentOffset.
    940   uint64_t computeFragmentSize(const MCAsmLayout &Layout,
    941                                const MCFragment &F) const;
    942 
    943   /// Find the symbol which defines the atom containing the given symbol, or
    944   /// null if there is no such symbol.
    945   const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
    946 
    947   /// Check whether a particular symbol is visible to the linker and is required
    948   /// in the symbol table, or whether it can be discarded by the assembler. This
    949   /// also effects whether the assembler treats the label as potentially
    950   /// defining a separate atom.
    951   bool isSymbolLinkerVisible(const MCSymbol &SD) const;
    952 
    953   /// Emit the section contents using the given object writer.
    954   void writeSectionData(const MCSectionData *Section,
    955                         const MCAsmLayout &Layout) const;
    956 
    957   /// Check whether a given symbol has been flagged with .thumb_func.
    958   bool isThumbFunc(const MCSymbol *Func) const {
    959     return ThumbFuncs.count(Func);
    960   }
    961 
    962   /// Flag a function symbol as the target of a .thumb_func directive.
    963   void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
    964 
    965   /// ELF e_header flags
    966   unsigned getELFHeaderEFlags() const {return ELFHeaderEFlags;}
    967   void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags;}
    968 
    969 public:
    970   /// Construct a new assembler instance.
    971   ///
    972   /// \param OS The stream to output to.
    973   //
    974   // FIXME: How are we going to parameterize this? Two obvious options are stay
    975   // concrete and require clients to pass in a target like object. The other
    976   // option is to make this abstract, and have targets provide concrete
    977   // implementations as we do with AsmParser.
    978   MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
    979               MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
    980               raw_ostream &OS);
    981   ~MCAssembler();
    982 
    983   /// Reuse an assembler instance
    984   ///
    985   void reset();
    986 
    987   MCContext &getContext() const { return Context; }
    988 
    989   MCAsmBackend &getBackend() const { return Backend; }
    990 
    991   MCCodeEmitter &getEmitter() const { return Emitter; }
    992 
    993   MCObjectWriter &getWriter() const { return *Writer; }
    994 
    995   void setWriter(MCObjectWriter &ObjectWriter);
    996 
    997   /// Finish - Do final processing and write the object to the output stream.
    998   /// \p Writer is used for custom object writer (as the MCJIT does),
    999   /// if not specified it is automatically created from backend.
   1000   void Finish();
   1001 
   1002   // FIXME: This does not belong here.
   1003   bool getSubsectionsViaSymbols() const {
   1004     return SubsectionsViaSymbols;
   1005   }
   1006   void setSubsectionsViaSymbols(bool Value) {
   1007     SubsectionsViaSymbols = Value;
   1008   }
   1009 
   1010   bool getRelaxAll() const { return RelaxAll; }
   1011   void setRelaxAll(bool Value) { RelaxAll = Value; }
   1012 
   1013   bool getNoExecStack() const { return NoExecStack; }
   1014   void setNoExecStack(bool Value) { NoExecStack = Value; }
   1015 
   1016   bool isBundlingEnabled() const {
   1017     return BundleAlignSize != 0;
   1018   }
   1019 
   1020   unsigned getBundleAlignSize() const {
   1021     return BundleAlignSize;
   1022   }
   1023 
   1024   void setBundleAlignSize(unsigned Size) {
   1025     assert((Size == 0 || !(Size & (Size - 1))) &&
   1026            "Expect a power-of-two bundle align size");
   1027     BundleAlignSize = Size;
   1028   }
   1029 
   1030   /// @name Section List Access
   1031   /// @{
   1032 
   1033   const SectionDataListType &getSectionList() const { return Sections; }
   1034   SectionDataListType &getSectionList() { return Sections; }
   1035 
   1036   iterator begin() { return Sections.begin(); }
   1037   const_iterator begin() const { return Sections.begin(); }
   1038 
   1039   iterator end() { return Sections.end(); }
   1040   const_iterator end() const { return Sections.end(); }
   1041 
   1042   size_t size() const { return Sections.size(); }
   1043 
   1044   /// @}
   1045   /// @name Symbol List Access
   1046   /// @{
   1047 
   1048   const SymbolDataListType &getSymbolList() const { return Symbols; }
   1049   SymbolDataListType &getSymbolList() { return Symbols; }
   1050 
   1051   symbol_iterator symbol_begin() { return Symbols.begin(); }
   1052   const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
   1053 
   1054   symbol_iterator symbol_end() { return Symbols.end(); }
   1055   const_symbol_iterator symbol_end() const { return Symbols.end(); }
   1056 
   1057   size_t symbol_size() const { return Symbols.size(); }
   1058 
   1059   /// @}
   1060   /// @name Indirect Symbol List Access
   1061   /// @{
   1062 
   1063   // FIXME: This is a total hack, this should not be here. Once things are
   1064   // factored so that the streamer has direct access to the .o writer, it can
   1065   // disappear.
   1066   std::vector<IndirectSymbolData> &getIndirectSymbols() {
   1067     return IndirectSymbols;
   1068   }
   1069 
   1070   indirect_symbol_iterator indirect_symbol_begin() {
   1071     return IndirectSymbols.begin();
   1072   }
   1073   const_indirect_symbol_iterator indirect_symbol_begin() const {
   1074     return IndirectSymbols.begin();
   1075   }
   1076 
   1077   indirect_symbol_iterator indirect_symbol_end() {
   1078     return IndirectSymbols.end();
   1079   }
   1080   const_indirect_symbol_iterator indirect_symbol_end() const {
   1081     return IndirectSymbols.end();
   1082   }
   1083 
   1084   size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
   1085 
   1086   /// @}
   1087   /// @name Linker Option List Access
   1088   /// @{
   1089 
   1090   std::vector<std::vector<std::string> > &getLinkerOptions() {
   1091     return LinkerOptions;
   1092   }
   1093 
   1094   /// @}
   1095   /// @name Data Region List Access
   1096   /// @{
   1097 
   1098   // FIXME: This is a total hack, this should not be here. Once things are
   1099   // factored so that the streamer has direct access to the .o writer, it can
   1100   // disappear.
   1101   std::vector<DataRegionData> &getDataRegions() {
   1102     return DataRegions;
   1103   }
   1104 
   1105   data_region_iterator data_region_begin() {
   1106     return DataRegions.begin();
   1107   }
   1108   const_data_region_iterator data_region_begin() const {
   1109     return DataRegions.begin();
   1110   }
   1111 
   1112   data_region_iterator data_region_end() {
   1113     return DataRegions.end();
   1114   }
   1115   const_data_region_iterator data_region_end() const {
   1116     return DataRegions.end();
   1117   }
   1118 
   1119   size_t data_region_size() const { return DataRegions.size(); }
   1120 
   1121   /// @}
   1122   /// @name Backend Data Access
   1123   /// @{
   1124 
   1125   MCSectionData &getSectionData(const MCSection &Section) const {
   1126     MCSectionData *Entry = SectionMap.lookup(&Section);
   1127     assert(Entry && "Missing section data!");
   1128     return *Entry;
   1129   }
   1130 
   1131   MCSectionData &getOrCreateSectionData(const MCSection &Section,
   1132                                         bool *Created = 0) {
   1133     MCSectionData *&Entry = SectionMap[&Section];
   1134 
   1135     if (Created) *Created = !Entry;
   1136     if (!Entry)
   1137       Entry = new MCSectionData(Section, this);
   1138 
   1139     return *Entry;
   1140   }
   1141 
   1142   MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
   1143     MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
   1144     assert(Entry && "Missing symbol data!");
   1145     return *Entry;
   1146   }
   1147 
   1148   MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
   1149                                       bool *Created = 0) {
   1150     MCSymbolData *&Entry = SymbolMap[&Symbol];
   1151 
   1152     if (Created) *Created = !Entry;
   1153     if (!Entry)
   1154       Entry = new MCSymbolData(Symbol, 0, 0, this);
   1155 
   1156     return *Entry;
   1157   }
   1158 
   1159   /// @}
   1160 
   1161   void dump();
   1162 };
   1163 
   1164 } // end namespace llvm
   1165 
   1166 #endif
   1167