Home | History | Annotate | Download | only in ssl
      1 /* ssl/s3_cbc.c */
      2 /* ====================================================================
      3  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 
     56 #include "ssl_locl.h"
     57 
     58 #include <openssl/md5.h>
     59 #include <openssl/sha.h>
     60 
     61 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
     62  * field. (SHA-384/512 have 128-bit length.) */
     63 #define MAX_HASH_BIT_COUNT_BYTES 16
     64 
     65 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
     66  * Currently SHA-384/512 has a 128-byte block size and that's the largest
     67  * supported by TLS.) */
     68 #define MAX_HASH_BLOCK_SIZE 128
     69 
     70 /* Some utility functions are needed:
     71  *
     72  * These macros return the given value with the MSB copied to all the other
     73  * bits. They use the fact that arithmetic shift shifts-in the sign bit.
     74  * However, this is not ensured by the C standard so you may need to replace
     75  * them with something else on odd CPUs. */
     76 #define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) )
     77 #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
     78 
     79 /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
     80 static unsigned constant_time_lt(unsigned a, unsigned b)
     81 	{
     82 	a -= b;
     83 	return DUPLICATE_MSB_TO_ALL(a);
     84 	}
     85 
     86 /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
     87 static unsigned constant_time_ge(unsigned a, unsigned b)
     88 	{
     89 	a -= b;
     90 	return DUPLICATE_MSB_TO_ALL(~a);
     91 	}
     92 
     93 /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
     94 static unsigned char constant_time_eq_8(unsigned a, unsigned b)
     95 	{
     96 	unsigned c = a ^ b;
     97 	c--;
     98 	return DUPLICATE_MSB_TO_ALL_8(c);
     99 	}
    100 
    101 /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
    102  * record in |rec| by updating |rec->length| in constant time.
    103  *
    104  * block_size: the block size of the cipher used to encrypt the record.
    105  * returns:
    106  *   0: (in non-constant time) if the record is publicly invalid.
    107  *   1: if the padding was valid
    108  *  -1: otherwise. */
    109 int ssl3_cbc_remove_padding(const SSL* s,
    110 			    SSL3_RECORD *rec,
    111 			    unsigned block_size,
    112 			    unsigned mac_size)
    113 	{
    114 	unsigned padding_length, good;
    115 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
    116 
    117 	/* These lengths are all public so we can test them in non-constant
    118 	 * time. */
    119 	if (overhead > rec->length)
    120 		return 0;
    121 
    122 	padding_length = rec->data[rec->length-1];
    123 	good = constant_time_ge(rec->length, padding_length+overhead);
    124 	/* SSLv3 requires that the padding is minimal. */
    125 	good &= constant_time_ge(block_size, padding_length+1);
    126 	padding_length = good & (padding_length+1);
    127 	rec->length -= padding_length;
    128 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
    129 	return (int)((good & 1) | (~good & -1));
    130 }
    131 
    132 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
    133  * record in |rec| in constant time and returns 1 if the padding is valid and
    134  * -1 otherwise. It also removes any explicit IV from the start of the record
    135  * without leaking any timing about whether there was enough space after the
    136  * padding was removed.
    137  *
    138  * block_size: the block size of the cipher used to encrypt the record.
    139  * returns:
    140  *   0: (in non-constant time) if the record is publicly invalid.
    141  *   1: if the padding was valid
    142  *  -1: otherwise. */
    143 int tls1_cbc_remove_padding(const SSL* s,
    144 			    SSL3_RECORD *rec,
    145 			    unsigned block_size,
    146 			    unsigned mac_size)
    147 	{
    148 	unsigned padding_length, good, to_check, i;
    149 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
    150 	/* Check if version requires explicit IV */
    151 	if (s->version >= TLS1_1_VERSION || s->version == DTLS1_VERSION)
    152 		{
    153 		/* These lengths are all public so we can test them in
    154 		 * non-constant time.
    155 		 */
    156 		if (overhead + block_size > rec->length)
    157 			return 0;
    158 		/* We can now safely skip explicit IV */
    159 		rec->data += block_size;
    160 		rec->input += block_size;
    161 		rec->length -= block_size;
    162 		}
    163 	else if (overhead > rec->length)
    164 		return 0;
    165 
    166 	padding_length = rec->data[rec->length-1];
    167 
    168 	/* NB: if compression is in operation the first packet may not be of
    169 	 * even length so the padding bug check cannot be performed. This bug
    170 	 * workaround has been around since SSLeay so hopefully it is either
    171 	 * fixed now or no buggy implementation supports compression [steve]
    172 	 */
    173 	if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
    174 		{
    175 		/* First packet is even in size, so check */
    176 		if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
    177 		    !(padding_length & 1))
    178 			{
    179 			s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
    180 			}
    181 		if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
    182 		    padding_length > 0)
    183 			{
    184 			padding_length--;
    185 			}
    186 		}
    187 
    188 	if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
    189 		{
    190 		/* padding is already verified */
    191 		rec->length -= padding_length + 1;
    192 		return 1;
    193 		}
    194 
    195 	good = constant_time_ge(rec->length, overhead+padding_length);
    196 	/* The padding consists of a length byte at the end of the record and
    197 	 * then that many bytes of padding, all with the same value as the
    198 	 * length byte. Thus, with the length byte included, there are i+1
    199 	 * bytes of padding.
    200 	 *
    201 	 * We can't check just |padding_length+1| bytes because that leaks
    202 	 * decrypted information. Therefore we always have to check the maximum
    203 	 * amount of padding possible. (Again, the length of the record is
    204 	 * public information so we can use it.) */
    205 	to_check = 255; /* maximum amount of padding. */
    206 	if (to_check > rec->length-1)
    207 		to_check = rec->length-1;
    208 
    209 	for (i = 0; i < to_check; i++)
    210 		{
    211 		unsigned char mask = constant_time_ge(padding_length, i);
    212 		unsigned char b = rec->data[rec->length-1-i];
    213 		/* The final |padding_length+1| bytes should all have the value
    214 		 * |padding_length|. Therefore the XOR should be zero. */
    215 		good &= ~(mask&(padding_length ^ b));
    216 		}
    217 
    218 	/* If any of the final |padding_length+1| bytes had the wrong value,
    219 	 * one or more of the lower eight bits of |good| will be cleared. We
    220 	 * AND the bottom 8 bits together and duplicate the result to all the
    221 	 * bits. */
    222 	good &= good >> 4;
    223 	good &= good >> 2;
    224 	good &= good >> 1;
    225 	good <<= sizeof(good)*8-1;
    226 	good = DUPLICATE_MSB_TO_ALL(good);
    227 
    228 	padding_length = good & (padding_length+1);
    229 	rec->length -= padding_length;
    230 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
    231 
    232 	return (int)((good & 1) | (~good & -1));
    233 	}
    234 
    235 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
    236  * constant time (independent of the concrete value of rec->length, which may
    237  * vary within a 256-byte window).
    238  *
    239  * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
    240  * this function.
    241  *
    242  * On entry:
    243  *   rec->orig_len >= md_size
    244  *   md_size <= EVP_MAX_MD_SIZE
    245  *
    246  * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
    247  * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
    248  * a single or pair of cache-lines, then the variable memory accesses don't
    249  * actually affect the timing. CPUs with smaller cache-lines [if any] are
    250  * not multi-core and are not considered vulnerable to cache-timing attacks.
    251  */
    252 #define CBC_MAC_ROTATE_IN_PLACE
    253 
    254 void ssl3_cbc_copy_mac(unsigned char* out,
    255 		       const SSL3_RECORD *rec,
    256 		       unsigned md_size,unsigned orig_len)
    257 	{
    258 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    259 	unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
    260 	unsigned char *rotated_mac;
    261 #else
    262 	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
    263 #endif
    264 
    265 	/* mac_end is the index of |rec->data| just after the end of the MAC. */
    266 	unsigned mac_end = rec->length;
    267 	unsigned mac_start = mac_end - md_size;
    268 	/* scan_start contains the number of bytes that we can ignore because
    269 	 * the MAC's position can only vary by 255 bytes. */
    270 	unsigned scan_start = 0;
    271 	unsigned i, j;
    272 	unsigned div_spoiler;
    273 	unsigned rotate_offset;
    274 
    275 	OPENSSL_assert(orig_len >= md_size);
    276 	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
    277 
    278 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    279 	rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
    280 #endif
    281 
    282 	/* This information is public so it's safe to branch based on it. */
    283 	if (orig_len > md_size + 255 + 1)
    284 		scan_start = orig_len - (md_size + 255 + 1);
    285 	/* div_spoiler contains a multiple of md_size that is used to cause the
    286 	 * modulo operation to be constant time. Without this, the time varies
    287 	 * based on the amount of padding when running on Intel chips at least.
    288 	 *
    289 	 * The aim of right-shifting md_size is so that the compiler doesn't
    290 	 * figure out that it can remove div_spoiler as that would require it
    291 	 * to prove that md_size is always even, which I hope is beyond it. */
    292 	div_spoiler = md_size >> 1;
    293 	div_spoiler <<= (sizeof(div_spoiler)-1)*8;
    294 	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
    295 
    296 	memset(rotated_mac, 0, md_size);
    297 	for (i = scan_start, j = 0; i < orig_len; i++)
    298 		{
    299 		unsigned char mac_started = constant_time_ge(i, mac_start);
    300 		unsigned char mac_ended = constant_time_ge(i, mac_end);
    301 		unsigned char b = rec->data[i];
    302 		rotated_mac[j++] |= b & mac_started & ~mac_ended;
    303 		j &= constant_time_lt(j,md_size);
    304 		}
    305 
    306 	/* Now rotate the MAC */
    307 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    308 	j = 0;
    309 	for (i = 0; i < md_size; i++)
    310 		{
    311 		/* in case cache-line is 32 bytes, touch second line */
    312 		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
    313 		out[j++] = rotated_mac[rotate_offset++];
    314 		rotate_offset &= constant_time_lt(rotate_offset,md_size);
    315 		}
    316 #else
    317 	memset(out, 0, md_size);
    318 	rotate_offset = md_size - rotate_offset;
    319 	rotate_offset &= constant_time_lt(rotate_offset,md_size);
    320 	for (i = 0; i < md_size; i++)
    321 		{
    322 		for (j = 0; j < md_size; j++)
    323 			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
    324 		rotate_offset++;
    325 		rotate_offset &= constant_time_lt(rotate_offset,md_size);
    326 		}
    327 #endif
    328 	}
    329 
    330 /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
    331  * little-endian order. The value of p is advanced by four. */
    332 #define u32toLE(n, p) \
    333 	(*((p)++)=(unsigned char)(n), \
    334 	 *((p)++)=(unsigned char)(n>>8), \
    335 	 *((p)++)=(unsigned char)(n>>16), \
    336 	 *((p)++)=(unsigned char)(n>>24))
    337 
    338 /* These functions serialize the state of a hash and thus perform the standard
    339  * "final" operation without adding the padding and length that such a function
    340  * typically does. */
    341 static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
    342 	{
    343 	MD5_CTX *md5 = ctx;
    344 	u32toLE(md5->A, md_out);
    345 	u32toLE(md5->B, md_out);
    346 	u32toLE(md5->C, md_out);
    347 	u32toLE(md5->D, md_out);
    348 	}
    349 
    350 static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
    351 	{
    352 	SHA_CTX *sha1 = ctx;
    353 	l2n(sha1->h0, md_out);
    354 	l2n(sha1->h1, md_out);
    355 	l2n(sha1->h2, md_out);
    356 	l2n(sha1->h3, md_out);
    357 	l2n(sha1->h4, md_out);
    358 	}
    359 #define LARGEST_DIGEST_CTX SHA_CTX
    360 
    361 #ifndef OPENSSL_NO_SHA256
    362 static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
    363 	{
    364 	SHA256_CTX *sha256 = ctx;
    365 	unsigned i;
    366 
    367 	for (i = 0; i < 8; i++)
    368 		{
    369 		l2n(sha256->h[i], md_out);
    370 		}
    371 	}
    372 #undef  LARGEST_DIGEST_CTX
    373 #define LARGEST_DIGEST_CTX SHA256_CTX
    374 #endif
    375 
    376 #ifndef OPENSSL_NO_SHA512
    377 static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
    378 	{
    379 	SHA512_CTX *sha512 = ctx;
    380 	unsigned i;
    381 
    382 	for (i = 0; i < 8; i++)
    383 		{
    384 		l2n8(sha512->h[i], md_out);
    385 		}
    386 	}
    387 #undef  LARGEST_DIGEST_CTX
    388 #define LARGEST_DIGEST_CTX SHA512_CTX
    389 #endif
    390 
    391 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
    392  * which ssl3_cbc_digest_record supports. */
    393 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
    394 	{
    395 #ifdef OPENSSL_FIPS
    396 	if (FIPS_mode())
    397 		return 0;
    398 #endif
    399 	switch (EVP_MD_CTX_type(ctx))
    400 		{
    401 		case NID_md5:
    402 		case NID_sha1:
    403 #ifndef OPENSSL_NO_SHA256
    404 		case NID_sha224:
    405 		case NID_sha256:
    406 #endif
    407 #ifndef OPENSSL_NO_SHA512
    408 		case NID_sha384:
    409 		case NID_sha512:
    410 #endif
    411 			return 1;
    412 		default:
    413 			return 0;
    414 		}
    415 	}
    416 
    417 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
    418  * record.
    419  *
    420  *   ctx: the EVP_MD_CTX from which we take the hash function.
    421  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
    422  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
    423  *   md_out_size: if non-NULL, the number of output bytes is written here.
    424  *   header: the 13-byte, TLS record header.
    425  *   data: the record data itself, less any preceeding explicit IV.
    426  *   data_plus_mac_size: the secret, reported length of the data and MAC
    427  *     once the padding has been removed.
    428  *   data_plus_mac_plus_padding_size: the public length of the whole
    429  *     record, including padding.
    430  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
    431  *
    432  * On entry: by virtue of having been through one of the remove_padding
    433  * functions, above, we know that data_plus_mac_size is large enough to contain
    434  * a padding byte and MAC. (If the padding was invalid, it might contain the
    435  * padding too. ) */
    436 void ssl3_cbc_digest_record(
    437 	const EVP_MD_CTX *ctx,
    438 	unsigned char* md_out,
    439 	size_t* md_out_size,
    440 	const unsigned char header[13],
    441 	const unsigned char *data,
    442 	size_t data_plus_mac_size,
    443 	size_t data_plus_mac_plus_padding_size,
    444 	const unsigned char *mac_secret,
    445 	unsigned mac_secret_length,
    446 	char is_sslv3)
    447 	{
    448 	union {	double align;
    449 		unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
    450 	void (*md_final_raw)(void *ctx, unsigned char *md_out);
    451 	void (*md_transform)(void *ctx, const unsigned char *block);
    452 	unsigned md_size, md_block_size = 64;
    453 	unsigned sslv3_pad_length = 40, header_length, variance_blocks,
    454 		 len, max_mac_bytes, num_blocks,
    455 		 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
    456 	unsigned int bits;	/* at most 18 bits */
    457 	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
    458 	/* hmac_pad is the masked HMAC key. */
    459 	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
    460 	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
    461 	unsigned char mac_out[EVP_MAX_MD_SIZE];
    462 	unsigned i, j, md_out_size_u;
    463 	EVP_MD_CTX md_ctx;
    464 	/* mdLengthSize is the number of bytes in the length field that terminates
    465 	* the hash. */
    466 	unsigned md_length_size = 8;
    467 	char length_is_big_endian = 1;
    468 
    469 	/* This is a, hopefully redundant, check that allows us to forget about
    470 	 * many possible overflows later in this function. */
    471 	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
    472 
    473 	switch (EVP_MD_CTX_type(ctx))
    474 		{
    475 		case NID_md5:
    476 			MD5_Init((MD5_CTX*)md_state.c);
    477 			md_final_raw = tls1_md5_final_raw;
    478 			md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
    479 			md_size = 16;
    480 			sslv3_pad_length = 48;
    481 			length_is_big_endian = 0;
    482 			break;
    483 		case NID_sha1:
    484 			SHA1_Init((SHA_CTX*)md_state.c);
    485 			md_final_raw = tls1_sha1_final_raw;
    486 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
    487 			md_size = 20;
    488 			break;
    489 #ifndef OPENSSL_NO_SHA256
    490 		case NID_sha224:
    491 			SHA224_Init((SHA256_CTX*)md_state.c);
    492 			md_final_raw = tls1_sha256_final_raw;
    493 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
    494 			md_size = 224/8;
    495 			break;
    496 		case NID_sha256:
    497 			SHA256_Init((SHA256_CTX*)md_state.c);
    498 			md_final_raw = tls1_sha256_final_raw;
    499 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
    500 			md_size = 32;
    501 			break;
    502 #endif
    503 #ifndef OPENSSL_NO_SHA512
    504 		case NID_sha384:
    505 			SHA384_Init((SHA512_CTX*)md_state.c);
    506 			md_final_raw = tls1_sha512_final_raw;
    507 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
    508 			md_size = 384/8;
    509 			md_block_size = 128;
    510 			md_length_size = 16;
    511 			break;
    512 		case NID_sha512:
    513 			SHA512_Init((SHA512_CTX*)md_state.c);
    514 			md_final_raw = tls1_sha512_final_raw;
    515 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
    516 			md_size = 64;
    517 			md_block_size = 128;
    518 			md_length_size = 16;
    519 			break;
    520 #endif
    521 		default:
    522 			/* ssl3_cbc_record_digest_supported should have been
    523 			 * called first to check that the hash function is
    524 			 * supported. */
    525 			OPENSSL_assert(0);
    526 			if (md_out_size)
    527 				*md_out_size = -1;
    528 			return;
    529 		}
    530 
    531 	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
    532 	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
    533 	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
    534 
    535 	header_length = 13;
    536 	if (is_sslv3)
    537 		{
    538 		header_length =
    539 			mac_secret_length +
    540 			sslv3_pad_length +
    541 			8 /* sequence number */ +
    542 			1 /* record type */ +
    543 			2 /* record length */;
    544 		}
    545 
    546 	/* variance_blocks is the number of blocks of the hash that we have to
    547 	 * calculate in constant time because they could be altered by the
    548 	 * padding value.
    549 	 *
    550 	 * In SSLv3, the padding must be minimal so the end of the plaintext
    551 	 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
    552 	 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
    553 	 * termination (0x80 + 64-bit length) don't fit in the final block, we
    554 	 * say that the final two blocks can vary based on the padding.
    555 	 *
    556 	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
    557 	 * required to be minimal. Therefore we say that the final six blocks
    558 	 * can vary based on the padding.
    559 	 *
    560 	 * Later in the function, if the message is short and there obviously
    561 	 * cannot be this many blocks then variance_blocks can be reduced. */
    562 	variance_blocks = is_sslv3 ? 2 : 6;
    563 	/* From now on we're dealing with the MAC, which conceptually has 13
    564 	 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
    565 	 * (SSLv3) */
    566 	len = data_plus_mac_plus_padding_size + header_length;
    567 	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
    568 	* |header|, assuming that there's no padding. */
    569 	max_mac_bytes = len - md_size - 1;
    570 	/* num_blocks is the maximum number of hash blocks. */
    571 	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
    572 	/* In order to calculate the MAC in constant time we have to handle
    573 	 * the final blocks specially because the padding value could cause the
    574 	 * end to appear somewhere in the final |variance_blocks| blocks and we
    575 	 * can't leak where. However, |num_starting_blocks| worth of data can
    576 	 * be hashed right away because no padding value can affect whether
    577 	 * they are plaintext. */
    578 	num_starting_blocks = 0;
    579 	/* k is the starting byte offset into the conceptual header||data where
    580 	 * we start processing. */
    581 	k = 0;
    582 	/* mac_end_offset is the index just past the end of the data to be
    583 	 * MACed. */
    584 	mac_end_offset = data_plus_mac_size + header_length - md_size;
    585 	/* c is the index of the 0x80 byte in the final hash block that
    586 	 * contains application data. */
    587 	c = mac_end_offset % md_block_size;
    588 	/* index_a is the hash block number that contains the 0x80 terminating
    589 	 * value. */
    590 	index_a = mac_end_offset / md_block_size;
    591 	/* index_b is the hash block number that contains the 64-bit hash
    592 	 * length, in bits. */
    593 	index_b = (mac_end_offset + md_length_size) / md_block_size;
    594 	/* bits is the hash-length in bits. It includes the additional hash
    595 	 * block for the masked HMAC key, or whole of |header| in the case of
    596 	 * SSLv3. */
    597 
    598 	/* For SSLv3, if we're going to have any starting blocks then we need
    599 	 * at least two because the header is larger than a single block. */
    600 	if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
    601 		{
    602 		num_starting_blocks = num_blocks - variance_blocks;
    603 		k = md_block_size*num_starting_blocks;
    604 		}
    605 
    606 	bits = 8*mac_end_offset;
    607 	if (!is_sslv3)
    608 		{
    609 		/* Compute the initial HMAC block. For SSLv3, the padding and
    610 		 * secret bytes are included in |header| because they take more
    611 		 * than a single block. */
    612 		bits += 8*md_block_size;
    613 		memset(hmac_pad, 0, md_block_size);
    614 		OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
    615 		memcpy(hmac_pad, mac_secret, mac_secret_length);
    616 		for (i = 0; i < md_block_size; i++)
    617 			hmac_pad[i] ^= 0x36;
    618 
    619 		md_transform(md_state.c, hmac_pad);
    620 		}
    621 
    622 	if (length_is_big_endian)
    623 		{
    624 		memset(length_bytes,0,md_length_size-4);
    625 		length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
    626 		length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
    627 		length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
    628 		length_bytes[md_length_size-1] = (unsigned char)bits;
    629 		}
    630 	else
    631 		{
    632 		memset(length_bytes,0,md_length_size);
    633 		length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
    634 		length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
    635 		length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
    636 		length_bytes[md_length_size-8] = (unsigned char)bits;
    637 		}
    638 
    639 	if (k > 0)
    640 		{
    641 		if (is_sslv3)
    642 			{
    643 			/* The SSLv3 header is larger than a single block.
    644 			 * overhang is the number of bytes beyond a single
    645 			 * block that the header consumes: either 7 bytes
    646 			 * (SHA1) or 11 bytes (MD5). */
    647 			unsigned overhang = header_length-md_block_size;
    648 			md_transform(md_state.c, header);
    649 			memcpy(first_block, header + md_block_size, overhang);
    650 			memcpy(first_block + overhang, data, md_block_size-overhang);
    651 			md_transform(md_state.c, first_block);
    652 			for (i = 1; i < k/md_block_size - 1; i++)
    653 				md_transform(md_state.c, data + md_block_size*i - overhang);
    654 			}
    655 		else
    656 			{
    657 			/* k is a multiple of md_block_size. */
    658 			memcpy(first_block, header, 13);
    659 			memcpy(first_block+13, data, md_block_size-13);
    660 			md_transform(md_state.c, first_block);
    661 			for (i = 1; i < k/md_block_size; i++)
    662 				md_transform(md_state.c, data + md_block_size*i - 13);
    663 			}
    664 		}
    665 
    666 	memset(mac_out, 0, sizeof(mac_out));
    667 
    668 	/* We now process the final hash blocks. For each block, we construct
    669 	 * it in constant time. If the |i==index_a| then we'll include the 0x80
    670 	 * bytes and zero pad etc. For each block we selectively copy it, in
    671 	 * constant time, to |mac_out|. */
    672 	for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
    673 		{
    674 		unsigned char block[MAX_HASH_BLOCK_SIZE];
    675 		unsigned char is_block_a = constant_time_eq_8(i, index_a);
    676 		unsigned char is_block_b = constant_time_eq_8(i, index_b);
    677 		for (j = 0; j < md_block_size; j++)
    678 			{
    679 			unsigned char b = 0, is_past_c, is_past_cp1;
    680 			if (k < header_length)
    681 				b = header[k];
    682 			else if (k < data_plus_mac_plus_padding_size + header_length)
    683 				b = data[k-header_length];
    684 			k++;
    685 
    686 			is_past_c = is_block_a & constant_time_ge(j, c);
    687 			is_past_cp1 = is_block_a & constant_time_ge(j, c+1);
    688 			/* If this is the block containing the end of the
    689 			 * application data, and we are at the offset for the
    690 			 * 0x80 value, then overwrite b with 0x80. */
    691 			b = (b&~is_past_c) | (0x80&is_past_c);
    692 			/* If this the the block containing the end of the
    693 			 * application data and we're past the 0x80 value then
    694 			 * just write zero. */
    695 			b = b&~is_past_cp1;
    696 			/* If this is index_b (the final block), but not
    697 			 * index_a (the end of the data), then the 64-bit
    698 			 * length didn't fit into index_a and we're having to
    699 			 * add an extra block of zeros. */
    700 			b &= ~is_block_b | is_block_a;
    701 
    702 			/* The final bytes of one of the blocks contains the
    703 			 * length. */
    704 			if (j >= md_block_size - md_length_size)
    705 				{
    706 				/* If this is index_b, write a length byte. */
    707 				b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]);
    708 				}
    709 			block[j] = b;
    710 			}
    711 
    712 		md_transform(md_state.c, block);
    713 		md_final_raw(md_state.c, block);
    714 		/* If this is index_b, copy the hash value to |mac_out|. */
    715 		for (j = 0; j < md_size; j++)
    716 			mac_out[j] |= block[j]&is_block_b;
    717 		}
    718 
    719 	EVP_MD_CTX_init(&md_ctx);
    720 	EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
    721 	if (is_sslv3)
    722 		{
    723 		/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
    724 		memset(hmac_pad, 0x5c, sslv3_pad_length);
    725 
    726 		EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
    727 		EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
    728 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
    729 		}
    730 	else
    731 		{
    732 		/* Complete the HMAC in the standard manner. */
    733 		for (i = 0; i < md_block_size; i++)
    734 			hmac_pad[i] ^= 0x6a;
    735 
    736 		EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
    737 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
    738 		}
    739 	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
    740 	if (md_out_size)
    741 		*md_out_size = md_out_size_u;
    742 	EVP_MD_CTX_cleanup(&md_ctx);
    743 	}
    744 
    745 #ifdef OPENSSL_FIPS
    746 
    747 /* Due to the need to use EVP in FIPS mode we can't reimplement digests but
    748  * we can ensure the number of blocks processed is equal for all cases
    749  * by digesting additional data.
    750  */
    751 
    752 void tls_fips_digest_extra(
    753 	const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
    754 	const unsigned char *data, size_t data_len, size_t orig_len)
    755 	{
    756 	size_t block_size, digest_pad, blocks_data, blocks_orig;
    757 	if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
    758 		return;
    759 	block_size = EVP_MD_CTX_block_size(mac_ctx);
    760 	/* We are in FIPS mode if we get this far so we know we have only SHA*
    761 	 * digests and TLS to deal with.
    762 	 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
    763 	 * otherwise.
    764 	 * Additional header is 13 bytes. To get the number of digest blocks
    765 	 * processed round up the amount of data plus padding to the nearest
    766 	 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
    767 	 * So we have:
    768 	 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
    769 	 * equivalently:
    770 	 * blocks = (payload_len + digest_pad + 12)/block_size + 1
    771 	 * HMAC adds a constant overhead.
    772 	 * We're ultimately only interested in differences so this becomes
    773 	 * blocks = (payload_len + 29)/128
    774 	 * for SHA384/SHA512 and
    775 	 * blocks = (payload_len + 21)/64
    776 	 * otherwise.
    777 	 */
    778 	digest_pad = block_size == 64 ? 21 : 29;
    779 	blocks_orig = (orig_len + digest_pad)/block_size;
    780 	blocks_data = (data_len + digest_pad)/block_size;
    781 	/* MAC enough blocks to make up the difference between the original
    782 	 * and actual lengths plus one extra block to ensure this is never a
    783 	 * no op. The "data" pointer should always have enough space to
    784 	 * perform this operation as it is large enough for a maximum
    785 	 * length TLS buffer.
    786 	 */
    787 	EVP_DigestSignUpdate(mac_ctx, data,
    788 				(blocks_orig - blocks_data + 1) * block_size);
    789 	}
    790 #endif
    791