OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:sampling
(Results
1 - 8
of
8
) sorted by null
/device/asus/flo/
thermald-flo.conf
0
sampling
5000
4
sampling
5000
11
sampling
1000
18
sampling
1000
25
sampling
1000
32
sampling
1000
39
sampling
1000
46
sampling
1000
53
sampling
1000
60
sampling
100
[
all
...]
/device/lge/mako/
thermald-mako.conf
0
sampling
5000
4
sampling
5000
11
sampling
5000
18
sampling
5000
25
sampling
5000
32
sampling
5000
39
sampling
5000
46
sampling
5000
53
sampling
5000
60
sampling
500
[
all
...]
/external/v8/tools/
process-heap-prof.py
53
sampling
= False
71
sampling
= True
74
sampling
= False
75
elif row[0] == itemname and
sampling
:
/external/speex/libspeex/
filterbank.h
52
FilterBank *filterbank_new(int banks, spx_word32_t
sampling
, int len, int type);
filterbank.c
54
FilterBank *filterbank_new(int banks, spx_word32_t
sampling
, int len, int type)
62
df = DIV32(SHL32(
sampling
,15),MULT16_16(2,len));
63
max_mel = toBARK(EXTRACT16(
sampling
/2));
/external/ceres-solver/docs/
curvefitting.tex
5
\texttt{examples/data\_fitting.cc}. It contains data generated by
sampling
the curve $y = e^{0.3x + 0.1}$ and adding Gaussian noise with standard deviation $\sigma = 0.2$.}. Let us fit some data to the curve
73
\caption{Least squares data fitting to the curve $y = e^{0.3x + 0.1}$. Observations were generated by
sampling
this curve uniformly in the interval $x=(0,5)$ and adding Gaussian noise with $\sigma = 0.2$.\label{fig:exponential}}
/external/webkit/Tools/Scripts/
run-sunspider
62
--shark20 Like --shark, but with a 20 microsecond
sampling
interval
/external/webkit/PerformanceTests/SunSpider/
sunspider
59
--shark20 Like --shark, but with a 20 microsecond
sampling
interval
Completed in 110 milliseconds