/frameworks/av/media/libstagefright/codecs/on2/h264dec/omxdl/arm11/api/ |
armCOMM_IDCTTable.h | 27 * A(0) = 2*sqrt(2)
|
/frameworks/av/media/libstagefright/codecs/on2/h264dec/omxdl/arm_neon/api/ |
armCOMM_IDCTTable.h | 27 * A(0) = 2*sqrt(2)
|
/packages/apps/Camera/jni/feature_stab/db_vlvm/ |
db_metrics.h | 47 xp=sqrt(log(1+(x^2+y^2)*one_over_scale2))*x/sqrt(x^2+y^2) 48 yp=sqrt(log(1+(x^2+y^2)*one_over_scale2))*y/sqrt(x^2+y^2) 58 xp=sqrt(fu)*x 59 yp=sqrt(fu)*y 67 d(xp)/dx=1/(2sqrt(fu))*(dfu/dx)*x+sqrt(fu) 68 d(xp)/dy=1/(2sqrt(fu))*(dfu/dy)*x 69 d(yp)/dx=1/(2sqrt(fu))*(dfu/dx)* [all...] |
/packages/apps/Gallery2/jni_mosaic/feature_stab/db_vlvm/ |
db_metrics.h | 47 xp=sqrt(log(1+(x^2+y^2)*one_over_scale2))*x/sqrt(x^2+y^2) 48 yp=sqrt(log(1+(x^2+y^2)*one_over_scale2))*y/sqrt(x^2+y^2) 58 xp=sqrt(fu)*x 59 yp=sqrt(fu)*y 67 d(xp)/dx=1/(2sqrt(fu))*(dfu/dx)*x+sqrt(fu) 68 d(xp)/dy=1/(2sqrt(fu))*(dfu/dy)*x 69 d(yp)/dx=1/(2sqrt(fu))*(dfu/dx)* [all...] |
/packages/apps/LegacyCamera/jni/feature_stab/db_vlvm/ |
db_metrics.h | 47 xp=sqrt(log(1+(x^2+y^2)*one_over_scale2))*x/sqrt(x^2+y^2) 48 yp=sqrt(log(1+(x^2+y^2)*one_over_scale2))*y/sqrt(x^2+y^2) 58 xp=sqrt(fu)*x 59 yp=sqrt(fu)*y 67 d(xp)/dx=1/(2sqrt(fu))*(dfu/dx)*x+sqrt(fu) 68 d(xp)/dy=1/(2sqrt(fu))*(dfu/dy)*x 69 d(yp)/dx=1/(2sqrt(fu))*(dfu/dx)* [all...] |
/external/dropbear/libtommath/ |
bn_mp_sqrt.c | 56 /* And now t1 > sqrt(arg) */ 67 /* t1 >= sqrt(arg) >= t2 at this point */
|
/external/eigen/unsupported/doc/examples/ |
BVH_Example.cpp | 43 std::cout << "Brute force distance = " << sqrt(minDistSq) << ", calls = " << minimizer.calls << std::endl; 49 std::cout << "BVH distance = " << sqrt(minDistSq) << ", calls = " << minimizer.calls << std::endl;
|
/external/iproute2/netem/ |
stats.c | 44 sigma = sqrt((sumsquare - (double)n*mu*mu)/(double)(n-1)); 56 /*printf("sigma2 = %10.4f\n", sqrt(sigma2/(double)(n-1)));*/
|
/external/libvpx/libvpx/vp8/common/x86/ |
idctllm_mmx.asm | 19 ; * 1. sqrt(2) * cos (pi/8) 20 ; * 2. sqrt(2) * sin (pi/8) 25 ; * x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1). 74 paddw mm5, mm1 ; ip1 * sin(pi/8) * sqrt(2) 79 paddw mm7, mm3 ; ip3 * cos(pi/8) * sqrt(2) 129 paddw mm5, mm1 ; ip1 * sin(pi/8) * sqrt(2) 134 paddw mm7, mm3 ; ip3 * cos(pi/8) * sqrt(2)
|
/external/v8/test/mjsunit/regress/ |
regress-sqrt.js | 30 // Check that Math.sqrt returns the same value regardless of being 34 return Math.sqrt(x);
|
/bionic/libm/upstream-freebsd/lib/msun/src/ |
e_hypot.c | 21 * has error less than sqrt(2)/2 ulp, than 22 * sqrt(z) has error less than 1 ulp (exercise). 24 * So, compute sqrt(x*x+y*y) with some care as 45 * hypot(x,y) returns sqrt(x^2+y^2) with error less 109 w = sqrt(t1*t1-(b*(-b)-t2*(a+t1))); 118 w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
e_sqrtl.c | 71 * This is slow, but simple and portable. You should use hardware sqrt 85 /* If x = NaN, then sqrt(x) = NaN. */ 86 /* If x = Inf, then sqrt(x) = Inf. */ 87 /* If x = -Inf, then sqrt(x) = NaN. */ 91 /* If x = +-0, then sqrt(x) = +-0. */ 124 xn = sqrt(u.e); /* 53-bit estimate of sqrtl(x). */
|
/external/ceres-solver/examples/ |
powell.cc | 36 // f2 = sqrt(5) * (x3 - x4) 38 // f4 = sqrt(10) * (x1 - x4)^2 74 // f2 = sqrt(5) (x3 - x4) 75 residual[0] = T(sqrt(5.0)) * (x3[0] - x4[0]); 96 // f4 = sqrt(10) (x1 - x4)^2 97 residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
|
/ndk/sources/cxx-stl/llvm-libc++/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/ |
eval_param.pass.cpp | 61 double dev = std::sqrt(var); 67 double x_skew = (1-2*p.p()) / std::sqrt(x_var); 103 double dev = std::sqrt(var); 109 double x_skew = (1-2*p.p()) / std::sqrt(x_var); 145 double dev = std::sqrt(var); 151 double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
/ndk/sources/cxx-stl/llvm-libc++/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.geo/ |
eval_param.pass.cpp | 61 double dev = std::sqrt(var); 67 double x_skew = (2 - p.p()) / std::sqrt((1 - p.p())); 103 double dev = std::sqrt(var); 109 double x_skew = (2 - p.p()) / std::sqrt((1 - p.p())); 145 double dev = std::sqrt(var); 151 double x_skew = (2 - p.p()) / std::sqrt((1 - p.p()));
|
/ndk/sources/cxx-stl/llvm-libc++/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.chisq/ |
eval.pass.cpp | 59 double dev = std::sqrt(var); 65 double x_skew = std::sqrt(8 / d.n()); 99 double dev = std::sqrt(var); 105 double x_skew = std::sqrt(8 / d.n()); 139 double dev = std::sqrt(var); 145 double x_skew = std::sqrt(8 / d.n());
|
eval_param.pass.cpp | 60 double dev = std::sqrt(var); 66 double x_skew = std::sqrt(8 / p.n()); 101 double dev = std::sqrt(var); 107 double x_skew = std::sqrt(8 / p.n()); 142 double dev = std::sqrt(var); 148 double x_skew = std::sqrt(8 / p.n());
|
/ndk/sources/cxx-stl/llvm-libc++/test/numerics/rand/rand.dis/rand.dist.pois/rand.dist.pois.gamma/ |
eval.pass.cpp | 59 double dev = std::sqrt(var); 65 double x_skew = 2 / std::sqrt(d.alpha()); 99 double dev = std::sqrt(var); 105 double x_skew = 2 / std::sqrt(d.alpha()); 139 double dev = std::sqrt(var); 145 double x_skew = 2 / std::sqrt(d.alpha());
|
eval_param.pass.cpp | 60 double dev = std::sqrt(var); 66 double x_skew = 2 / std::sqrt(p.alpha()); 101 double dev = std::sqrt(var); 107 double x_skew = 2 / std::sqrt(p.alpha()); 142 double dev = std::sqrt(var); 148 double x_skew = 2 / std::sqrt(p.alpha());
|
/ndk/sources/cxx-stl/llvm-libc++/test/numerics/rand/rand.dis/rand.dist.pois/rand.dist.pois.poisson/ |
eval.pass.cpp | 58 double dev = std::sqrt(var); 64 double x_skew = 1 / std::sqrt(x_var); 97 double dev = std::sqrt(var); 103 double x_skew = 1 / std::sqrt(x_var); 136 double dev = std::sqrt(var); 142 double x_skew = 1 / std::sqrt(x_var);
|
eval_param.pass.cpp | 60 double dev = std::sqrt(var); 66 double x_skew = 1 / std::sqrt(x_var); 101 double dev = std::sqrt(var); 107 double x_skew = 1 / std::sqrt(x_var); 142 double dev = std::sqrt(var); 148 double x_skew = 1 / std::sqrt(x_var);
|
/ndk/sources/cxx-stl/llvm-libc++/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.lognormal/ |
eval.pass.cpp | 59 double dev = std::sqrt(var); 66 std::sqrt((std::exp(sqr(d.s())) - 1)); 101 double dev = std::sqrt(var); 108 std::sqrt((std::exp(sqr(d.s())) - 1)); 143 double dev = std::sqrt(var); 150 std::sqrt((std::exp(sqr(d.s())) - 1)); 185 double dev = std::sqrt(var); 192 std::sqrt((std::exp(sqr(d.s())) - 1)); 227 double dev = std::sqrt(var); 234 std::sqrt((std::exp(sqr(d.s())) - 1)) [all...] |
eval_param.pass.cpp | 61 double dev = std::sqrt(var); 68 std::sqrt((std::exp(sqr(p.s())) - 1)); 104 double dev = std::sqrt(var); 111 std::sqrt((std::exp(sqr(p.s())) - 1)); 147 double dev = std::sqrt(var); 154 std::sqrt((std::exp(sqr(p.s())) - 1)); 190 double dev = std::sqrt(var); 197 std::sqrt((std::exp(sqr(p.s())) - 1)); 233 double dev = std::sqrt(var); 240 std::sqrt((std::exp(sqr(p.s())) - 1)) [all...] |
/external/eigen/bench/ |
bench_norm.cpp | 46 return scale * internal::sqrt(ssq); 76 return internal::sqrt(v(0)); 129 relerr = internal::sqrt(eps); // tolerance for neglecting asml 173 abig = internal::sqrt(abig); 182 amed = internal::sqrt(amed); 194 abig = internal::sqrt(amed); 195 amed = internal::sqrt(asml) / s1m; 199 return internal::sqrt(asml)/s1m; 204 return internal::sqrt(amed); 211 return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig)) [all...] |
/external/eigen/test/ |
array.cpp | 180 VERIFY_IS_APPROX(m1.abs().sqrt(), std::sqrt(std::abs(m1))); 181 VERIFY_IS_APPROX(m1.abs().sqrt(), internal::sqrt(internal::abs(m1))); 182 VERIFY_IS_APPROX(m1.abs(), internal::sqrt(internal::abs2(m1))); 204 VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); 205 VERIFY_IS_APPROX(std::pow(m3,RealScalar(0.5)), m3.sqrt()); 208 const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon()); 226 m2(i,j) = std::sqrt(m1(i,j)); 228 VERIFY_IS_APPROX(m1.sqrt(), m2) [all...] |