HomeSort by relevance Sort by last modified time
    Searched full:sum_ (Results 1 - 25 of 70) sorted by null

1 2 3

  /external/ceres-solver/docs/
nnlsq.tex 9 \arg \min_x \frac{1}{2} \sum_{i=1}^k \|f_i(x)\|^2.
17 \arg\min_{m,c} \sum_{i=1}^k (y_i - m x_i - c)^2.
21 \arg\min_{m,c} \sum_{i=1}^k \left(y_i - e^{m x_i + c}\right)^2.
reference-overview.tex 6 \frac{1}{2}\sum_{i=1} \rho_i\left(\left\|f_i\left(x_{i_1},\hdots,x_{i_k}\right)\right\|^2\right).
  /external/ceres-solver/internal/ceres/
canonical_views_clustering.h 67 // E[C] = sum_[i in V] max_[j in C] w_ij
69 // - similarity_penalty_weight * sum_[i in C, j in C, j > i] w_ij
87 // E[C] = sum_[i in V] max_[j in C] w_ij
89 // - similarity_penalty_weight * sum_[i in C, j in C, j > i] w_ij
90 // + view_score_weight * sum_[i in C] w_i
polynomial_solver.h 41 // sum_{i=0}^N polynomial(i) x^{N-i}.
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.4.3/i686-linux/include/c++/4.4.3/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
hypergeometric.tcc 62 * \sum_{n=0}^{\infty}
251 * \sum_{n=0}^{\infty}
412 * \sum_{n=0}^{\infty}
428 * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
711 * \sum_{n=0}^{\infty}
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/i686-linux/include/c++/4.6.x-google/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
hypergeometric.tcc 62 * \sum_{n=0}^{\infty}
252 * \sum_{n=0}^{\infty}
414 * \sum_{n=0}^{\infty}
430 * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
714 * \sum_{n=0}^{\infty}
  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/x86_64-linux/include/c++/4.6.x-google/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
hypergeometric.tcc 62 * \sum_{n=0}^{\infty}
252 * \sum_{n=0}^{\infty}
414 * \sum_{n=0}^{\infty}
430 * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
714 * \sum_{n=0}^{\infty}
  /prebuilts/ndk/5/sources/cxx-stl/gnu-libstdc++/include/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
hypergeometric.tcc 62 * \sum_{n=0}^{\infty}
251 * \sum_{n=0}^{\infty}
412 * \sum_{n=0}^{\infty}
428 * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
711 * \sum_{n=0}^{\infty}
  /prebuilts/ndk/6/sources/cxx-stl/gnu-libstdc++/include/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
hypergeometric.tcc 62 * \sum_{n=0}^{\infty}
251 * \sum_{n=0}^{\infty}
412 * \sum_{n=0}^{\infty}
428 * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
711 * \sum_{n=0}^{\infty}
  /prebuilts/ndk/7/sources/cxx-stl/gnu-libstdc++/include/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
hypergeometric.tcc 62 * \sum_{n=0}^{\infty}
251 * \sum_{n=0}^{\infty}
412 * \sum_{n=0}^{\infty}
428 * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
711 * \sum_{n=0}^{\infty}
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.4.3/include/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
hypergeometric.tcc 62 * \sum_{n=0}^{\infty}
251 * \sum_{n=0}^{\infty}
412 * \sum_{n=0}^{\infty}
428 * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
711 * \sum_{n=0}^{\infty}
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.6/include/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
hypergeometric.tcc 62 * \sum_{n=0}^{\infty}
252 * \sum_{n=0}^{\infty}
414 * \sum_{n=0}^{\infty}
430 * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
714 * \sum_{n=0}^{\infty}
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.7/include/tr1/
riemann_zeta.tcc 65 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
137 * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
144 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239 * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
278 * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
344 * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
355 * \sum_{n=0}^{\infty} \frac{1}{n + 1}
356 * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s
    [all...]
  /external/eigen/unsupported/Eigen/
Polynomials 77 \f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
78 \f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$
87 \f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
88 \f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
  /external/chromium/chrome/browser/net/
url_info.cc 213 : sum_(0), square_sum_(0), count_(0),
219 sum_ += value;
228 int average() const { return static_cast<int>(sum_/count_); }
229 int sum() const { return static_cast<int>(sum_); }
232 double average = static_cast<float>(sum_) / count_;
239 int64 sum_; member in class:chrome_browser_net::MinMaxAverage
  /external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixFunction.h 419 * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
424 * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
451 // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
460 // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
  /external/chromium/base/metrics/
histogram.cc 667 sum_(0),
687 sum_ += count * value;
690 DCHECK_GE(sum_, 0);
706 sum_ += other.sum_;
717 sum_ -= other.sum_;
726 pickle->WriteInt64(sum_);
739 DCHECK_EQ(sum_, 0);
744 if (!pickle.ReadInt64(iter, &sum_) ||
    [all...]

Completed in 2213 milliseconds

1 2 3