Home | History | Annotate | Download | only in docs

Lines Matching refs:REQUIRE

29 \REQUIRE Initial point $x$ and a trust region radius $\mu$.
349 The computational cost of using a preconditioner $M$ is the cost of computing $M$ and evaluating the product $M^{-1}y$ for arbitrary vectors $y$. Thus, there are two competing factors to consider: How much of $H$'s structure is captured by $M$ so that the condition number $\kappa(HM^{-1})$ is low, and the computational cost of constructing and using $M$. The ideal preconditioner would be one for which $\kappa(M^{-1}A) =1$. $M=A$ achieves this, but it is not a practical choice, as applying this preconditioner would require solving a linear system equivalent to the unpreconditioned problem. It is usually the case that the more information $M$ has about $H$, the more expensive it is use. For example, Incomplete Cholesky factorization based preconditioners have much better convergence behavior than the Jacobi preconditioner, but are also much more expensive.