Home | History | Annotate | Download | only in Object
      1 //===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the ELFObjectFile template class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_OBJECT_ELF_H
     15 #define LLVM_OBJECT_ELF_H
     16 
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/PointerIntPair.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringSwitch.h"
     21 #include "llvm/ADT/Triple.h"
     22 #include "llvm/Object/ObjectFile.h"
     23 #include "llvm/Support/Casting.h"
     24 #include "llvm/Support/ELF.h"
     25 #include "llvm/Support/Endian.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MemoryBuffer.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include <algorithm>
     30 #include <limits>
     31 #include <utility>
     32 
     33 #include <ctype.h>
     34 
     35 namespace llvm {
     36 namespace object {
     37 
     38 using support::endianness;
     39 
     40 template<endianness target_endianness, std::size_t max_alignment, bool is64Bits>
     41 struct ELFType {
     42   static const endianness TargetEndianness = target_endianness;
     43   static const std::size_t MaxAlignment = max_alignment;
     44   static const bool Is64Bits = is64Bits;
     45 };
     46 
     47 template<typename T, int max_align>
     48 struct MaximumAlignment {
     49   enum {value = AlignOf<T>::Alignment > max_align ? max_align
     50                                                   : AlignOf<T>::Alignment};
     51 };
     52 
     53 // Subclasses of ELFObjectFile may need this for template instantiation
     54 inline std::pair<unsigned char, unsigned char>
     55 getElfArchType(MemoryBuffer *Object) {
     56   if (Object->getBufferSize() < ELF::EI_NIDENT)
     57     return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
     58   return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
     59                        , (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
     60 }
     61 
     62 // Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
     63 template<endianness target_endianness, std::size_t max_alignment>
     64 struct ELFDataTypeTypedefHelperCommon {
     65   typedef support::detail::packed_endian_specific_integral
     66     <uint16_t, target_endianness,
     67      MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
     68   typedef support::detail::packed_endian_specific_integral
     69     <uint32_t, target_endianness,
     70      MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
     71   typedef support::detail::packed_endian_specific_integral
     72     <int32_t, target_endianness,
     73      MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
     74   typedef support::detail::packed_endian_specific_integral
     75     <uint64_t, target_endianness,
     76      MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
     77   typedef support::detail::packed_endian_specific_integral
     78     <int64_t, target_endianness,
     79      MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
     80 };
     81 
     82 template<class ELFT>
     83 struct ELFDataTypeTypedefHelper;
     84 
     85 /// ELF 32bit types.
     86 template<template<endianness, std::size_t, bool> class ELFT,
     87          endianness TargetEndianness, std::size_t MaxAlign>
     88 struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, false> >
     89   : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
     90   typedef uint32_t value_type;
     91   typedef support::detail::packed_endian_specific_integral
     92     <value_type, TargetEndianness,
     93      MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
     94   typedef support::detail::packed_endian_specific_integral
     95     <value_type, TargetEndianness,
     96      MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
     97 };
     98 
     99 /// ELF 64bit types.
    100 template<template<endianness, std::size_t, bool> class ELFT,
    101          endianness TargetEndianness, std::size_t MaxAlign>
    102 struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, true> >
    103   : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
    104   typedef uint64_t value_type;
    105   typedef support::detail::packed_endian_specific_integral
    106     <value_type, TargetEndianness,
    107      MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
    108   typedef support::detail::packed_endian_specific_integral
    109     <value_type, TargetEndianness,
    110      MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
    111 };
    112 
    113 // I really don't like doing this, but the alternative is copypasta.
    114 #define LLVM_ELF_IMPORT_TYPES(ELFT) \
    115 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Addr Elf_Addr; \
    116 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Off Elf_Off; \
    117 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Half Elf_Half; \
    118 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Word Elf_Word; \
    119 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sword Elf_Sword; \
    120 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Xword Elf_Xword; \
    121 typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sxword Elf_Sxword;
    122 
    123 // This is required to get template types into a macro :(
    124 #define LLVM_ELF_COMMA ,
    125 
    126   // Section header.
    127 template<class ELFT>
    128 struct Elf_Shdr_Base;
    129 
    130 template<template<endianness, std::size_t, bool> class ELFT,
    131          endianness TargetEndianness, std::size_t MaxAlign>
    132 struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, false> > {
    133   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    134                              MaxAlign LLVM_ELF_COMMA false>)
    135   Elf_Word sh_name;     // Section name (index into string table)
    136   Elf_Word sh_type;     // Section type (SHT_*)
    137   Elf_Word sh_flags;    // Section flags (SHF_*)
    138   Elf_Addr sh_addr;     // Address where section is to be loaded
    139   Elf_Off  sh_offset;   // File offset of section data, in bytes
    140   Elf_Word sh_size;     // Size of section, in bytes
    141   Elf_Word sh_link;     // Section type-specific header table index link
    142   Elf_Word sh_info;     // Section type-specific extra information
    143   Elf_Word sh_addralign;// Section address alignment
    144   Elf_Word sh_entsize;  // Size of records contained within the section
    145 };
    146 
    147 template<template<endianness, std::size_t, bool> class ELFT,
    148          endianness TargetEndianness, std::size_t MaxAlign>
    149 struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, true> > {
    150   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    151                              MaxAlign LLVM_ELF_COMMA true>)
    152   Elf_Word  sh_name;     // Section name (index into string table)
    153   Elf_Word  sh_type;     // Section type (SHT_*)
    154   Elf_Xword sh_flags;    // Section flags (SHF_*)
    155   Elf_Addr  sh_addr;     // Address where section is to be loaded
    156   Elf_Off   sh_offset;   // File offset of section data, in bytes
    157   Elf_Xword sh_size;     // Size of section, in bytes
    158   Elf_Word  sh_link;     // Section type-specific header table index link
    159   Elf_Word  sh_info;     // Section type-specific extra information
    160   Elf_Xword sh_addralign;// Section address alignment
    161   Elf_Xword sh_entsize;  // Size of records contained within the section
    162 };
    163 
    164 template<class ELFT>
    165 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
    166   using Elf_Shdr_Base<ELFT>::sh_entsize;
    167   using Elf_Shdr_Base<ELFT>::sh_size;
    168 
    169   /// @brief Get the number of entities this section contains if it has any.
    170   unsigned getEntityCount() const {
    171     if (sh_entsize == 0)
    172       return 0;
    173     return sh_size / sh_entsize;
    174   }
    175 };
    176 
    177 template<class ELFT>
    178 struct Elf_Sym_Base;
    179 
    180 template<template<endianness, std::size_t, bool> class ELFT,
    181          endianness TargetEndianness, std::size_t MaxAlign>
    182 struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, false> > {
    183   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    184                              MaxAlign LLVM_ELF_COMMA false>)
    185   Elf_Word      st_name;  // Symbol name (index into string table)
    186   Elf_Addr      st_value; // Value or address associated with the symbol
    187   Elf_Word      st_size;  // Size of the symbol
    188   unsigned char st_info;  // Symbol's type and binding attributes
    189   unsigned char st_other; // Must be zero; reserved
    190   Elf_Half      st_shndx; // Which section (header table index) it's defined in
    191 };
    192 
    193 template<template<endianness, std::size_t, bool> class ELFT,
    194          endianness TargetEndianness, std::size_t MaxAlign>
    195 struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, true> > {
    196   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    197                              MaxAlign LLVM_ELF_COMMA true>)
    198   Elf_Word      st_name;  // Symbol name (index into string table)
    199   unsigned char st_info;  // Symbol's type and binding attributes
    200   unsigned char st_other; // Must be zero; reserved
    201   Elf_Half      st_shndx; // Which section (header table index) it's defined in
    202   Elf_Addr      st_value; // Value or address associated with the symbol
    203   Elf_Xword     st_size;  // Size of the symbol
    204 };
    205 
    206 template<class ELFT>
    207 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
    208   using Elf_Sym_Base<ELFT>::st_info;
    209 
    210   // These accessors and mutators correspond to the ELF32_ST_BIND,
    211   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
    212   unsigned char getBinding() const { return st_info >> 4; }
    213   unsigned char getType() const { return st_info & 0x0f; }
    214   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
    215   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
    216   void setBindingAndType(unsigned char b, unsigned char t) {
    217     st_info = (b << 4) + (t & 0x0f);
    218   }
    219 };
    220 
    221 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
    222 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
    223 template<class ELFT>
    224 struct Elf_Versym_Impl {
    225   LLVM_ELF_IMPORT_TYPES(ELFT)
    226   Elf_Half vs_index;   // Version index with flags (e.g. VERSYM_HIDDEN)
    227 };
    228 
    229 template<class ELFT>
    230 struct Elf_Verdaux_Impl;
    231 
    232 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
    233 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    234 template<class ELFT>
    235 struct Elf_Verdef_Impl {
    236   LLVM_ELF_IMPORT_TYPES(ELFT)
    237   typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
    238   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
    239   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
    240   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
    241   Elf_Half vd_cnt;     // Number of Verdaux entries
    242   Elf_Word vd_hash;    // Hash of name
    243   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
    244   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
    245 
    246   /// Get the first Verdaux entry for this Verdef.
    247   const Elf_Verdaux *getAux() const {
    248     return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
    249   }
    250 };
    251 
    252 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
    253 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    254 template<class ELFT>
    255 struct Elf_Verdaux_Impl {
    256   LLVM_ELF_IMPORT_TYPES(ELFT)
    257   Elf_Word vda_name; // Version name (offset in string table)
    258   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
    259 };
    260 
    261 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
    262 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    263 template<class ELFT>
    264 struct Elf_Verneed_Impl {
    265   LLVM_ELF_IMPORT_TYPES(ELFT)
    266   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
    267   Elf_Half vn_cnt;     // Number of associated Vernaux entries
    268   Elf_Word vn_file;    // Library name (string table offset)
    269   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
    270   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
    271 };
    272 
    273 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
    274 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    275 template<class ELFT>
    276 struct Elf_Vernaux_Impl {
    277   LLVM_ELF_IMPORT_TYPES(ELFT)
    278   Elf_Word vna_hash;  // Hash of dependency name
    279   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
    280   Elf_Half vna_other; // Version index, used in .gnu.version entries
    281   Elf_Word vna_name;  // Dependency name
    282   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
    283 };
    284 
    285 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
    286 ///               table section (.dynamic) look like.
    287 template<class ELFT>
    288 struct Elf_Dyn_Base;
    289 
    290 template<template<endianness, std::size_t, bool> class ELFT,
    291          endianness TargetEndianness, std::size_t MaxAlign>
    292 struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, false> > {
    293   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    294                              MaxAlign LLVM_ELF_COMMA false>)
    295   Elf_Sword d_tag;
    296   union {
    297     Elf_Word d_val;
    298     Elf_Addr d_ptr;
    299   } d_un;
    300 };
    301 
    302 template<template<endianness, std::size_t, bool> class ELFT,
    303          endianness TargetEndianness, std::size_t MaxAlign>
    304 struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, true> > {
    305   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    306                              MaxAlign LLVM_ELF_COMMA true>)
    307   Elf_Sxword d_tag;
    308   union {
    309     Elf_Xword d_val;
    310     Elf_Addr d_ptr;
    311   } d_un;
    312 };
    313 
    314 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
    315 template<class ELFT>
    316 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
    317   using Elf_Dyn_Base<ELFT>::d_tag;
    318   using Elf_Dyn_Base<ELFT>::d_un;
    319   int64_t getTag() const { return d_tag; }
    320   uint64_t getVal() const { return d_un.d_val; }
    321   uint64_t getPtr() const { return d_un.ptr; }
    322 };
    323 
    324 // Elf_Rel: Elf Relocation
    325 template<class ELFT, bool isRela>
    326 struct Elf_Rel_Base;
    327 
    328 template<template<endianness, std::size_t, bool> class ELFT,
    329          endianness TargetEndianness, std::size_t MaxAlign>
    330 struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, false> {
    331   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    332                              MaxAlign LLVM_ELF_COMMA false>)
    333   Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
    334   Elf_Word      r_info;  // Symbol table index and type of relocation to apply
    335 };
    336 
    337 template<template<endianness, std::size_t, bool> class ELFT,
    338          endianness TargetEndianness, std::size_t MaxAlign>
    339 struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, false> {
    340   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    341                              MaxAlign LLVM_ELF_COMMA true>)
    342   Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
    343   Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
    344 };
    345 
    346 template<template<endianness, std::size_t, bool> class ELFT,
    347          endianness TargetEndianness, std::size_t MaxAlign>
    348 struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, true> {
    349   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    350                              MaxAlign LLVM_ELF_COMMA false>)
    351   Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
    352   Elf_Word      r_info;   // Symbol table index and type of relocation to apply
    353   Elf_Sword     r_addend; // Compute value for relocatable field by adding this
    354 };
    355 
    356 template<template<endianness, std::size_t, bool> class ELFT,
    357          endianness TargetEndianness, std::size_t MaxAlign>
    358 struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, true> {
    359   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    360                              MaxAlign LLVM_ELF_COMMA true>)
    361   Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
    362   Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
    363   Elf_Sxword    r_addend; // Compute value for relocatable field by adding this.
    364 };
    365 
    366 template<class ELFT, bool isRela>
    367 struct Elf_Rel_Impl;
    368 
    369 template<template<endianness, std::size_t, bool> class ELFT,
    370          endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
    371 struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, true>, isRela>
    372        : Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela> {
    373   using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela>::r_info;
    374   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    375                              MaxAlign LLVM_ELF_COMMA true>)
    376 
    377   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
    378   // and ELF64_R_INFO macros defined in the ELF specification:
    379   uint32_t getSymbol() const { return (uint32_t) (r_info >> 32); }
    380   uint32_t getType() const {
    381     return (uint32_t) (r_info & 0xffffffffL);
    382   }
    383   void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
    384   void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); }
    385   void setSymbolAndType(uint32_t s, uint32_t t) {
    386     r_info = ((uint64_t)s << 32) + (t&0xffffffffL);
    387   }
    388 };
    389 
    390 template<template<endianness, std::size_t, bool> class ELFT,
    391          endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
    392 struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, false>, isRela>
    393        : Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela> {
    394   using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela>::r_info;
    395   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    396                              MaxAlign LLVM_ELF_COMMA false>)
    397 
    398   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
    399   // and ELF32_R_INFO macros defined in the ELF specification:
    400   uint32_t getSymbol() const { return (r_info >> 8); }
    401   unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
    402   void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
    403   void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
    404   void setSymbolAndType(uint32_t s, unsigned char t) {
    405     r_info = (s << 8) + t;
    406   }
    407 };
    408 
    409 template<class ELFT>
    410 struct Elf_Ehdr_Impl {
    411   LLVM_ELF_IMPORT_TYPES(ELFT)
    412   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
    413   Elf_Half e_type;     // Type of file (see ET_*)
    414   Elf_Half e_machine;  // Required architecture for this file (see EM_*)
    415   Elf_Word e_version;  // Must be equal to 1
    416   Elf_Addr e_entry;    // Address to jump to in order to start program
    417   Elf_Off  e_phoff;    // Program header table's file offset, in bytes
    418   Elf_Off  e_shoff;    // Section header table's file offset, in bytes
    419   Elf_Word e_flags;    // Processor-specific flags
    420   Elf_Half e_ehsize;   // Size of ELF header, in bytes
    421   Elf_Half e_phentsize;// Size of an entry in the program header table
    422   Elf_Half e_phnum;    // Number of entries in the program header table
    423   Elf_Half e_shentsize;// Size of an entry in the section header table
    424   Elf_Half e_shnum;    // Number of entries in the section header table
    425   Elf_Half e_shstrndx; // Section header table index of section name
    426                                  // string table
    427   bool checkMagic() const {
    428     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
    429   }
    430    unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
    431    unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
    432 };
    433 
    434 template<class ELFT>
    435 struct Elf_Phdr_Impl;
    436 
    437 template<template<endianness, std::size_t, bool> class ELFT,
    438          endianness TargetEndianness, std::size_t MaxAlign>
    439 struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, false> > {
    440   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    441                              MaxAlign LLVM_ELF_COMMA false>)
    442   Elf_Word p_type;   // Type of segment
    443   Elf_Off  p_offset; // FileOffset where segment is located, in bytes
    444   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
    445   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
    446   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
    447   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    448   Elf_Word p_flags;  // Segment flags
    449   Elf_Word p_align;  // Segment alignment constraint
    450 };
    451 
    452 template<template<endianness, std::size_t, bool> class ELFT,
    453          endianness TargetEndianness, std::size_t MaxAlign>
    454 struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, true> > {
    455   LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
    456                              MaxAlign LLVM_ELF_COMMA true>)
    457   Elf_Word p_type;   // Type of segment
    458   Elf_Word p_flags;  // Segment flags
    459   Elf_Off  p_offset; // FileOffset where segment is located, in bytes
    460   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
    461   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
    462   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
    463   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    464   Elf_Xword p_align;  // Segment alignment constraint
    465 };
    466 
    467 template<class ELFT>
    468 class ELFObjectFile : public ObjectFile {
    469   LLVM_ELF_IMPORT_TYPES(ELFT)
    470 
    471 public:
    472   /// \brief Iterate over constant sized entities.
    473   template<class EntT>
    474   class ELFEntityIterator {
    475   public:
    476     typedef ptrdiff_t difference_type;
    477     typedef EntT value_type;
    478     typedef std::random_access_iterator_tag iterator_category;
    479     typedef value_type &reference;
    480     typedef value_type *pointer;
    481 
    482     /// \brief Default construct iterator.
    483     ELFEntityIterator() : EntitySize(0), Current(0) {}
    484     ELFEntityIterator(uint64_t EntSize, const char *Start)
    485       : EntitySize(EntSize)
    486       , Current(Start) {}
    487 
    488     reference operator *() {
    489       assert(Current && "Attempted to dereference an invalid iterator!");
    490       return *reinterpret_cast<pointer>(Current);
    491     }
    492 
    493     pointer operator ->() {
    494       assert(Current && "Attempted to dereference an invalid iterator!");
    495       return reinterpret_cast<pointer>(Current);
    496     }
    497 
    498     bool operator ==(const ELFEntityIterator &Other) {
    499       return Current == Other.Current;
    500     }
    501 
    502     bool operator !=(const ELFEntityIterator &Other) {
    503       return !(*this == Other);
    504     }
    505 
    506     ELFEntityIterator &operator ++() {
    507       assert(Current && "Attempted to increment an invalid iterator!");
    508       Current += EntitySize;
    509       return *this;
    510     }
    511 
    512     ELFEntityIterator operator ++(int) {
    513       ELFEntityIterator Tmp = *this;
    514       ++*this;
    515       return Tmp;
    516     }
    517 
    518     ELFEntityIterator &operator =(const ELFEntityIterator &Other) {
    519       EntitySize = Other.EntitySize;
    520       Current = Other.Current;
    521       return *this;
    522     }
    523 
    524     difference_type operator -(const ELFEntityIterator &Other) const {
    525       assert(EntitySize == Other.EntitySize &&
    526              "Subtracting iterators of different EntitiySize!");
    527       return (Current - Other.Current) / EntitySize;
    528     }
    529 
    530     const char *get() const { return Current; }
    531 
    532   private:
    533     uint64_t EntitySize;
    534     const char *Current;
    535   };
    536 
    537   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
    538   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
    539   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
    540   typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
    541   typedef Elf_Phdr_Impl<ELFT> Elf_Phdr;
    542   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
    543   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
    544   typedef Elf_Verdef_Impl<ELFT> Elf_Verdef;
    545   typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
    546   typedef Elf_Verneed_Impl<ELFT> Elf_Verneed;
    547   typedef Elf_Vernaux_Impl<ELFT> Elf_Vernaux;
    548   typedef Elf_Versym_Impl<ELFT> Elf_Versym;
    549   typedef ELFEntityIterator<const Elf_Dyn> Elf_Dyn_iterator;
    550   typedef ELFEntityIterator<const Elf_Sym> Elf_Sym_iterator;
    551   typedef ELFEntityIterator<const Elf_Rela> Elf_Rela_Iter;
    552   typedef ELFEntityIterator<const Elf_Rel> Elf_Rel_Iter;
    553 
    554 protected:
    555   // This flag is used for classof, to distinguish ELFObjectFile from
    556   // its subclass. If more subclasses will be created, this flag will
    557   // have to become an enum.
    558   bool isDyldELFObject;
    559 
    560 private:
    561   typedef SmallVector<const Elf_Shdr *, 2> Sections_t;
    562   typedef DenseMap<unsigned, unsigned> IndexMap_t;
    563   typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
    564 
    565   const Elf_Ehdr *Header;
    566   const Elf_Shdr *SectionHeaderTable;
    567   const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
    568   const Elf_Shdr *dot_strtab_sec;   // Symbol header string table.
    569   const Elf_Shdr *dot_dynstr_sec;   // Dynamic symbol string table.
    570 
    571   // SymbolTableSections[0] always points to the dynamic string table section
    572   // header, or NULL if there is no dynamic string table.
    573   Sections_t SymbolTableSections;
    574   IndexMap_t SymbolTableSectionsIndexMap;
    575   DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
    576 
    577   const Elf_Shdr *dot_dynamic_sec;       // .dynamic
    578   const Elf_Shdr *dot_gnu_version_sec;   // .gnu.version
    579   const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
    580   const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
    581 
    582   // Pointer to SONAME entry in dynamic string table
    583   // This is set the first time getLoadName is called.
    584   mutable const char *dt_soname;
    585 
    586 private:
    587   // Records for each version index the corresponding Verdef or Vernaux entry.
    588   // This is filled the first time LoadVersionMap() is called.
    589   class VersionMapEntry : public PointerIntPair<const void*, 1> {
    590     public:
    591     // If the integer is 0, this is an Elf_Verdef*.
    592     // If the integer is 1, this is an Elf_Vernaux*.
    593     VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
    594     VersionMapEntry(const Elf_Verdef *verdef)
    595         : PointerIntPair<const void*, 1>(verdef, 0) { }
    596     VersionMapEntry(const Elf_Vernaux *vernaux)
    597         : PointerIntPair<const void*, 1>(vernaux, 1) { }
    598     bool isNull() const { return getPointer() == NULL; }
    599     bool isVerdef() const { return !isNull() && getInt() == 0; }
    600     bool isVernaux() const { return !isNull() && getInt() == 1; }
    601     const Elf_Verdef *getVerdef() const {
    602       return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
    603     }
    604     const Elf_Vernaux *getVernaux() const {
    605       return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
    606     }
    607   };
    608   mutable SmallVector<VersionMapEntry, 16> VersionMap;
    609   void LoadVersionDefs(const Elf_Shdr *sec) const;
    610   void LoadVersionNeeds(const Elf_Shdr *ec) const;
    611   void LoadVersionMap() const;
    612 
    613   /// @brief Map sections to an array of relocation sections that reference
    614   ///        them sorted by section index.
    615   RelocMap_t SectionRelocMap;
    616 
    617   /// @brief Get the relocation section that contains \a Rel.
    618   const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
    619     return getSection(Rel.w.b);
    620   }
    621 
    622 public:
    623   bool            isRelocationHasAddend(DataRefImpl Rel) const;
    624   template<typename T>
    625   const T        *getEntry(uint16_t Section, uint32_t Entry) const;
    626   template<typename T>
    627   const T        *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
    628   const Elf_Shdr *getSection(DataRefImpl index) const;
    629   const Elf_Shdr *getSection(uint32_t index) const;
    630   const Elf_Rel  *getRel(DataRefImpl Rel) const;
    631   const Elf_Rela *getRela(DataRefImpl Rela) const;
    632   const char     *getString(uint32_t section, uint32_t offset) const;
    633   const char     *getString(const Elf_Shdr *section, uint32_t offset) const;
    634   error_code      getSymbolVersion(const Elf_Shdr *section,
    635                                    const Elf_Sym *Symb,
    636                                    StringRef &Version,
    637                                    bool &IsDefault) const;
    638   void VerifyStrTab(const Elf_Shdr *sh) const;
    639 
    640 protected:
    641   const Elf_Sym  *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
    642   void            validateSymbol(DataRefImpl Symb) const;
    643 
    644 public:
    645   error_code      getSymbolName(const Elf_Shdr *section,
    646                                 const Elf_Sym *Symb,
    647                                 StringRef &Res) const;
    648   error_code      getSectionName(const Elf_Shdr *section,
    649                                  StringRef &Res) const;
    650   const Elf_Dyn  *getDyn(DataRefImpl DynData) const;
    651   error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
    652                               bool &IsDefault) const;
    653   uint64_t getSymbolIndex(const Elf_Sym *sym) const;
    654 protected:
    655   virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
    656   virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
    657   virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
    658   virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
    659   virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
    660   virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
    661   virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
    662   virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
    663   virtual error_code getSymbolSection(DataRefImpl Symb,
    664                                       section_iterator &Res) const;
    665   virtual error_code getSymbolValue(DataRefImpl Symb, uint64_t &Val) const;
    666 
    667   virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
    668   virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
    669 
    670   virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
    671   virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
    672   virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
    673   virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
    674   virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
    675   virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
    676   virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
    677   virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
    678   virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
    679   virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
    680                                                    bool &Res) const;
    681   virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
    682   virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
    683   virtual error_code isSectionReadOnlyData(DataRefImpl Sec, bool &Res) const;
    684   virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
    685                                            bool &Result) const;
    686   virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
    687   virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
    688 
    689   virtual error_code getRelocationNext(DataRefImpl Rel,
    690                                        RelocationRef &Res) const;
    691   virtual error_code getRelocationAddress(DataRefImpl Rel,
    692                                           uint64_t &Res) const;
    693   virtual error_code getRelocationOffset(DataRefImpl Rel,
    694                                          uint64_t &Res) const;
    695   virtual error_code getRelocationSymbol(DataRefImpl Rel,
    696                                          SymbolRef &Res) const;
    697   virtual error_code getRelocationType(DataRefImpl Rel,
    698                                        uint64_t &Res) const;
    699   virtual error_code getRelocationTypeName(DataRefImpl Rel,
    700                                            SmallVectorImpl<char> &Result) const;
    701   virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
    702                                                  int64_t &Res) const;
    703   virtual error_code getRelocationValueString(DataRefImpl Rel,
    704                                            SmallVectorImpl<char> &Result) const;
    705 
    706 public:
    707   ELFObjectFile(MemoryBuffer *Object, error_code &ec);
    708   virtual symbol_iterator begin_symbols() const;
    709   virtual symbol_iterator end_symbols() const;
    710 
    711   virtual symbol_iterator begin_dynamic_symbols() const;
    712   virtual symbol_iterator end_dynamic_symbols() const;
    713 
    714   virtual section_iterator begin_sections() const;
    715   virtual section_iterator end_sections() const;
    716 
    717   virtual library_iterator begin_libraries_needed() const;
    718   virtual library_iterator end_libraries_needed() const;
    719 
    720   const Elf_Shdr *getDynamicSymbolTableSectionHeader() const {
    721     return SymbolTableSections[0];
    722   }
    723 
    724   const Elf_Shdr *getDynamicStringTableSectionHeader() const {
    725     return dot_dynstr_sec;
    726   }
    727 
    728   Elf_Dyn_iterator begin_dynamic_table() const;
    729   /// \param NULLEnd use one past the first DT_NULL entry as the end instead of
    730   /// the section size.
    731   Elf_Dyn_iterator end_dynamic_table(bool NULLEnd = false) const;
    732 
    733   Elf_Sym_iterator begin_elf_dynamic_symbols() const {
    734     const Elf_Shdr *DynSymtab = SymbolTableSections[0];
    735     if (DynSymtab)
    736       return Elf_Sym_iterator(DynSymtab->sh_entsize,
    737                               (const char *)base() + DynSymtab->sh_offset);
    738     return Elf_Sym_iterator(0, 0);
    739   }
    740 
    741   Elf_Sym_iterator end_elf_dynamic_symbols() const {
    742     const Elf_Shdr *DynSymtab = SymbolTableSections[0];
    743     if (DynSymtab)
    744       return Elf_Sym_iterator(DynSymtab->sh_entsize, (const char *)base() +
    745                               DynSymtab->sh_offset + DynSymtab->sh_size);
    746     return Elf_Sym_iterator(0, 0);
    747   }
    748 
    749   Elf_Rela_Iter beginELFRela(const Elf_Shdr *sec) const {
    750     return Elf_Rela_Iter(sec->sh_entsize,
    751                          (const char *)(base() + sec->sh_offset));
    752   }
    753 
    754   Elf_Rela_Iter endELFRela(const Elf_Shdr *sec) const {
    755     return Elf_Rela_Iter(sec->sh_entsize, (const char *)
    756                          (base() + sec->sh_offset + sec->sh_size));
    757   }
    758 
    759   Elf_Rel_Iter beginELFRel(const Elf_Shdr *sec) const {
    760     return Elf_Rel_Iter(sec->sh_entsize,
    761                         (const char *)(base() + sec->sh_offset));
    762   }
    763 
    764   Elf_Rel_Iter endELFRel(const Elf_Shdr *sec) const {
    765     return Elf_Rel_Iter(sec->sh_entsize, (const char *)
    766                         (base() + sec->sh_offset + sec->sh_size));
    767   }
    768 
    769   /// \brief Iterate over program header table.
    770   typedef ELFEntityIterator<const Elf_Phdr> Elf_Phdr_Iter;
    771 
    772   Elf_Phdr_Iter begin_program_headers() const {
    773     return Elf_Phdr_Iter(Header->e_phentsize,
    774                          (const char*)base() + Header->e_phoff);
    775   }
    776 
    777   Elf_Phdr_Iter end_program_headers() const {
    778     return Elf_Phdr_Iter(Header->e_phentsize,
    779                          (const char*)base() +
    780                            Header->e_phoff +
    781                            (Header->e_phnum * Header->e_phentsize));
    782   }
    783 
    784   virtual uint8_t getBytesInAddress() const;
    785   virtual StringRef getFileFormatName() const;
    786   virtual StringRef getObjectType() const { return "ELF"; }
    787   virtual unsigned getArch() const;
    788   virtual StringRef getLoadName() const;
    789   virtual error_code getSectionContents(const Elf_Shdr *sec,
    790                                         StringRef &Res) const;
    791 
    792   uint64_t getNumSections() const;
    793   uint64_t getStringTableIndex() const;
    794   ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
    795   const Elf_Shdr *getSection(const Elf_Sym *symb) const;
    796   const Elf_Shdr *getElfSection(section_iterator &It) const;
    797   const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
    798   const Elf_Sym *getElfSymbol(uint32_t index) const;
    799 
    800   // Methods for type inquiry through isa, cast, and dyn_cast
    801   bool isDyldType() const { return isDyldELFObject; }
    802   static inline bool classof(const Binary *v) {
    803     return v->getType() == getELFType(ELFT::TargetEndianness == support::little,
    804                                       ELFT::Is64Bits);
    805   }
    806 };
    807 
    808 // Iterate through the version definitions, and place each Elf_Verdef
    809 // in the VersionMap according to its index.
    810 template<class ELFT>
    811 void ELFObjectFile<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
    812   unsigned vd_size = sec->sh_size; // Size of section in bytes
    813   unsigned vd_count = sec->sh_info; // Number of Verdef entries
    814   const char *sec_start = (const char*)base() + sec->sh_offset;
    815   const char *sec_end = sec_start + vd_size;
    816   // The first Verdef entry is at the start of the section.
    817   const char *p = sec_start;
    818   for (unsigned i = 0; i < vd_count; i++) {
    819     if (p + sizeof(Elf_Verdef) > sec_end)
    820       report_fatal_error("Section ended unexpectedly while scanning "
    821                          "version definitions.");
    822     const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
    823     if (vd->vd_version != ELF::VER_DEF_CURRENT)
    824       report_fatal_error("Unexpected verdef version");
    825     size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
    826     if (index >= VersionMap.size())
    827       VersionMap.resize(index+1);
    828     VersionMap[index] = VersionMapEntry(vd);
    829     p += vd->vd_next;
    830   }
    831 }
    832 
    833 // Iterate through the versions needed section, and place each Elf_Vernaux
    834 // in the VersionMap according to its index.
    835 template<class ELFT>
    836 void ELFObjectFile<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
    837   unsigned vn_size = sec->sh_size; // Size of section in bytes
    838   unsigned vn_count = sec->sh_info; // Number of Verneed entries
    839   const char *sec_start = (const char*)base() + sec->sh_offset;
    840   const char *sec_end = sec_start + vn_size;
    841   // The first Verneed entry is at the start of the section.
    842   const char *p = sec_start;
    843   for (unsigned i = 0; i < vn_count; i++) {
    844     if (p + sizeof(Elf_Verneed) > sec_end)
    845       report_fatal_error("Section ended unexpectedly while scanning "
    846                          "version needed records.");
    847     const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
    848     if (vn->vn_version != ELF::VER_NEED_CURRENT)
    849       report_fatal_error("Unexpected verneed version");
    850     // Iterate through the Vernaux entries
    851     const char *paux = p + vn->vn_aux;
    852     for (unsigned j = 0; j < vn->vn_cnt; j++) {
    853       if (paux + sizeof(Elf_Vernaux) > sec_end)
    854         report_fatal_error("Section ended unexpected while scanning auxiliary "
    855                            "version needed records.");
    856       const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
    857       size_t index = vna->vna_other & ELF::VERSYM_VERSION;
    858       if (index >= VersionMap.size())
    859         VersionMap.resize(index+1);
    860       VersionMap[index] = VersionMapEntry(vna);
    861       paux += vna->vna_next;
    862     }
    863     p += vn->vn_next;
    864   }
    865 }
    866 
    867 template<class ELFT>
    868 void ELFObjectFile<ELFT>::LoadVersionMap() const {
    869   // If there is no dynamic symtab or version table, there is nothing to do.
    870   if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
    871     return;
    872 
    873   // Has the VersionMap already been loaded?
    874   if (VersionMap.size() > 0)
    875     return;
    876 
    877   // The first two version indexes are reserved.
    878   // Index 0 is LOCAL, index 1 is GLOBAL.
    879   VersionMap.push_back(VersionMapEntry());
    880   VersionMap.push_back(VersionMapEntry());
    881 
    882   if (dot_gnu_version_d_sec)
    883     LoadVersionDefs(dot_gnu_version_d_sec);
    884 
    885   if (dot_gnu_version_r_sec)
    886     LoadVersionNeeds(dot_gnu_version_r_sec);
    887 }
    888 
    889 template<class ELFT>
    890 void ELFObjectFile<ELFT>::validateSymbol(DataRefImpl Symb) const {
    891 #ifndef NDEBUG
    892   const Elf_Sym  *symb = getSymbol(Symb);
    893   const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
    894   // FIXME: We really need to do proper error handling in the case of an invalid
    895   //        input file. Because we don't use exceptions, I think we'll just pass
    896   //        an error object around.
    897   if (!(  symb
    898         && SymbolTableSection
    899         && symb >= (const Elf_Sym*)(base()
    900                    + SymbolTableSection->sh_offset)
    901         && symb <  (const Elf_Sym*)(base()
    902                    + SymbolTableSection->sh_offset
    903                    + SymbolTableSection->sh_size)))
    904     // FIXME: Proper error handling.
    905     report_fatal_error("Symb must point to a valid symbol!");
    906 #endif
    907 }
    908 
    909 template<class ELFT>
    910 error_code ELFObjectFile<ELFT>::getSymbolNext(DataRefImpl Symb,
    911                                               SymbolRef &Result) const {
    912   validateSymbol(Symb);
    913   const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
    914 
    915   ++Symb.d.a;
    916   // Check to see if we are at the end of this symbol table.
    917   if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
    918     // We are at the end. If there are other symbol tables, jump to them.
    919     // If the symbol table is .dynsym, we are iterating dynamic symbols,
    920     // and there is only one table of these.
    921     if (Symb.d.b != 0) {
    922       ++Symb.d.b;
    923       Symb.d.a = 1; // The 0th symbol in ELF is fake.
    924     }
    925     // Otherwise return the terminator.
    926     if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
    927       Symb.d.a = std::numeric_limits<uint32_t>::max();
    928       Symb.d.b = std::numeric_limits<uint32_t>::max();
    929     }
    930   }
    931 
    932   Result = SymbolRef(Symb, this);
    933   return object_error::success;
    934 }
    935 
    936 template<class ELFT>
    937 error_code ELFObjectFile<ELFT>::getSymbolName(DataRefImpl Symb,
    938                                               StringRef &Result) const {
    939   validateSymbol(Symb);
    940   const Elf_Sym *symb = getSymbol(Symb);
    941   return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
    942 }
    943 
    944 template<class ELFT>
    945 error_code ELFObjectFile<ELFT>::getSymbolVersion(SymbolRef SymRef,
    946                                                  StringRef &Version,
    947                                                  bool &IsDefault) const {
    948   DataRefImpl Symb = SymRef.getRawDataRefImpl();
    949   validateSymbol(Symb);
    950   const Elf_Sym *symb = getSymbol(Symb);
    951   return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
    952                           Version, IsDefault);
    953 }
    954 
    955 template<class ELFT>
    956 ELF::Elf64_Word ELFObjectFile<ELFT>
    957                              ::getSymbolTableIndex(const Elf_Sym *symb) const {
    958   if (symb->st_shndx == ELF::SHN_XINDEX)
    959     return ExtendedSymbolTable.lookup(symb);
    960   return symb->st_shndx;
    961 }
    962 
    963 template<class ELFT>
    964 const typename ELFObjectFile<ELFT>::Elf_Shdr *
    965 ELFObjectFile<ELFT>::getSection(const Elf_Sym *symb) const {
    966   if (symb->st_shndx == ELF::SHN_XINDEX)
    967     return getSection(ExtendedSymbolTable.lookup(symb));
    968   if (symb->st_shndx >= ELF::SHN_LORESERVE)
    969     return 0;
    970   return getSection(symb->st_shndx);
    971 }
    972 
    973 template<class ELFT>
    974 const typename ELFObjectFile<ELFT>::Elf_Shdr *
    975 ELFObjectFile<ELFT>::getElfSection(section_iterator &It) const {
    976   llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
    977   return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
    978 }
    979 
    980 template<class ELFT>
    981 const typename ELFObjectFile<ELFT>::Elf_Sym *
    982 ELFObjectFile<ELFT>::getElfSymbol(symbol_iterator &It) const {
    983   return getSymbol(It->getRawDataRefImpl());
    984 }
    985 
    986 template<class ELFT>
    987 const typename ELFObjectFile<ELFT>::Elf_Sym *
    988 ELFObjectFile<ELFT>::getElfSymbol(uint32_t index) const {
    989   DataRefImpl SymbolData;
    990   SymbolData.d.a = index;
    991   SymbolData.d.b = 1;
    992   return getSymbol(SymbolData);
    993 }
    994 
    995 template<class ELFT>
    996 error_code ELFObjectFile<ELFT>::getSymbolFileOffset(DataRefImpl Symb,
    997                                                     uint64_t &Result) const {
    998   validateSymbol(Symb);
    999   const Elf_Sym  *symb = getSymbol(Symb);
   1000   const Elf_Shdr *Section;
   1001   switch (getSymbolTableIndex(symb)) {
   1002   case ELF::SHN_COMMON:
   1003    // Unintialized symbols have no offset in the object file
   1004   case ELF::SHN_UNDEF:
   1005     Result = UnknownAddressOrSize;
   1006     return object_error::success;
   1007   case ELF::SHN_ABS:
   1008     Result = symb->st_value;
   1009     return object_error::success;
   1010   default: Section = getSection(symb);
   1011   }
   1012 
   1013   switch (symb->getType()) {
   1014   case ELF::STT_SECTION:
   1015     Result = Section ? Section->sh_offset : UnknownAddressOrSize;
   1016     return object_error::success;
   1017   case ELF::STT_FUNC:
   1018   case ELF::STT_OBJECT:
   1019   case ELF::STT_NOTYPE:
   1020     Result = symb->st_value +
   1021              (Section ? Section->sh_offset : 0);
   1022     return object_error::success;
   1023   default:
   1024     Result = UnknownAddressOrSize;
   1025     return object_error::success;
   1026   }
   1027 }
   1028 
   1029 template<class ELFT>
   1030 error_code ELFObjectFile<ELFT>::getSymbolAddress(DataRefImpl Symb,
   1031                                                  uint64_t &Result) const {
   1032   validateSymbol(Symb);
   1033   const Elf_Sym  *symb = getSymbol(Symb);
   1034   const Elf_Shdr *Section;
   1035   switch (getSymbolTableIndex(symb)) {
   1036   case ELF::SHN_COMMON:
   1037   case ELF::SHN_UNDEF:
   1038     Result = UnknownAddressOrSize;
   1039     return object_error::success;
   1040   case ELF::SHN_ABS:
   1041     Result = symb->st_value;
   1042     return object_error::success;
   1043   default: Section = getSection(symb);
   1044   }
   1045 
   1046   switch (symb->getType()) {
   1047   case ELF::STT_SECTION:
   1048     Result = Section ? Section->sh_addr : UnknownAddressOrSize;
   1049     return object_error::success;
   1050   case ELF::STT_FUNC:
   1051   case ELF::STT_OBJECT:
   1052   case ELF::STT_NOTYPE:
   1053     bool IsRelocatable;
   1054     switch(Header->e_type) {
   1055     case ELF::ET_EXEC:
   1056     case ELF::ET_DYN:
   1057       IsRelocatable = false;
   1058       break;
   1059     default:
   1060       IsRelocatable = true;
   1061     }
   1062     Result = symb->st_value;
   1063     if (IsRelocatable && Section != 0)
   1064       Result += Section->sh_addr;
   1065     return object_error::success;
   1066   default:
   1067     Result = UnknownAddressOrSize;
   1068     return object_error::success;
   1069   }
   1070 }
   1071 
   1072 template<class ELFT>
   1073 error_code ELFObjectFile<ELFT>::getSymbolSize(DataRefImpl Symb,
   1074                                               uint64_t &Result) const {
   1075   validateSymbol(Symb);
   1076   const Elf_Sym  *symb = getSymbol(Symb);
   1077   if (symb->st_size == 0)
   1078     Result = UnknownAddressOrSize;
   1079   Result = symb->st_size;
   1080   return object_error::success;
   1081 }
   1082 
   1083 template<class ELFT>
   1084 error_code ELFObjectFile<ELFT>::getSymbolNMTypeChar(DataRefImpl Symb,
   1085                                                     char &Result) const {
   1086   validateSymbol(Symb);
   1087   const Elf_Sym  *symb = getSymbol(Symb);
   1088   const Elf_Shdr *Section = getSection(symb);
   1089 
   1090   char ret = '?';
   1091 
   1092   if (Section) {
   1093     switch (Section->sh_type) {
   1094     case ELF::SHT_PROGBITS:
   1095     case ELF::SHT_DYNAMIC:
   1096       switch (Section->sh_flags) {
   1097       case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
   1098         ret = 't'; break;
   1099       case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
   1100         ret = 'd'; break;
   1101       case ELF::SHF_ALLOC:
   1102       case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
   1103       case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
   1104         ret = 'r'; break;
   1105       }
   1106       break;
   1107     case ELF::SHT_NOBITS: ret = 'b';
   1108     }
   1109   }
   1110 
   1111   switch (getSymbolTableIndex(symb)) {
   1112   case ELF::SHN_UNDEF:
   1113     if (ret == '?')
   1114       ret = 'U';
   1115     break;
   1116   case ELF::SHN_ABS: ret = 'a'; break;
   1117   case ELF::SHN_COMMON: ret = 'c'; break;
   1118   }
   1119 
   1120   switch (symb->getBinding()) {
   1121   case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
   1122   case ELF::STB_WEAK:
   1123     if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
   1124       ret = 'w';
   1125     else
   1126       if (symb->getType() == ELF::STT_OBJECT)
   1127         ret = 'V';
   1128       else
   1129         ret = 'W';
   1130   }
   1131 
   1132   if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
   1133     StringRef name;
   1134     if (error_code ec = getSymbolName(Symb, name))
   1135       return ec;
   1136     Result = StringSwitch<char>(name)
   1137       .StartsWith(".debug", 'N')
   1138       .StartsWith(".note", 'n')
   1139       .Default('?');
   1140     return object_error::success;
   1141   }
   1142 
   1143   Result = ret;
   1144   return object_error::success;
   1145 }
   1146 
   1147 template<class ELFT>
   1148 error_code ELFObjectFile<ELFT>::getSymbolType(DataRefImpl Symb,
   1149                                               SymbolRef::Type &Result) const {
   1150   validateSymbol(Symb);
   1151   const Elf_Sym  *symb = getSymbol(Symb);
   1152 
   1153   switch (symb->getType()) {
   1154   case ELF::STT_NOTYPE:
   1155     Result = SymbolRef::ST_Unknown;
   1156     break;
   1157   case ELF::STT_SECTION:
   1158     Result = SymbolRef::ST_Debug;
   1159     break;
   1160   case ELF::STT_FILE:
   1161     Result = SymbolRef::ST_File;
   1162     break;
   1163   case ELF::STT_FUNC:
   1164     Result = SymbolRef::ST_Function;
   1165     break;
   1166   case ELF::STT_OBJECT:
   1167   case ELF::STT_COMMON:
   1168   case ELF::STT_TLS:
   1169     Result = SymbolRef::ST_Data;
   1170     break;
   1171   default:
   1172     Result = SymbolRef::ST_Other;
   1173     break;
   1174   }
   1175   return object_error::success;
   1176 }
   1177 
   1178 template<class ELFT>
   1179 error_code ELFObjectFile<ELFT>::getSymbolFlags(DataRefImpl Symb,
   1180                                                uint32_t &Result) const {
   1181   validateSymbol(Symb);
   1182   const Elf_Sym  *symb = getSymbol(Symb);
   1183 
   1184   Result = SymbolRef::SF_None;
   1185 
   1186   if (symb->getBinding() != ELF::STB_LOCAL)
   1187     Result |= SymbolRef::SF_Global;
   1188 
   1189   if (symb->getBinding() == ELF::STB_WEAK)
   1190     Result |= SymbolRef::SF_Weak;
   1191 
   1192   if (symb->st_shndx == ELF::SHN_ABS)
   1193     Result |= SymbolRef::SF_Absolute;
   1194 
   1195   if (symb->getType() == ELF::STT_FILE ||
   1196       symb->getType() == ELF::STT_SECTION)
   1197     Result |= SymbolRef::SF_FormatSpecific;
   1198 
   1199   if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
   1200     Result |= SymbolRef::SF_Undefined;
   1201 
   1202   if (symb->getType() == ELF::STT_COMMON ||
   1203       getSymbolTableIndex(symb) == ELF::SHN_COMMON)
   1204     Result |= SymbolRef::SF_Common;
   1205 
   1206   if (symb->getType() == ELF::STT_TLS)
   1207     Result |= SymbolRef::SF_ThreadLocal;
   1208 
   1209   return object_error::success;
   1210 }
   1211 
   1212 template<class ELFT>
   1213 error_code ELFObjectFile<ELFT>::getSymbolSection(DataRefImpl Symb,
   1214                                                  section_iterator &Res) const {
   1215   validateSymbol(Symb);
   1216   const Elf_Sym  *symb = getSymbol(Symb);
   1217   const Elf_Shdr *sec = getSection(symb);
   1218   if (!sec)
   1219     Res = end_sections();
   1220   else {
   1221     DataRefImpl Sec;
   1222     Sec.p = reinterpret_cast<intptr_t>(sec);
   1223     Res = section_iterator(SectionRef(Sec, this));
   1224   }
   1225   return object_error::success;
   1226 }
   1227 
   1228 template<class ELFT>
   1229 error_code ELFObjectFile<ELFT>::getSymbolValue(DataRefImpl Symb,
   1230                                                uint64_t &Val) const {
   1231   validateSymbol(Symb);
   1232   const Elf_Sym *symb = getSymbol(Symb);
   1233   Val = symb->st_value;
   1234   return object_error::success;
   1235 }
   1236 
   1237 template<class ELFT>
   1238 error_code ELFObjectFile<ELFT>::getSectionNext(DataRefImpl Sec,
   1239                                                SectionRef &Result) const {
   1240   const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
   1241   sec += Header->e_shentsize;
   1242   Sec.p = reinterpret_cast<intptr_t>(sec);
   1243   Result = SectionRef(Sec, this);
   1244   return object_error::success;
   1245 }
   1246 
   1247 template<class ELFT>
   1248 error_code ELFObjectFile<ELFT>::getSectionName(DataRefImpl Sec,
   1249                                                StringRef &Result) const {
   1250   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1251   Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
   1252   return object_error::success;
   1253 }
   1254 
   1255 template<class ELFT>
   1256 error_code ELFObjectFile<ELFT>::getSectionAddress(DataRefImpl Sec,
   1257                                                   uint64_t &Result) const {
   1258   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1259   Result = sec->sh_addr;
   1260   return object_error::success;
   1261 }
   1262 
   1263 template<class ELFT>
   1264 error_code ELFObjectFile<ELFT>::getSectionSize(DataRefImpl Sec,
   1265                                                uint64_t &Result) const {
   1266   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1267   Result = sec->sh_size;
   1268   return object_error::success;
   1269 }
   1270 
   1271 template<class ELFT>
   1272 error_code ELFObjectFile<ELFT>::getSectionContents(DataRefImpl Sec,
   1273                                                    StringRef &Result) const {
   1274   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1275   const char *start = (const char*)base() + sec->sh_offset;
   1276   Result = StringRef(start, sec->sh_size);
   1277   return object_error::success;
   1278 }
   1279 
   1280 template<class ELFT>
   1281 error_code ELFObjectFile<ELFT>::getSectionContents(const Elf_Shdr *Sec,
   1282                                                    StringRef &Result) const {
   1283   const char *start = (const char*)base() + Sec->sh_offset;
   1284   Result = StringRef(start, Sec->sh_size);
   1285   return object_error::success;
   1286 }
   1287 
   1288 template<class ELFT>
   1289 error_code ELFObjectFile<ELFT>::getSectionAlignment(DataRefImpl Sec,
   1290                                                     uint64_t &Result) const {
   1291   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1292   Result = sec->sh_addralign;
   1293   return object_error::success;
   1294 }
   1295 
   1296 template<class ELFT>
   1297 error_code ELFObjectFile<ELFT>::isSectionText(DataRefImpl Sec,
   1298                                               bool &Result) const {
   1299   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1300   if (sec->sh_flags & ELF::SHF_EXECINSTR)
   1301     Result = true;
   1302   else
   1303     Result = false;
   1304   return object_error::success;
   1305 }
   1306 
   1307 template<class ELFT>
   1308 error_code ELFObjectFile<ELFT>::isSectionData(DataRefImpl Sec,
   1309                                               bool &Result) const {
   1310   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1311   if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
   1312       && sec->sh_type == ELF::SHT_PROGBITS)
   1313     Result = true;
   1314   else
   1315     Result = false;
   1316   return object_error::success;
   1317 }
   1318 
   1319 template<class ELFT>
   1320 error_code ELFObjectFile<ELFT>::isSectionBSS(DataRefImpl Sec,
   1321                                              bool &Result) const {
   1322   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1323   if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
   1324       && sec->sh_type == ELF::SHT_NOBITS)
   1325     Result = true;
   1326   else
   1327     Result = false;
   1328   return object_error::success;
   1329 }
   1330 
   1331 template<class ELFT>
   1332 error_code ELFObjectFile<ELFT>::isSectionRequiredForExecution(
   1333     DataRefImpl Sec, bool &Result) const {
   1334   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1335   if (sec->sh_flags & ELF::SHF_ALLOC)
   1336     Result = true;
   1337   else
   1338     Result = false;
   1339   return object_error::success;
   1340 }
   1341 
   1342 template<class ELFT>
   1343 error_code ELFObjectFile<ELFT>::isSectionVirtual(DataRefImpl Sec,
   1344                                                  bool &Result) const {
   1345   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1346   if (sec->sh_type == ELF::SHT_NOBITS)
   1347     Result = true;
   1348   else
   1349     Result = false;
   1350   return object_error::success;
   1351 }
   1352 
   1353 template<class ELFT>
   1354 error_code ELFObjectFile<ELFT>::isSectionZeroInit(DataRefImpl Sec,
   1355                                                   bool &Result) const {
   1356   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1357   // For ELF, all zero-init sections are virtual (that is, they occupy no space
   1358   //   in the object image) and vice versa.
   1359   Result = sec->sh_type == ELF::SHT_NOBITS;
   1360   return object_error::success;
   1361 }
   1362 
   1363 template<class ELFT>
   1364 error_code ELFObjectFile<ELFT>::isSectionReadOnlyData(DataRefImpl Sec,
   1365                                                       bool &Result) const {
   1366   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1367   if (sec->sh_flags & ELF::SHF_WRITE || sec->sh_flags & ELF::SHF_EXECINSTR)
   1368     Result = false;
   1369   else
   1370     Result = true;
   1371   return object_error::success;
   1372 }
   1373 
   1374 template<class ELFT>
   1375 error_code ELFObjectFile<ELFT>::sectionContainsSymbol(DataRefImpl Sec,
   1376                                                       DataRefImpl Symb,
   1377                                                       bool &Result) const {
   1378   // FIXME: Unimplemented.
   1379   Result = false;
   1380   return object_error::success;
   1381 }
   1382 
   1383 template<class ELFT>
   1384 relocation_iterator
   1385 ELFObjectFile<ELFT>::getSectionRelBegin(DataRefImpl Sec) const {
   1386   DataRefImpl RelData;
   1387   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1388   typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
   1389   if (sec != 0 && ittr != SectionRelocMap.end()) {
   1390     RelData.w.a = getSection(ittr->second[0])->sh_info;
   1391     RelData.w.b = ittr->second[0];
   1392     RelData.w.c = 0;
   1393   }
   1394   return relocation_iterator(RelocationRef(RelData, this));
   1395 }
   1396 
   1397 template<class ELFT>
   1398 relocation_iterator
   1399 ELFObjectFile<ELFT>::getSectionRelEnd(DataRefImpl Sec) const {
   1400   DataRefImpl RelData;
   1401   const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
   1402   typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
   1403   if (sec != 0 && ittr != SectionRelocMap.end()) {
   1404     // Get the index of the last relocation section for this section.
   1405     std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
   1406     const Elf_Shdr *relocsec = getSection(relocsecindex);
   1407     RelData.w.a = relocsec->sh_info;
   1408     RelData.w.b = relocsecindex;
   1409     RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
   1410   }
   1411   return relocation_iterator(RelocationRef(RelData, this));
   1412 }
   1413 
   1414 // Relocations
   1415 template<class ELFT>
   1416 error_code ELFObjectFile<ELFT>::getRelocationNext(DataRefImpl Rel,
   1417                                                   RelocationRef &Result) const {
   1418   ++Rel.w.c;
   1419   const Elf_Shdr *relocsec = getSection(Rel.w.b);
   1420   if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
   1421     // We have reached the end of the relocations for this section. See if there
   1422     // is another relocation section.
   1423     typename RelocMap_t::mapped_type relocseclist =
   1424       SectionRelocMap.lookup(getSection(Rel.w.a));
   1425 
   1426     // Do a binary search for the current reloc section index (which must be
   1427     // present). Then get the next one.
   1428     typename RelocMap_t::mapped_type::const_iterator loc =
   1429       std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
   1430     ++loc;
   1431 
   1432     // If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
   1433     // to the end iterator.
   1434     if (loc != relocseclist.end()) {
   1435       Rel.w.b = *loc;
   1436       Rel.w.a = 0;
   1437     }
   1438   }
   1439   Result = RelocationRef(Rel, this);
   1440   return object_error::success;
   1441 }
   1442 
   1443 template<class ELFT>
   1444 error_code ELFObjectFile<ELFT>::getRelocationSymbol(DataRefImpl Rel,
   1445                                                     SymbolRef &Result) const {
   1446   uint32_t symbolIdx;
   1447   const Elf_Shdr *sec = getSection(Rel.w.b);
   1448   switch (sec->sh_type) {
   1449     default :
   1450       report_fatal_error("Invalid section type in Rel!");
   1451     case ELF::SHT_REL : {
   1452       symbolIdx = getRel(Rel)->getSymbol();
   1453       break;
   1454     }
   1455     case ELF::SHT_RELA : {
   1456       symbolIdx = getRela(Rel)->getSymbol();
   1457       break;
   1458     }
   1459   }
   1460   DataRefImpl SymbolData;
   1461   IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
   1462   if (it == SymbolTableSectionsIndexMap.end())
   1463     report_fatal_error("Relocation symbol table not found!");
   1464   SymbolData.d.a = symbolIdx;
   1465   SymbolData.d.b = it->second;
   1466   Result = SymbolRef(SymbolData, this);
   1467   return object_error::success;
   1468 }
   1469 
   1470 template<class ELFT>
   1471 error_code ELFObjectFile<ELFT>::getRelocationAddress(DataRefImpl Rel,
   1472                                                      uint64_t &Result) const {
   1473   uint64_t offset;
   1474   const Elf_Shdr *sec = getSection(Rel.w.b);
   1475   switch (sec->sh_type) {
   1476     default :
   1477       report_fatal_error("Invalid section type in Rel!");
   1478     case ELF::SHT_REL : {
   1479       offset = getRel(Rel)->r_offset;
   1480       break;
   1481     }
   1482     case ELF::SHT_RELA : {
   1483       offset = getRela(Rel)->r_offset;
   1484       break;
   1485     }
   1486   }
   1487 
   1488   Result = offset;
   1489   return object_error::success;
   1490 }
   1491 
   1492 template<class ELFT>
   1493 error_code ELFObjectFile<ELFT>::getRelocationOffset(DataRefImpl Rel,
   1494                                                     uint64_t &Result) const {
   1495   uint64_t offset;
   1496   const Elf_Shdr *sec = getSection(Rel.w.b);
   1497   switch (sec->sh_type) {
   1498     default :
   1499       report_fatal_error("Invalid section type in Rel!");
   1500     case ELF::SHT_REL : {
   1501       offset = getRel(Rel)->r_offset;
   1502       break;
   1503     }
   1504     case ELF::SHT_RELA : {
   1505       offset = getRela(Rel)->r_offset;
   1506       break;
   1507     }
   1508   }
   1509 
   1510   Result = offset - sec->sh_addr;
   1511   return object_error::success;
   1512 }
   1513 
   1514 template<class ELFT>
   1515 error_code ELFObjectFile<ELFT>::getRelocationType(DataRefImpl Rel,
   1516                                                   uint64_t &Result) const {
   1517   const Elf_Shdr *sec = getSection(Rel.w.b);
   1518   switch (sec->sh_type) {
   1519     default :
   1520       report_fatal_error("Invalid section type in Rel!");
   1521     case ELF::SHT_REL : {
   1522       Result = getRel(Rel)->getType();
   1523       break;
   1524     }
   1525     case ELF::SHT_RELA : {
   1526       Result = getRela(Rel)->getType();
   1527       break;
   1528     }
   1529   }
   1530   return object_error::success;
   1531 }
   1532 
   1533 #define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
   1534   case ELF::enum: res = #enum; break;
   1535 
   1536 template<class ELFT>
   1537 error_code ELFObjectFile<ELFT>::getRelocationTypeName(
   1538     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
   1539   const Elf_Shdr *sec = getSection(Rel.w.b);
   1540   uint32_t type;
   1541   StringRef res;
   1542   switch (sec->sh_type) {
   1543     default :
   1544       return object_error::parse_failed;
   1545     case ELF::SHT_REL : {
   1546       type = getRel(Rel)->getType();
   1547       break;
   1548     }
   1549     case ELF::SHT_RELA : {
   1550       type = getRela(Rel)->getType();
   1551       break;
   1552     }
   1553   }
   1554   switch (Header->e_machine) {
   1555   case ELF::EM_X86_64:
   1556     switch (type) {
   1557       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
   1558       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
   1559       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
   1560       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
   1561       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
   1562       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
   1563       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
   1564       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
   1565       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
   1566       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
   1567       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
   1568       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
   1569       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
   1570       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
   1571       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
   1572       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
   1573       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
   1574       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
   1575       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
   1576       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
   1577       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
   1578       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
   1579       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
   1580       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
   1581       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
   1582       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
   1583       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
   1584       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
   1585       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
   1586       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
   1587       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
   1588       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
   1589     default:
   1590       res = "Unknown";
   1591     }
   1592     break;
   1593   case ELF::EM_386:
   1594     switch (type) {
   1595       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
   1596       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
   1597       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
   1598       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
   1599       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
   1600       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
   1601       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
   1602       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
   1603       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
   1604       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
   1605       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
   1606       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
   1607       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
   1608       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
   1609       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
   1610       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
   1611       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
   1612       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
   1613       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
   1614       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
   1615       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
   1616       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
   1617       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
   1618       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
   1619       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
   1620       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
   1621       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
   1622       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
   1623       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
   1624       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
   1625       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
   1626       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
   1627       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
   1628       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
   1629       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
   1630       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
   1631       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
   1632       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
   1633       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
   1634       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
   1635     default:
   1636       res = "Unknown";
   1637     }
   1638     break;
   1639   case ELF::EM_AARCH64:
   1640     switch (type) {
   1641       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_NONE);
   1642       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS64);
   1643       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS32);
   1644       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS16);
   1645       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL64);
   1646       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL32);
   1647       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL16);
   1648       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0);
   1649       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0_NC);
   1650       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1);
   1651       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1_NC);
   1652       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2);
   1653       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2_NC);
   1654       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G3);
   1655       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G0);
   1656       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G1);
   1657       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G2);
   1658       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD_PREL_LO19);
   1659       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_LO21);
   1660       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_PG_HI21);
   1661       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADD_ABS_LO12_NC);
   1662       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST8_ABS_LO12_NC);
   1663       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TSTBR14);
   1664       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CONDBR19);
   1665       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP26);
   1666       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CALL26);
   1667       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST16_ABS_LO12_NC);
   1668       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST32_ABS_LO12_NC);
   1669       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST64_ABS_LO12_NC);
   1670       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST128_ABS_LO12_NC);
   1671       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_GOT_PAGE);
   1672       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD64_GOT_LO12_NC);
   1673       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G2);
   1674       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1);
   1675       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC);
   1676       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0);
   1677       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC);
   1678       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_HI12);
   1679       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12);
   1680       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC);
   1681       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12);
   1682       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC);
   1683       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12);
   1684       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC);
   1685       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12);
   1686       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC);
   1687       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12);
   1688       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC);
   1689       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
   1690       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
   1691       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
   1692       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
   1693       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
   1694       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G2);
   1695       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1);
   1696       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC);
   1697       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0);
   1698       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC);
   1699       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_HI12);
   1700       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12);
   1701       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC);
   1702       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12);
   1703       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC);
   1704       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12);
   1705       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC);
   1706       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12);
   1707       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC);
   1708       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12);
   1709       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC);
   1710       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADR_PAGE);
   1711       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_LD64_LO12_NC);
   1712       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADD_LO12_NC);
   1713       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_CALL);
   1714 
   1715     default:
   1716       res = "Unknown";
   1717     }
   1718     break;
   1719   case ELF::EM_ARM:
   1720     switch (type) {
   1721       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
   1722       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
   1723       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
   1724       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
   1725       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
   1726       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
   1727       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
   1728       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
   1729       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
   1730       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
   1731       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
   1732       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
   1733       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
   1734       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
   1735       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
   1736       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
   1737       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
   1738       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
   1739       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
   1740       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
   1741       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
   1742       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
   1743       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
   1744       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
   1745       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
   1746       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
   1747       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
   1748       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
   1749       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
   1750       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
   1751       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
   1752       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
   1753       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
   1754       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
   1755       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
   1756       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
   1757       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
   1758       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
   1759       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
   1760       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
   1761       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
   1762       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
   1763       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
   1764       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
   1765       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
   1766       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
   1767       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
   1768       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
   1769       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
   1770       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
   1771       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
   1772       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
   1773       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
   1774       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
   1775       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
   1776       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
   1777       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
   1778       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
   1779       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
   1780       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
   1781       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
   1782       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
   1783       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
   1784       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
   1785       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
   1786       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
   1787       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
   1788       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
   1789       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
   1790       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
   1791       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
   1792       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
   1793       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
   1794       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
   1795       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
   1796       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
   1797       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
   1798       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
   1799       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
   1800       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
   1801       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
   1802       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
   1803       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
   1804       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
   1805       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
   1806       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
   1807       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
   1808       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
   1809       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
   1810       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
   1811       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
   1812       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
   1813       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
   1814       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
   1815       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
   1816       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
   1817       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
   1818       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
   1819       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
   1820       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
   1821       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
   1822       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
   1823       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
   1824       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
   1825       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
   1826       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
   1827       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
   1828       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
   1829       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
   1830       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
   1831       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
   1832       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
   1833       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
   1834       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
   1835       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
   1836       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
   1837       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
   1838       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
   1839       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
   1840       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
   1841       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
   1842       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
   1843       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
   1844       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
   1845       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
   1846       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
   1847       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
   1848       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
   1849       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
   1850       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
   1851       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
   1852     default:
   1853       res = "Unknown";
   1854     }
   1855     break;
   1856   case ELF::EM_HEXAGON:
   1857     switch (type) {
   1858       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
   1859       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
   1860       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
   1861       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
   1862       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
   1863       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
   1864       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
   1865       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
   1866       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
   1867       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
   1868       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
   1869       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
   1870       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
   1871       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
   1872       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
   1873       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
   1874       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
   1875       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
   1876       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
   1877       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
   1878       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
   1879       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
   1880       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
   1881       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
   1882       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
   1883       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
   1884       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
   1885       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
   1886       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
   1887       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
   1888       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
   1889       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
   1890       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
   1891       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
   1892       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
   1893       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
   1894       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
   1895       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
   1896       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
   1897       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
   1898       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
   1899       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
   1900       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
   1901       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
   1902       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
   1903       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
   1904       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
   1905       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
   1906       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
   1907       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
   1908       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
   1909       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
   1910       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
   1911       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
   1912       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
   1913       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
   1914       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
   1915       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
   1916       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
   1917       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
   1918       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
   1919       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
   1920       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
   1921       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
   1922       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
   1923       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
   1924       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
   1925       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
   1926       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
   1927       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
   1928       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
   1929       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
   1930       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
   1931       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
   1932       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
   1933       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
   1934       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
   1935       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
   1936       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
   1937       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
   1938       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
   1939       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
   1940       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
   1941       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
   1942       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
   1943       LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
   1944     default:
   1945       res = "Unknown";
   1946     }
   1947     break;
   1948   default:
   1949     res = "Unknown";
   1950   }
   1951   Result.append(res.begin(), res.end());
   1952   return object_error::success;
   1953 }
   1954 
   1955 #undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
   1956 
   1957 template<class ELFT>
   1958 error_code ELFObjectFile<ELFT>::getRelocationAdditionalInfo(
   1959     DataRefImpl Rel, int64_t &Result) const {
   1960   const Elf_Shdr *sec = getSection(Rel.w.b);
   1961   switch (sec->sh_type) {
   1962     default :
   1963       report_fatal_error("Invalid section type in Rel!");
   1964     case ELF::SHT_REL : {
   1965       Result = 0;
   1966       return object_error::success;
   1967     }
   1968     case ELF::SHT_RELA : {
   1969       Result = getRela(Rel)->r_addend;
   1970       return object_error::success;
   1971     }
   1972   }
   1973 }
   1974 
   1975 template<class ELFT>
   1976 error_code ELFObjectFile<ELFT>::getRelocationValueString(
   1977     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
   1978   const Elf_Shdr *sec = getSection(Rel.w.b);
   1979   uint8_t type;
   1980   StringRef res;
   1981   int64_t addend = 0;
   1982   uint16_t symbol_index = 0;
   1983   switch (sec->sh_type) {
   1984     default:
   1985       return object_error::parse_failed;
   1986     case ELF::SHT_REL: {
   1987       type = getRel(Rel)->getType();
   1988       symbol_index = getRel(Rel)->getSymbol();
   1989       // TODO: Read implicit addend from section data.
   1990       break;
   1991     }
   1992     case ELF::SHT_RELA: {
   1993       type = getRela(Rel)->getType();
   1994       symbol_index = getRela(Rel)->getSymbol();
   1995       addend = getRela(Rel)->r_addend;
   1996       break;
   1997     }
   1998   }
   1999   const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
   2000   StringRef symname;
   2001   if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
   2002     return ec;
   2003   switch (Header->e_machine) {
   2004   case ELF::EM_X86_64:
   2005     switch (type) {
   2006     case ELF::R_X86_64_PC8:
   2007     case ELF::R_X86_64_PC16:
   2008     case ELF::R_X86_64_PC32: {
   2009         std::string fmtbuf;
   2010         raw_string_ostream fmt(fmtbuf);
   2011         fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
   2012         fmt.flush();
   2013         Result.append(fmtbuf.begin(), fmtbuf.end());
   2014       }
   2015       break;
   2016     case ELF::R_X86_64_8:
   2017     case ELF::R_X86_64_16:
   2018     case ELF::R_X86_64_32:
   2019     case ELF::R_X86_64_32S:
   2020     case ELF::R_X86_64_64: {
   2021         std::string fmtbuf;
   2022         raw_string_ostream fmt(fmtbuf);
   2023         fmt << symname << (addend < 0 ? "" : "+") << addend;
   2024         fmt.flush();
   2025         Result.append(fmtbuf.begin(), fmtbuf.end());
   2026       }
   2027       break;
   2028     default:
   2029       res = "Unknown";
   2030     }
   2031     break;
   2032   case ELF::EM_AARCH64:
   2033   case ELF::EM_ARM:
   2034   case ELF::EM_HEXAGON:
   2035     res = symname;
   2036     break;
   2037   default:
   2038     res = "Unknown";
   2039   }
   2040   if (Result.empty())
   2041     Result.append(res.begin(), res.end());
   2042   return object_error::success;
   2043 }
   2044 
   2045 // Verify that the last byte in the string table in a null.
   2046 template<class ELFT>
   2047 void ELFObjectFile<ELFT>::VerifyStrTab(const Elf_Shdr *sh) const {
   2048   const char *strtab = (const char*)base() + sh->sh_offset;
   2049   if (strtab[sh->sh_size - 1] != 0)
   2050     // FIXME: Proper error handling.
   2051     report_fatal_error("String table must end with a null terminator!");
   2052 }
   2053 
   2054 template<class ELFT>
   2055 ELFObjectFile<ELFT>::ELFObjectFile(MemoryBuffer *Object, error_code &ec)
   2056   : ObjectFile(getELFType(
   2057       static_cast<endianness>(ELFT::TargetEndianness) == support::little,
   2058       ELFT::Is64Bits),
   2059       Object,
   2060       ec)
   2061   , isDyldELFObject(false)
   2062   , SectionHeaderTable(0)
   2063   , dot_shstrtab_sec(0)
   2064   , dot_strtab_sec(0)
   2065   , dot_dynstr_sec(0)
   2066   , dot_dynamic_sec(0)
   2067   , dot_gnu_version_sec(0)
   2068   , dot_gnu_version_r_sec(0)
   2069   , dot_gnu_version_d_sec(0)
   2070   , dt_soname(0)
   2071  {
   2072 
   2073   const uint64_t FileSize = Data->getBufferSize();
   2074 
   2075   if (sizeof(Elf_Ehdr) > FileSize)
   2076     // FIXME: Proper error handling.
   2077     report_fatal_error("File too short!");
   2078 
   2079   Header = reinterpret_cast<const Elf_Ehdr *>(base());
   2080 
   2081   if (Header->e_shoff == 0)
   2082     return;
   2083 
   2084   const uint64_t SectionTableOffset = Header->e_shoff;
   2085 
   2086   if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
   2087     // FIXME: Proper error handling.
   2088     report_fatal_error("Section header table goes past end of file!");
   2089 
   2090   // The getNumSections() call below depends on SectionHeaderTable being set.
   2091   SectionHeaderTable =
   2092     reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
   2093   const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
   2094 
   2095   if (SectionTableOffset + SectionTableSize > FileSize)
   2096     // FIXME: Proper error handling.
   2097     report_fatal_error("Section table goes past end of file!");
   2098 
   2099   // To find the symbol tables we walk the section table to find SHT_SYMTAB.
   2100   const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
   2101   const Elf_Shdr* sh = SectionHeaderTable;
   2102 
   2103   // Reserve SymbolTableSections[0] for .dynsym
   2104   SymbolTableSections.push_back(NULL);
   2105 
   2106   for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
   2107     switch (sh->sh_type) {
   2108     case ELF::SHT_SYMTAB_SHNDX: {
   2109       if (SymbolTableSectionHeaderIndex)
   2110         // FIXME: Proper error handling.
   2111         report_fatal_error("More than one .symtab_shndx!");
   2112       SymbolTableSectionHeaderIndex = sh;
   2113       break;
   2114     }
   2115     case ELF::SHT_SYMTAB: {
   2116       SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
   2117       SymbolTableSections.push_back(sh);
   2118       break;
   2119     }
   2120     case ELF::SHT_DYNSYM: {
   2121       if (SymbolTableSections[0] != NULL)
   2122         // FIXME: Proper error handling.
   2123         report_fatal_error("More than one .dynsym!");
   2124       SymbolTableSectionsIndexMap[i] = 0;
   2125       SymbolTableSections[0] = sh;
   2126       break;
   2127     }
   2128     case ELF::SHT_REL:
   2129     case ELF::SHT_RELA: {
   2130       SectionRelocMap[getSection(sh->sh_info)].push_back(i);
   2131       break;
   2132     }
   2133     case ELF::SHT_DYNAMIC: {
   2134       if (dot_dynamic_sec != NULL)
   2135         // FIXME: Proper error handling.
   2136         report_fatal_error("More than one .dynamic!");
   2137       dot_dynamic_sec = sh;
   2138       break;
   2139     }
   2140     case ELF::SHT_GNU_versym: {
   2141       if (dot_gnu_version_sec != NULL)
   2142         // FIXME: Proper error handling.
   2143         report_fatal_error("More than one .gnu.version section!");
   2144       dot_gnu_version_sec = sh;
   2145       break;
   2146     }
   2147     case ELF::SHT_GNU_verdef: {
   2148       if (dot_gnu_version_d_sec != NULL)
   2149         // FIXME: Proper error handling.
   2150         report_fatal_error("More than one .gnu.version_d section!");
   2151       dot_gnu_version_d_sec = sh;
   2152       break;
   2153     }
   2154     case ELF::SHT_GNU_verneed: {
   2155       if (dot_gnu_version_r_sec != NULL)
   2156         // FIXME: Proper error handling.
   2157         report_fatal_error("More than one .gnu.version_r section!");
   2158       dot_gnu_version_r_sec = sh;
   2159       break;
   2160     }
   2161     }
   2162     ++sh;
   2163   }
   2164 
   2165   // Sort section relocation lists by index.
   2166   for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
   2167                                      e = SectionRelocMap.end(); i != e; ++i) {
   2168     std::sort(i->second.begin(), i->second.end());
   2169   }
   2170 
   2171   // Get string table sections.
   2172   dot_shstrtab_sec = getSection(getStringTableIndex());
   2173   if (dot_shstrtab_sec) {
   2174     // Verify that the last byte in the string table in a null.
   2175     VerifyStrTab(dot_shstrtab_sec);
   2176   }
   2177 
   2178   // Merge this into the above loop.
   2179   for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
   2180                   *e = i + getNumSections() * Header->e_shentsize;
   2181                    i != e; i += Header->e_shentsize) {
   2182     const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
   2183     if (sh->sh_type == ELF::SHT_STRTAB) {
   2184       StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
   2185       if (SectionName == ".strtab") {
   2186         if (dot_strtab_sec != 0)
   2187           // FIXME: Proper error handling.
   2188           report_fatal_error("Already found section named .strtab!");
   2189         dot_strtab_sec = sh;
   2190         VerifyStrTab(dot_strtab_sec);
   2191       } else if (SectionName == ".dynstr") {
   2192         if (dot_dynstr_sec != 0)
   2193           // FIXME: Proper error handling.
   2194           report_fatal_error("Already found section named .dynstr!");
   2195         dot_dynstr_sec = sh;
   2196         VerifyStrTab(dot_dynstr_sec);
   2197       }
   2198     }
   2199   }
   2200 
   2201   // Build symbol name side-mapping if there is one.
   2202   if (SymbolTableSectionHeaderIndex) {
   2203     const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
   2204                                       SymbolTableSectionHeaderIndex->sh_offset);
   2205     error_code ec;
   2206     for (symbol_iterator si = begin_symbols(),
   2207                          se = end_symbols(); si != se; si.increment(ec)) {
   2208       if (ec)
   2209         report_fatal_error("Fewer extended symbol table entries than symbols!");
   2210       if (*ShndxTable != ELF::SHN_UNDEF)
   2211         ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
   2212       ++ShndxTable;
   2213     }
   2214   }
   2215 }
   2216 
   2217 // Get the symbol table index in the symtab section given a symbol
   2218 template<class ELFT>
   2219 uint64_t ELFObjectFile<ELFT>::getSymbolIndex(const Elf_Sym *Sym) const {
   2220   assert(SymbolTableSections.size() == 1 && "Only one symbol table supported!");
   2221   const Elf_Shdr *SymTab = *SymbolTableSections.begin();
   2222   uintptr_t SymLoc = uintptr_t(Sym);
   2223   uintptr_t SymTabLoc = uintptr_t(base() + SymTab->sh_offset);
   2224   assert(SymLoc > SymTabLoc && "Symbol not in symbol table!");
   2225   uint64_t SymOffset = SymLoc - SymTabLoc;
   2226   assert(SymOffset % SymTab->sh_entsize == 0 &&
   2227          "Symbol not multiple of symbol size!");
   2228   return SymOffset / SymTab->sh_entsize;
   2229 }
   2230 
   2231 template<class ELFT>
   2232 symbol_iterator ELFObjectFile<ELFT>::begin_symbols() const {
   2233   DataRefImpl SymbolData;
   2234   if (SymbolTableSections.size() <= 1) {
   2235     SymbolData.d.a = std::numeric_limits<uint32_t>::max();
   2236     SymbolData.d.b = std::numeric_limits<uint32_t>::max();
   2237   } else {
   2238     SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
   2239     SymbolData.d.b = 1; // The 0th table is .dynsym
   2240   }
   2241   return symbol_iterator(SymbolRef(SymbolData, this));
   2242 }
   2243 
   2244 template<class ELFT>
   2245 symbol_iterator ELFObjectFile<ELFT>::end_symbols() const {
   2246   DataRefImpl SymbolData;
   2247   SymbolData.d.a = std::numeric_limits<uint32_t>::max();
   2248   SymbolData.d.b = std::numeric_limits<uint32_t>::max();
   2249   return symbol_iterator(SymbolRef(SymbolData, this));
   2250 }
   2251 
   2252 template<class ELFT>
   2253 symbol_iterator ELFObjectFile<ELFT>::begin_dynamic_symbols() const {
   2254   DataRefImpl SymbolData;
   2255   if (SymbolTableSections[0] == NULL) {
   2256     SymbolData.d.a = std::numeric_limits<uint32_t>::max();
   2257     SymbolData.d.b = std::numeric_limits<uint32_t>::max();
   2258   } else {
   2259     SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
   2260     SymbolData.d.b = 0; // The 0th table is .dynsym
   2261   }
   2262   return symbol_iterator(SymbolRef(SymbolData, this));
   2263 }
   2264 
   2265 template<class ELFT>
   2266 symbol_iterator ELFObjectFile<ELFT>::end_dynamic_symbols() const {
   2267   DataRefImpl SymbolData;
   2268   SymbolData.d.a = std::numeric_limits<uint32_t>::max();
   2269   SymbolData.d.b = std::numeric_limits<uint32_t>::max();
   2270   return symbol_iterator(SymbolRef(SymbolData, this));
   2271 }
   2272 
   2273 template<class ELFT>
   2274 section_iterator ELFObjectFile<ELFT>::begin_sections() const {
   2275   DataRefImpl ret;
   2276   ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
   2277   return section_iterator(SectionRef(ret, this));
   2278 }
   2279 
   2280 template<class ELFT>
   2281 section_iterator ELFObjectFile<ELFT>::end_sections() const {
   2282   DataRefImpl ret;
   2283   ret.p = reinterpret_cast<intptr_t>(base()
   2284                                      + Header->e_shoff
   2285                                      + (Header->e_shentsize*getNumSections()));
   2286   return section_iterator(SectionRef(ret, this));
   2287 }
   2288 
   2289 template<class ELFT>
   2290 typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
   2291 ELFObjectFile<ELFT>::begin_dynamic_table() const {
   2292   if (dot_dynamic_sec)
   2293     return Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
   2294                             (const char *)base() + dot_dynamic_sec->sh_offset);
   2295   return Elf_Dyn_iterator(0, 0);
   2296 }
   2297 
   2298 template<class ELFT>
   2299 typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
   2300 ELFObjectFile<ELFT>::end_dynamic_table(bool NULLEnd) const {
   2301   if (dot_dynamic_sec) {
   2302     Elf_Dyn_iterator Ret(dot_dynamic_sec->sh_entsize,
   2303                          (const char *)base() + dot_dynamic_sec->sh_offset +
   2304                          dot_dynamic_sec->sh_size);
   2305 
   2306     if (NULLEnd) {
   2307       Elf_Dyn_iterator Start = begin_dynamic_table();
   2308       for (; Start != Ret && Start->getTag() != ELF::DT_NULL; ++Start)
   2309         ;
   2310       // Include the DT_NULL.
   2311       if (Start != Ret)
   2312         ++Start;
   2313       Ret = Start;
   2314     }
   2315     return Ret;
   2316   }
   2317   return Elf_Dyn_iterator(0, 0);
   2318 }
   2319 
   2320 template<class ELFT>
   2321 StringRef ELFObjectFile<ELFT>::getLoadName() const {
   2322   if (!dt_soname) {
   2323     // Find the DT_SONAME entry
   2324     Elf_Dyn_iterator it = begin_dynamic_table();
   2325     Elf_Dyn_iterator ie = end_dynamic_table();
   2326     for (; it != ie; ++it) {
   2327       if (it->getTag() == ELF::DT_SONAME)
   2328         break;
   2329     }
   2330     if (it != ie) {
   2331       if (dot_dynstr_sec == NULL)
   2332         report_fatal_error("Dynamic string table is missing");
   2333       dt_soname = getString(dot_dynstr_sec, it->getVal());
   2334     } else {
   2335       dt_soname = "";
   2336     }
   2337   }
   2338   return dt_soname;
   2339 }
   2340 
   2341 template<class ELFT>
   2342 library_iterator ELFObjectFile<ELFT>::begin_libraries_needed() const {
   2343   // Find the first DT_NEEDED entry
   2344   Elf_Dyn_iterator i = begin_dynamic_table();
   2345   Elf_Dyn_iterator e = end_dynamic_table();
   2346   for (; i != e; ++i) {
   2347     if (i->getTag() == ELF::DT_NEEDED)
   2348       break;
   2349   }
   2350 
   2351   DataRefImpl DRI;
   2352   DRI.p = reinterpret_cast<uintptr_t>(i.get());
   2353   return library_iterator(LibraryRef(DRI, this));
   2354 }
   2355 
   2356 template<class ELFT>
   2357 error_code ELFObjectFile<ELFT>::getLibraryNext(DataRefImpl Data,
   2358                                                LibraryRef &Result) const {
   2359   // Use the same DataRefImpl format as DynRef.
   2360   Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
   2361                                         reinterpret_cast<const char *>(Data.p));
   2362   Elf_Dyn_iterator e = end_dynamic_table();
   2363 
   2364   // Skip the current dynamic table entry.
   2365   ++i;
   2366 
   2367   // Find the next DT_NEEDED entry.
   2368   for (; i != e && i->getTag() != ELF::DT_NEEDED; ++i);
   2369 
   2370   DataRefImpl DRI;
   2371   DRI.p = reinterpret_cast<uintptr_t>(i.get());
   2372   Result = LibraryRef(DRI, this);
   2373   return object_error::success;
   2374 }
   2375 
   2376 template<class ELFT>
   2377 error_code ELFObjectFile<ELFT>::getLibraryPath(DataRefImpl Data,
   2378                                                StringRef &Res) const {
   2379   Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
   2380                                         reinterpret_cast<const char *>(Data.p));
   2381   if (i == end_dynamic_table())
   2382     report_fatal_error("getLibraryPath() called on iterator end");
   2383 
   2384   if (i->getTag() != ELF::DT_NEEDED)
   2385     report_fatal_error("Invalid library_iterator");
   2386 
   2387   // This uses .dynstr to lookup the name of the DT_NEEDED entry.
   2388   // THis works as long as DT_STRTAB == .dynstr. This is true most of
   2389   // the time, but the specification allows exceptions.
   2390   // TODO: This should really use DT_STRTAB instead. Doing this requires
   2391   // reading the program headers.
   2392   if (dot_dynstr_sec == NULL)
   2393     report_fatal_error("Dynamic string table is missing");
   2394   Res = getString(dot_dynstr_sec, i->getVal());
   2395   return object_error::success;
   2396 }
   2397 
   2398 template<class ELFT>
   2399 library_iterator ELFObjectFile<ELFT>::end_libraries_needed() const {
   2400   Elf_Dyn_iterator e = end_dynamic_table();
   2401   DataRefImpl DRI;
   2402   DRI.p = reinterpret_cast<uintptr_t>(e.get());
   2403   return library_iterator(LibraryRef(DRI, this));
   2404 }
   2405 
   2406 template<class ELFT>
   2407 uint8_t ELFObjectFile<ELFT>::getBytesInAddress() const {
   2408   return ELFT::Is64Bits ? 8 : 4;
   2409 }
   2410 
   2411 template<class ELFT>
   2412 StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
   2413   switch(Header->e_ident[ELF::EI_CLASS]) {
   2414   case ELF::ELFCLASS32:
   2415     switch(Header->e_machine) {
   2416     case ELF::EM_386:
   2417       return "ELF32-i386";
   2418     case ELF::EM_X86_64:
   2419       return "ELF32-x86-64";
   2420     case ELF::EM_ARM:
   2421       return "ELF32-arm";
   2422     case ELF::EM_HEXAGON:
   2423       return "ELF32-hexagon";
   2424     case ELF::EM_MIPS:
   2425       return "ELF32-mips";
   2426     default:
   2427       return "ELF32-unknown";
   2428     }
   2429   case ELF::ELFCLASS64:
   2430     switch(Header->e_machine) {
   2431     case ELF::EM_386:
   2432       return "ELF64-i386";
   2433     case ELF::EM_X86_64:
   2434       return "ELF64-x86-64";
   2435     case ELF::EM_AARCH64:
   2436       return "ELF64-aarch64";
   2437     case ELF::EM_PPC64:
   2438       return "ELF64-ppc64";
   2439     default:
   2440       return "ELF64-unknown";
   2441     }
   2442   default:
   2443     // FIXME: Proper error handling.
   2444     report_fatal_error("Invalid ELFCLASS!");
   2445   }
   2446 }
   2447 
   2448 template<class ELFT>
   2449 unsigned ELFObjectFile<ELFT>::getArch() const {
   2450   switch(Header->e_machine) {
   2451   case ELF::EM_386:
   2452     return Triple::x86;
   2453   case ELF::EM_X86_64:
   2454     return Triple::x86_64;
   2455   case ELF::EM_AARCH64:
   2456     return Triple::aarch64;
   2457   case ELF::EM_ARM:
   2458     return Triple::arm;
   2459   case ELF::EM_HEXAGON:
   2460     return Triple::hexagon;
   2461   case ELF::EM_MIPS:
   2462     return (ELFT::TargetEndianness == support::little) ?
   2463            Triple::mipsel : Triple::mips;
   2464   case ELF::EM_PPC64:
   2465     return Triple::ppc64;
   2466   default:
   2467     return Triple::UnknownArch;
   2468   }
   2469 }
   2470 
   2471 template<class ELFT>
   2472 uint64_t ELFObjectFile<ELFT>::getNumSections() const {
   2473   assert(Header && "Header not initialized!");
   2474   if (Header->e_shnum == ELF::SHN_UNDEF) {
   2475     assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
   2476     return SectionHeaderTable->sh_size;
   2477   }
   2478   return Header->e_shnum;
   2479 }
   2480 
   2481 template<class ELFT>
   2482 uint64_t
   2483 ELFObjectFile<ELFT>::getStringTableIndex() const {
   2484   if (Header->e_shnum == ELF::SHN_UNDEF) {
   2485     if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
   2486       return SectionHeaderTable->sh_link;
   2487     if (Header->e_shstrndx >= getNumSections())
   2488       return 0;
   2489   }
   2490   return Header->e_shstrndx;
   2491 }
   2492 
   2493 template<class ELFT>
   2494 template<typename T>
   2495 inline const T *
   2496 ELFObjectFile<ELFT>::getEntry(uint16_t Section, uint32_t Entry) const {
   2497   return getEntry<T>(getSection(Section), Entry);
   2498 }
   2499 
   2500 template<class ELFT>
   2501 template<typename T>
   2502 inline const T *
   2503 ELFObjectFile<ELFT>::getEntry(const Elf_Shdr * Section, uint32_t Entry) const {
   2504   return reinterpret_cast<const T *>(
   2505            base()
   2506            + Section->sh_offset
   2507            + (Entry * Section->sh_entsize));
   2508 }
   2509 
   2510 template<class ELFT>
   2511 const typename ELFObjectFile<ELFT>::Elf_Sym *
   2512 ELFObjectFile<ELFT>::getSymbol(DataRefImpl Symb) const {
   2513   return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
   2514 }
   2515 
   2516 template<class ELFT>
   2517 const typename ELFObjectFile<ELFT>::Elf_Rel *
   2518 ELFObjectFile<ELFT>::getRel(DataRefImpl Rel) const {
   2519   return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
   2520 }
   2521 
   2522 template<class ELFT>
   2523 const typename ELFObjectFile<ELFT>::Elf_Rela *
   2524 ELFObjectFile<ELFT>::getRela(DataRefImpl Rela) const {
   2525   return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
   2526 }
   2527 
   2528 template<class ELFT>
   2529 const typename ELFObjectFile<ELFT>::Elf_Shdr *
   2530 ELFObjectFile<ELFT>::getSection(DataRefImpl Symb) const {
   2531   const Elf_Shdr *sec = getSection(Symb.d.b);
   2532   if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
   2533     // FIXME: Proper error handling.
   2534     report_fatal_error("Invalid symbol table section!");
   2535   return sec;
   2536 }
   2537 
   2538 template<class ELFT>
   2539 const typename ELFObjectFile<ELFT>::Elf_Shdr *
   2540 ELFObjectFile<ELFT>::getSection(uint32_t index) const {
   2541   if (index == 0)
   2542     return 0;
   2543   if (!SectionHeaderTable || index >= getNumSections())
   2544     // FIXME: Proper error handling.
   2545     report_fatal_error("Invalid section index!");
   2546 
   2547   return reinterpret_cast<const Elf_Shdr *>(
   2548          reinterpret_cast<const char *>(SectionHeaderTable)
   2549          + (index * Header->e_shentsize));
   2550 }
   2551 
   2552 template<class ELFT>
   2553 const char *ELFObjectFile<ELFT>::getString(uint32_t section,
   2554                                            ELF::Elf32_Word offset) const {
   2555   return getString(getSection(section), offset);
   2556 }
   2557 
   2558 template<class ELFT>
   2559 const char *ELFObjectFile<ELFT>::getString(const Elf_Shdr *section,
   2560                                            ELF::Elf32_Word offset) const {
   2561   assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
   2562   if (offset >= section->sh_size)
   2563     // FIXME: Proper error handling.
   2564     report_fatal_error("Symbol name offset outside of string table!");
   2565   return (const char *)base() + section->sh_offset + offset;
   2566 }
   2567 
   2568 template<class ELFT>
   2569 error_code ELFObjectFile<ELFT>::getSymbolName(const Elf_Shdr *section,
   2570                                               const Elf_Sym *symb,
   2571                                               StringRef &Result) const {
   2572   if (symb->st_name == 0) {
   2573     const Elf_Shdr *section = getSection(symb);
   2574     if (!section)
   2575       Result = "";
   2576     else
   2577       Result = getString(dot_shstrtab_sec, section->sh_name);
   2578     return object_error::success;
   2579   }
   2580 
   2581   if (section == SymbolTableSections[0]) {
   2582     // Symbol is in .dynsym, use .dynstr string table
   2583     Result = getString(dot_dynstr_sec, symb->st_name);
   2584   } else {
   2585     // Use the default symbol table name section.
   2586     Result = getString(dot_strtab_sec, symb->st_name);
   2587   }
   2588   return object_error::success;
   2589 }
   2590 
   2591 template<class ELFT>
   2592 error_code ELFObjectFile<ELFT>::getSectionName(const Elf_Shdr *section,
   2593                                                StringRef &Result) const {
   2594   Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
   2595   return object_error::success;
   2596 }
   2597 
   2598 template<class ELFT>
   2599 error_code ELFObjectFile<ELFT>::getSymbolVersion(const Elf_Shdr *section,
   2600                                                  const Elf_Sym *symb,
   2601                                                  StringRef &Version,
   2602                                                  bool &IsDefault) const {
   2603   // Handle non-dynamic symbols.
   2604   if (section != SymbolTableSections[0]) {
   2605     // Non-dynamic symbols can have versions in their names
   2606     // A name of the form 'foo@V1' indicates version 'V1', non-default.
   2607     // A name of the form 'foo@@V2' indicates version 'V2', default version.
   2608     StringRef Name;
   2609     error_code ec = getSymbolName(section, symb, Name);
   2610     if (ec != object_error::success)
   2611       return ec;
   2612     size_t atpos = Name.find('@');
   2613     if (atpos == StringRef::npos) {
   2614       Version = "";
   2615       IsDefault = false;
   2616       return object_error::success;
   2617     }
   2618     ++atpos;
   2619     if (atpos < Name.size() && Name[atpos] == '@') {
   2620       IsDefault = true;
   2621       ++atpos;
   2622     } else {
   2623       IsDefault = false;
   2624     }
   2625     Version = Name.substr(atpos);
   2626     return object_error::success;
   2627   }
   2628 
   2629   // This is a dynamic symbol. Look in the GNU symbol version table.
   2630   if (dot_gnu_version_sec == NULL) {
   2631     // No version table.
   2632     Version = "";
   2633     IsDefault = false;
   2634     return object_error::success;
   2635   }
   2636 
   2637   // Determine the position in the symbol table of this entry.
   2638   const char *sec_start = (const char*)base() + section->sh_offset;
   2639   size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
   2640 
   2641   // Get the corresponding version index entry
   2642   const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
   2643   size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
   2644 
   2645   // Special markers for unversioned symbols.
   2646   if (version_index == ELF::VER_NDX_LOCAL ||
   2647       version_index == ELF::VER_NDX_GLOBAL) {
   2648     Version = "";
   2649     IsDefault = false;
   2650     return object_error::success;
   2651   }
   2652 
   2653   // Lookup this symbol in the version table
   2654   LoadVersionMap();
   2655   if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
   2656     report_fatal_error("Symbol has version index without corresponding "
   2657                        "define or reference entry");
   2658   const VersionMapEntry &entry = VersionMap[version_index];
   2659 
   2660   // Get the version name string
   2661   size_t name_offset;
   2662   if (entry.isVerdef()) {
   2663     // The first Verdaux entry holds the name.
   2664     name_offset = entry.getVerdef()->getAux()->vda_name;
   2665   } else {
   2666     name_offset = entry.getVernaux()->vna_name;
   2667   }
   2668   Version = getString(dot_dynstr_sec, name_offset);
   2669 
   2670   // Set IsDefault
   2671   if (entry.isVerdef()) {
   2672     IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
   2673   } else {
   2674     IsDefault = false;
   2675   }
   2676 
   2677   return object_error::success;
   2678 }
   2679 
   2680 /// This is a generic interface for retrieving GNU symbol version
   2681 /// information from an ELFObjectFile.
   2682 static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
   2683                                              const SymbolRef &Sym,
   2684                                              StringRef &Version,
   2685                                              bool &IsDefault) {
   2686   // Little-endian 32-bit
   2687   if (const ELFObjectFile<ELFType<support::little, 4, false> > *ELFObj =
   2688           dyn_cast<ELFObjectFile<ELFType<support::little, 4, false> > >(Obj))
   2689     return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
   2690 
   2691   // Big-endian 32-bit
   2692   if (const ELFObjectFile<ELFType<support::big, 4, false> > *ELFObj =
   2693           dyn_cast<ELFObjectFile<ELFType<support::big, 4, false> > >(Obj))
   2694     return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
   2695 
   2696   // Little-endian 64-bit
   2697   if (const ELFObjectFile<ELFType<support::little, 8, true> > *ELFObj =
   2698           dyn_cast<ELFObjectFile<ELFType<support::little, 8, true> > >(Obj))
   2699     return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
   2700 
   2701   // Big-endian 64-bit
   2702   if (const ELFObjectFile<ELFType<support::big, 8, true> > *ELFObj =
   2703           dyn_cast<ELFObjectFile<ELFType<support::big, 8, true> > >(Obj))
   2704     return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
   2705 
   2706   llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
   2707 }
   2708 
   2709 }
   2710 }
   2711 
   2712 #endif
   2713