Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a hash set that can be used to remove duplication of nodes
     11 // in a graph.  This code was originally created by Chris Lattner for use with
     12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_FOLDINGSET_H
     17 #define LLVM_ADT_FOLDINGSET_H
     18 
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringRef.h"
     21 #include "llvm/Support/DataTypes.h"
     22 
     23 namespace llvm {
     24   class APFloat;
     25   class APInt;
     26   class BumpPtrAllocator;
     27 
     28 /// This folding set used for two purposes:
     29 ///   1. Given information about a node we want to create, look up the unique
     30 ///      instance of the node in the set.  If the node already exists, return
     31 ///      it, otherwise return the bucket it should be inserted into.
     32 ///   2. Given a node that has already been created, remove it from the set.
     33 ///
     34 /// This class is implemented as a single-link chained hash table, where the
     35 /// "buckets" are actually the nodes themselves (the next pointer is in the
     36 /// node).  The last node points back to the bucket to simplify node removal.
     37 ///
     38 /// Any node that is to be included in the folding set must be a subclass of
     39 /// FoldingSetNode.  The node class must also define a Profile method used to
     40 /// establish the unique bits of data for the node.  The Profile method is
     41 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
     42 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
     43 /// NOTE: That the folding set does not own the nodes and it is the
     44 /// responsibility of the user to dispose of the nodes.
     45 ///
     46 /// Eg.
     47 ///    class MyNode : public FoldingSetNode {
     48 ///    private:
     49 ///      std::string Name;
     50 ///      unsigned Value;
     51 ///    public:
     52 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
     53 ///       ...
     54 ///      void Profile(FoldingSetNodeID &ID) const {
     55 ///        ID.AddString(Name);
     56 ///        ID.AddInteger(Value);
     57 ///      }
     58 ///      ...
     59 ///    };
     60 ///
     61 /// To define the folding set itself use the FoldingSet template;
     62 ///
     63 /// Eg.
     64 ///    FoldingSet<MyNode> MyFoldingSet;
     65 ///
     66 /// Four public methods are available to manipulate the folding set;
     67 ///
     68 /// 1) If you have an existing node that you want add to the set but unsure
     69 /// that the node might already exist then call;
     70 ///
     71 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
     72 ///
     73 /// If The result is equal to the input then the node has been inserted.
     74 /// Otherwise, the result is the node existing in the folding set, and the
     75 /// input can be discarded (use the result instead.)
     76 ///
     77 /// 2) If you are ready to construct a node but want to check if it already
     78 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
     79 /// check;
     80 ///
     81 ///   FoldingSetNodeID ID;
     82 ///   ID.AddString(Name);
     83 ///   ID.AddInteger(Value);
     84 ///   void *InsertPoint;
     85 ///
     86 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
     87 ///
     88 /// If found then M with be non-NULL, else InsertPoint will point to where it
     89 /// should be inserted using InsertNode.
     90 ///
     91 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
     92 /// node with FindNodeOrInsertPos;
     93 ///
     94 ///    InsertNode(N, InsertPoint);
     95 ///
     96 /// 4) Finally, if you want to remove a node from the folding set call;
     97 ///
     98 ///    bool WasRemoved = RemoveNode(N);
     99 ///
    100 /// The result indicates whether the node existed in the folding set.
    101 
    102 class FoldingSetNodeID;
    103 
    104 //===----------------------------------------------------------------------===//
    105 /// FoldingSetImpl - Implements the folding set functionality.  The main
    106 /// structure is an array of buckets.  Each bucket is indexed by the hash of
    107 /// the nodes it contains.  The bucket itself points to the nodes contained
    108 /// in the bucket via a singly linked list.  The last node in the list points
    109 /// back to the bucket to facilitate node removal.
    110 ///
    111 class FoldingSetImpl {
    112 protected:
    113   /// Buckets - Array of bucket chains.
    114   ///
    115   void **Buckets;
    116 
    117   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
    118   ///
    119   unsigned NumBuckets;
    120 
    121   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
    122   /// is greater than twice the number of buckets.
    123   unsigned NumNodes;
    124 
    125 public:
    126   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
    127   virtual ~FoldingSetImpl();
    128 
    129   //===--------------------------------------------------------------------===//
    130   /// Node - This class is used to maintain the singly linked bucket list in
    131   /// a folding set.
    132   ///
    133   class Node {
    134   private:
    135     // NextInFoldingSetBucket - next link in the bucket list.
    136     void *NextInFoldingSetBucket;
    137 
    138   public:
    139 
    140     Node() : NextInFoldingSetBucket(0) {}
    141 
    142     // Accessors
    143     void *getNextInBucket() const { return NextInFoldingSetBucket; }
    144     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
    145   };
    146 
    147   /// clear - Remove all nodes from the folding set.
    148   void clear();
    149 
    150   /// RemoveNode - Remove a node from the folding set, returning true if one
    151   /// was removed or false if the node was not in the folding set.
    152   bool RemoveNode(Node *N);
    153 
    154   /// GetOrInsertNode - If there is an existing simple Node exactly
    155   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
    156   /// it instead.
    157   Node *GetOrInsertNode(Node *N);
    158 
    159   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    160   /// return it.  If not, return the insertion token that will make insertion
    161   /// faster.
    162   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
    163 
    164   /// InsertNode - Insert the specified node into the folding set, knowing that
    165   /// it is not already in the folding set.  InsertPos must be obtained from
    166   /// FindNodeOrInsertPos.
    167   void InsertNode(Node *N, void *InsertPos);
    168 
    169   /// InsertNode - Insert the specified node into the folding set, knowing that
    170   /// it is not already in the folding set.
    171   void InsertNode(Node *N) {
    172     Node *Inserted = GetOrInsertNode(N);
    173     (void)Inserted;
    174     assert(Inserted == N && "Node already inserted!");
    175   }
    176 
    177   /// size - Returns the number of nodes in the folding set.
    178   unsigned size() const { return NumNodes; }
    179 
    180   /// empty - Returns true if there are no nodes in the folding set.
    181   bool empty() const { return NumNodes == 0; }
    182 
    183 private:
    184 
    185   /// GrowHashTable - Double the size of the hash table and rehash everything.
    186   ///
    187   void GrowHashTable();
    188 
    189 protected:
    190 
    191   /// GetNodeProfile - Instantiations of the FoldingSet template implement
    192   /// this function to gather data bits for the given node.
    193   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
    194   /// NodeEquals - Instantiations of the FoldingSet template implement
    195   /// this function to compare the given node with the given ID.
    196   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    197                           FoldingSetNodeID &TempID) const=0;
    198   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
    199   /// this function to compute a hash value for the given node.
    200   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
    201 };
    202 
    203 //===----------------------------------------------------------------------===//
    204 
    205 template<typename T> struct FoldingSetTrait;
    206 
    207 /// DefaultFoldingSetTrait - This class provides default implementations
    208 /// for FoldingSetTrait implementations.
    209 ///
    210 template<typename T> struct DefaultFoldingSetTrait {
    211   static void Profile(const T &X, FoldingSetNodeID &ID) {
    212     X.Profile(ID);
    213   }
    214   static void Profile(T &X, FoldingSetNodeID &ID) {
    215     X.Profile(ID);
    216   }
    217 
    218   // Equals - Test if the profile for X would match ID, using TempID
    219   // to compute a temporary ID if necessary. The default implementation
    220   // just calls Profile and does a regular comparison. Implementations
    221   // can override this to provide more efficient implementations.
    222   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    223                             FoldingSetNodeID &TempID);
    224 
    225   // ComputeHash - Compute a hash value for X, using TempID to
    226   // compute a temporary ID if necessary. The default implementation
    227   // just calls Profile and does a regular hash computation.
    228   // Implementations can override this to provide more efficient
    229   // implementations.
    230   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
    231 };
    232 
    233 /// FoldingSetTrait - This trait class is used to define behavior of how
    234 /// to "profile" (in the FoldingSet parlance) an object of a given type.
    235 /// The default behavior is to invoke a 'Profile' method on an object, but
    236 /// through template specialization the behavior can be tailored for specific
    237 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
    238 /// to FoldingSets that were not originally designed to have that behavior.
    239 template<typename T> struct FoldingSetTrait
    240   : public DefaultFoldingSetTrait<T> {};
    241 
    242 template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
    243 
    244 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
    245 /// for ContextualFoldingSets.
    246 template<typename T, typename Ctx>
    247 struct DefaultContextualFoldingSetTrait {
    248   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
    249     X.Profile(ID, Context);
    250   }
    251   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    252                             FoldingSetNodeID &TempID, Ctx Context);
    253   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
    254                                      Ctx Context);
    255 };
    256 
    257 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
    258 /// ContextualFoldingSets.
    259 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
    260   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
    261 
    262 //===--------------------------------------------------------------------===//
    263 /// FoldingSetNodeIDRef - This class describes a reference to an interned
    264 /// FoldingSetNodeID, which can be a useful to store node id data rather
    265 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
    266 /// is often much larger than necessary, and the possibility of heap
    267 /// allocation means it requires a non-trivial destructor call.
    268 class FoldingSetNodeIDRef {
    269   const unsigned *Data;
    270   size_t Size;
    271 public:
    272   FoldingSetNodeIDRef() : Data(0), Size(0) {}
    273   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
    274 
    275   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
    276   /// used to lookup the node in the FoldingSetImpl.
    277   unsigned ComputeHash() const;
    278 
    279   bool operator==(FoldingSetNodeIDRef) const;
    280 
    281   /// Used to compare the "ordering" of two nodes as defined by the
    282   /// profiled bits and their ordering defined by memcmp().
    283   bool operator<(FoldingSetNodeIDRef) const;
    284 
    285   const unsigned *getData() const { return Data; }
    286   size_t getSize() const { return Size; }
    287 };
    288 
    289 //===--------------------------------------------------------------------===//
    290 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
    291 /// a node.  When all the bits are gathered this class is used to produce a
    292 /// hash value for the node.
    293 ///
    294 class FoldingSetNodeID {
    295   /// Bits - Vector of all the data bits that make the node unique.
    296   /// Use a SmallVector to avoid a heap allocation in the common case.
    297   SmallVector<unsigned, 32> Bits;
    298 
    299 public:
    300   FoldingSetNodeID() {}
    301 
    302   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
    303     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
    304 
    305   /// Add* - Add various data types to Bit data.
    306   ///
    307   void AddPointer(const void *Ptr);
    308   void AddInteger(signed I);
    309   void AddInteger(unsigned I);
    310   void AddInteger(long I);
    311   void AddInteger(unsigned long I);
    312   void AddInteger(long long I);
    313   void AddInteger(unsigned long long I);
    314   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
    315   void AddString(StringRef String);
    316   void AddNodeID(const FoldingSetNodeID &ID);
    317 
    318   template <typename T>
    319   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
    320 
    321   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
    322   /// object to be used to compute a new profile.
    323   inline void clear() { Bits.clear(); }
    324 
    325   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
    326   /// to lookup the node in the FoldingSetImpl.
    327   unsigned ComputeHash() const;
    328 
    329   /// operator== - Used to compare two nodes to each other.
    330   ///
    331   bool operator==(const FoldingSetNodeID &RHS) const;
    332   bool operator==(const FoldingSetNodeIDRef RHS) const;
    333 
    334   /// Used to compare the "ordering" of two nodes as defined by the
    335   /// profiled bits and their ordering defined by memcmp().
    336   bool operator<(const FoldingSetNodeID &RHS) const;
    337   bool operator<(const FoldingSetNodeIDRef RHS) const;
    338 
    339   /// Intern - Copy this node's data to a memory region allocated from the
    340   /// given allocator and return a FoldingSetNodeIDRef describing the
    341   /// interned data.
    342   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
    343 };
    344 
    345 // Convenience type to hide the implementation of the folding set.
    346 typedef FoldingSetImpl::Node FoldingSetNode;
    347 template<class T> class FoldingSetIterator;
    348 template<class T> class FoldingSetBucketIterator;
    349 
    350 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
    351 // require the definition of FoldingSetNodeID.
    352 template<typename T>
    353 inline bool
    354 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
    355                                   unsigned IDHash, FoldingSetNodeID &TempID) {
    356   FoldingSetTrait<T>::Profile(X, TempID);
    357   return TempID == ID;
    358 }
    359 template<typename T>
    360 inline unsigned
    361 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
    362   FoldingSetTrait<T>::Profile(X, TempID);
    363   return TempID.ComputeHash();
    364 }
    365 template<typename T, typename Ctx>
    366 inline bool
    367 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
    368                                                  const FoldingSetNodeID &ID,
    369                                                  unsigned IDHash,
    370                                                  FoldingSetNodeID &TempID,
    371                                                  Ctx Context) {
    372   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    373   return TempID == ID;
    374 }
    375 template<typename T, typename Ctx>
    376 inline unsigned
    377 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
    378                                                       FoldingSetNodeID &TempID,
    379                                                       Ctx Context) {
    380   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    381   return TempID.ComputeHash();
    382 }
    383 
    384 //===----------------------------------------------------------------------===//
    385 /// FoldingSet - This template class is used to instantiate a specialized
    386 /// implementation of the folding set to the node class T.  T must be a
    387 /// subclass of FoldingSetNode and implement a Profile function.
    388 ///
    389 template<class T> class FoldingSet : public FoldingSetImpl {
    390 private:
    391   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    392   /// way to convert nodes into a unique specifier.
    393   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const {
    394     T *TN = static_cast<T *>(N);
    395     FoldingSetTrait<T>::Profile(*TN, ID);
    396   }
    397   /// NodeEquals - Instantiations may optionally provide a way to compare a
    398   /// node with a specified ID.
    399   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    400                           FoldingSetNodeID &TempID) const {
    401     T *TN = static_cast<T *>(N);
    402     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
    403   }
    404   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
    405   /// hash value directly from a node.
    406   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const {
    407     T *TN = static_cast<T *>(N);
    408     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
    409   }
    410 
    411 public:
    412   explicit FoldingSet(unsigned Log2InitSize = 6)
    413   : FoldingSetImpl(Log2InitSize)
    414   {}
    415 
    416   typedef FoldingSetIterator<T> iterator;
    417   iterator begin() { return iterator(Buckets); }
    418   iterator end() { return iterator(Buckets+NumBuckets); }
    419 
    420   typedef FoldingSetIterator<const T> const_iterator;
    421   const_iterator begin() const { return const_iterator(Buckets); }
    422   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    423 
    424   typedef FoldingSetBucketIterator<T> bucket_iterator;
    425 
    426   bucket_iterator bucket_begin(unsigned hash) {
    427     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    428   }
    429 
    430   bucket_iterator bucket_end(unsigned hash) {
    431     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    432   }
    433 
    434   /// GetOrInsertNode - If there is an existing simple Node exactly
    435   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    436   /// return it instead.
    437   T *GetOrInsertNode(Node *N) {
    438     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    439   }
    440 
    441   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    442   /// return it.  If not, return the insertion token that will make insertion
    443   /// faster.
    444   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    445     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    446   }
    447 };
    448 
    449 //===----------------------------------------------------------------------===//
    450 /// ContextualFoldingSet - This template class is a further refinement
    451 /// of FoldingSet which provides a context argument when calling
    452 /// Profile on its nodes.  Currently, that argument is fixed at
    453 /// initialization time.
    454 ///
    455 /// T must be a subclass of FoldingSetNode and implement a Profile
    456 /// function with signature
    457 ///   void Profile(llvm::FoldingSetNodeID &, Ctx);
    458 template <class T, class Ctx>
    459 class ContextualFoldingSet : public FoldingSetImpl {
    460   // Unfortunately, this can't derive from FoldingSet<T> because the
    461   // construction vtable for FoldingSet<T> requires
    462   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
    463   // requires a single-argument T::Profile().
    464 
    465 private:
    466   Ctx Context;
    467 
    468   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    469   /// way to convert nodes into a unique specifier.
    470   virtual void GetNodeProfile(FoldingSetImpl::Node *N,
    471                               FoldingSetNodeID &ID) const {
    472     T *TN = static_cast<T *>(N);
    473     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
    474   }
    475   virtual bool NodeEquals(FoldingSetImpl::Node *N,
    476                           const FoldingSetNodeID &ID, unsigned IDHash,
    477                           FoldingSetNodeID &TempID) const {
    478     T *TN = static_cast<T *>(N);
    479     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
    480                                                      Context);
    481   }
    482   virtual unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
    483                                    FoldingSetNodeID &TempID) const {
    484     T *TN = static_cast<T *>(N);
    485     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
    486   }
    487 
    488 public:
    489   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
    490   : FoldingSetImpl(Log2InitSize), Context(Context)
    491   {}
    492 
    493   Ctx getContext() const { return Context; }
    494 
    495 
    496   typedef FoldingSetIterator<T> iterator;
    497   iterator begin() { return iterator(Buckets); }
    498   iterator end() { return iterator(Buckets+NumBuckets); }
    499 
    500   typedef FoldingSetIterator<const T> const_iterator;
    501   const_iterator begin() const { return const_iterator(Buckets); }
    502   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    503 
    504   typedef FoldingSetBucketIterator<T> bucket_iterator;
    505 
    506   bucket_iterator bucket_begin(unsigned hash) {
    507     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    508   }
    509 
    510   bucket_iterator bucket_end(unsigned hash) {
    511     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    512   }
    513 
    514   /// GetOrInsertNode - If there is an existing simple Node exactly
    515   /// equal to the specified node, return it.  Otherwise, insert 'N'
    516   /// and return it instead.
    517   T *GetOrInsertNode(Node *N) {
    518     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    519   }
    520 
    521   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
    522   /// exists, return it.  If not, return the insertion token that will
    523   /// make insertion faster.
    524   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    525     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    526   }
    527 };
    528 
    529 //===----------------------------------------------------------------------===//
    530 /// FoldingSetVectorIterator - This implements an iterator for
    531 /// FoldingSetVector. It is only necessary because FoldingSetIterator provides
    532 /// a value_type of T, while the vector in FoldingSetVector exposes
    533 /// a value_type of T*. Fortunately, FoldingSetIterator doesn't expose very
    534 /// much besides operator* and operator->, so we just wrap the inner vector
    535 /// iterator and perform the extra dereference.
    536 template <class T, class VectorIteratorT>
    537 class FoldingSetVectorIterator {
    538   // Provide a typedef to workaround the lack of correct injected class name
    539   // support in older GCCs.
    540   typedef FoldingSetVectorIterator<T, VectorIteratorT> SelfT;
    541 
    542   VectorIteratorT Iterator;
    543 
    544 public:
    545   FoldingSetVectorIterator(VectorIteratorT I) : Iterator(I) {}
    546 
    547   bool operator==(const SelfT &RHS) const {
    548     return Iterator == RHS.Iterator;
    549   }
    550   bool operator!=(const SelfT &RHS) const {
    551     return Iterator != RHS.Iterator;
    552   }
    553 
    554   T &operator*() const { return **Iterator; }
    555 
    556   T *operator->() const { return *Iterator; }
    557 
    558   inline SelfT &operator++() {
    559     ++Iterator;
    560     return *this;
    561   }
    562   SelfT operator++(int) {
    563     SelfT tmp = *this;
    564     ++*this;
    565     return tmp;
    566   }
    567 };
    568 
    569 //===----------------------------------------------------------------------===//
    570 /// FoldingSetVector - This template class combines a FoldingSet and a vector
    571 /// to provide the interface of FoldingSet but with deterministic iteration
    572 /// order based on the insertion order. T must be a subclass of FoldingSetNode
    573 /// and implement a Profile function.
    574 template <class T, class VectorT = SmallVector<T*, 8> >
    575 class FoldingSetVector {
    576   FoldingSet<T> Set;
    577   VectorT Vector;
    578 
    579 public:
    580   explicit FoldingSetVector(unsigned Log2InitSize = 6)
    581       : Set(Log2InitSize) {
    582   }
    583 
    584   typedef FoldingSetVectorIterator<T, typename VectorT::iterator> iterator;
    585   iterator begin() { return Vector.begin(); }
    586   iterator end()   { return Vector.end(); }
    587 
    588   typedef FoldingSetVectorIterator<const T, typename VectorT::const_iterator>
    589     const_iterator;
    590   const_iterator begin() const { return Vector.begin(); }
    591   const_iterator end()   const { return Vector.end(); }
    592 
    593   /// clear - Remove all nodes from the folding set.
    594   void clear() { Set.clear(); Vector.clear(); }
    595 
    596   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    597   /// return it.  If not, return the insertion token that will make insertion
    598   /// faster.
    599   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    600     return Set.FindNodeOrInsertPos(ID, InsertPos);
    601   }
    602 
    603   /// GetOrInsertNode - If there is an existing simple Node exactly
    604   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    605   /// return it instead.
    606   T *GetOrInsertNode(T *N) {
    607     T *Result = Set.GetOrInsertNode(N);
    608     if (Result == N) Vector.push_back(N);
    609     return Result;
    610   }
    611 
    612   /// InsertNode - Insert the specified node into the folding set, knowing that
    613   /// it is not already in the folding set.  InsertPos must be obtained from
    614   /// FindNodeOrInsertPos.
    615   void InsertNode(T *N, void *InsertPos) {
    616     Set.InsertNode(N, InsertPos);
    617     Vector.push_back(N);
    618   }
    619 
    620   /// InsertNode - Insert the specified node into the folding set, knowing that
    621   /// it is not already in the folding set.
    622   void InsertNode(T *N) {
    623     Set.InsertNode(N);
    624     Vector.push_back(N);
    625   }
    626 
    627   /// size - Returns the number of nodes in the folding set.
    628   unsigned size() const { return Set.size(); }
    629 
    630   /// empty - Returns true if there are no nodes in the folding set.
    631   bool empty() const { return Set.empty(); }
    632 };
    633 
    634 //===----------------------------------------------------------------------===//
    635 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
    636 /// folding sets, which knows how to walk the folding set hash table.
    637 class FoldingSetIteratorImpl {
    638 protected:
    639   FoldingSetNode *NodePtr;
    640   FoldingSetIteratorImpl(void **Bucket);
    641   void advance();
    642 
    643 public:
    644   bool operator==(const FoldingSetIteratorImpl &RHS) const {
    645     return NodePtr == RHS.NodePtr;
    646   }
    647   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
    648     return NodePtr != RHS.NodePtr;
    649   }
    650 };
    651 
    652 
    653 template<class T>
    654 class FoldingSetIterator : public FoldingSetIteratorImpl {
    655 public:
    656   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
    657 
    658   T &operator*() const {
    659     return *static_cast<T*>(NodePtr);
    660   }
    661 
    662   T *operator->() const {
    663     return static_cast<T*>(NodePtr);
    664   }
    665 
    666   inline FoldingSetIterator &operator++() {          // Preincrement
    667     advance();
    668     return *this;
    669   }
    670   FoldingSetIterator operator++(int) {        // Postincrement
    671     FoldingSetIterator tmp = *this; ++*this; return tmp;
    672   }
    673 };
    674 
    675 //===----------------------------------------------------------------------===//
    676 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
    677 /// shared by all folding sets, which knows how to walk a particular bucket
    678 /// of a folding set hash table.
    679 
    680 class FoldingSetBucketIteratorImpl {
    681 protected:
    682   void *Ptr;
    683 
    684   explicit FoldingSetBucketIteratorImpl(void **Bucket);
    685 
    686   FoldingSetBucketIteratorImpl(void **Bucket, bool)
    687     : Ptr(Bucket) {}
    688 
    689   void advance() {
    690     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
    691     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
    692     Ptr = reinterpret_cast<void*>(x);
    693   }
    694 
    695 public:
    696   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
    697     return Ptr == RHS.Ptr;
    698   }
    699   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
    700     return Ptr != RHS.Ptr;
    701   }
    702 };
    703 
    704 
    705 template<class T>
    706 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
    707 public:
    708   explicit FoldingSetBucketIterator(void **Bucket) :
    709     FoldingSetBucketIteratorImpl(Bucket) {}
    710 
    711   FoldingSetBucketIterator(void **Bucket, bool) :
    712     FoldingSetBucketIteratorImpl(Bucket, true) {}
    713 
    714   T &operator*() const { return *static_cast<T*>(Ptr); }
    715   T *operator->() const { return static_cast<T*>(Ptr); }
    716 
    717   inline FoldingSetBucketIterator &operator++() { // Preincrement
    718     advance();
    719     return *this;
    720   }
    721   FoldingSetBucketIterator operator++(int) {      // Postincrement
    722     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
    723   }
    724 };
    725 
    726 //===----------------------------------------------------------------------===//
    727 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
    728 /// types in an enclosing object so that they can be inserted into FoldingSets.
    729 template <typename T>
    730 class FoldingSetNodeWrapper : public FoldingSetNode {
    731   T data;
    732 public:
    733   explicit FoldingSetNodeWrapper(const T &x) : data(x) {}
    734   virtual ~FoldingSetNodeWrapper() {}
    735 
    736   template<typename A1>
    737   explicit FoldingSetNodeWrapper(const A1 &a1)
    738     : data(a1) {}
    739 
    740   template <typename A1, typename A2>
    741   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2)
    742     : data(a1,a2) {}
    743 
    744   template <typename A1, typename A2, typename A3>
    745   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3)
    746     : data(a1,a2,a3) {}
    747 
    748   template <typename A1, typename A2, typename A3, typename A4>
    749   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
    750                                  const A4 &a4)
    751     : data(a1,a2,a3,a4) {}
    752 
    753   template <typename A1, typename A2, typename A3, typename A4, typename A5>
    754   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
    755                                  const A4 &a4, const A5 &a5)
    756   : data(a1,a2,a3,a4,a5) {}
    757 
    758 
    759   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
    760 
    761   T &getValue() { return data; }
    762   const T &getValue() const { return data; }
    763 
    764   operator T&() { return data; }
    765   operator const T&() const { return data; }
    766 };
    767 
    768 //===----------------------------------------------------------------------===//
    769 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
    770 /// a FoldingSetNodeID value rather than requiring the node to recompute it
    771 /// each time it is needed. This trades space for speed (which can be
    772 /// significant if the ID is long), and it also permits nodes to drop
    773 /// information that would otherwise only be required for recomputing an ID.
    774 class FastFoldingSetNode : public FoldingSetNode {
    775   FoldingSetNodeID FastID;
    776 protected:
    777   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
    778 public:
    779   void Profile(FoldingSetNodeID &ID) const {
    780     ID.AddNodeID(FastID);
    781   }
    782 };
    783 
    784 //===----------------------------------------------------------------------===//
    785 // Partial specializations of FoldingSetTrait.
    786 
    787 template<typename T> struct FoldingSetTrait<T*> {
    788   static inline void Profile(T *X, FoldingSetNodeID &ID) {
    789     ID.AddPointer(X);
    790   }
    791 };
    792 } // End of namespace llvm.
    793 
    794 #endif
    795