Home | History | Annotate | Download | only in include
      1 
      2 /* -----------------------------------------------------------------------------------------------------------
      3 Software License for The Fraunhofer FDK AAC Codec Library for Android
      4 
      5  Copyright  1995 - 2012 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V.
      6   All rights reserved.
      7 
      8  1.    INTRODUCTION
      9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
     10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
     11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
     14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
     15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
     16 of the MPEG specifications.
     17 
     18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
     19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
     20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
     21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
     22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
     23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
     24 
     25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
     26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
     27 applications information and documentation.
     28 
     29 2.    COPYRIGHT LICENSE
     30 
     31 Redistribution and use in source and binary forms, with or without modification, are permitted without
     32 payment of copyright license fees provided that you satisfy the following conditions:
     33 
     34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
     35 your modifications thereto in source code form.
     36 
     37 You must retain the complete text of this software license in the documentation and/or other materials
     38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
     39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
     40 modifications thereto to recipients of copies in binary form.
     41 
     42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
     43 prior written permission.
     44 
     45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
     46 software or your modifications thereto.
     47 
     48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
     49 and the date of any change. For modified versions of the FDK AAC Codec, the term
     50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
     51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
     52 
     53 3.    NO PATENT LICENSE
     54 
     55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
     56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
     57 respect to this software.
     58 
     59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
     60 by appropriate patent licenses.
     61 
     62 4.    DISCLAIMER
     63 
     64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
     65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
     66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
     68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
     69 or business interruption, however caused and on any theory of liability, whether in contract, strict
     70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
     71 advised of the possibility of such damage.
     72 
     73 5.    CONTACT INFORMATION
     74 
     75 Fraunhofer Institute for Integrated Circuits IIS
     76 Attention: Audio and Multimedia Departments - FDK AAC LL
     77 Am Wolfsmantel 33
     78 91058 Erlangen, Germany
     79 
     80 www.iis.fraunhofer.de/amm
     81 amm-info (at) iis.fraunhofer.de
     82 ----------------------------------------------------------------------------------------------------------- */
     83 
     84 /***************************  Fraunhofer IIS FDK Tools  **********************
     85 
     86    Author(s):   M. Gayer
     87    Description: Fixed point specific mathematical functions
     88 
     89 ******************************************************************************/
     90 
     91 #ifndef __fixpoint_math_H
     92 #define __fixpoint_math_H
     93 
     94 
     95 #include "common_fix.h"
     96 
     97 
     98 #define LD_DATA_SCALING (64.0f)
     99 #define LD_DATA_SHIFT   6   /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */
    100 
    101 /**
    102  * \brief deprecated. Use fLog2() instead.
    103  */
    104 FIXP_DBL CalcLdData(FIXP_DBL op);
    105 
    106 void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number);
    107 
    108 FIXP_DBL CalcInvLdData(FIXP_DBL op);
    109 
    110 
    111 void     InitLdInt();
    112 FIXP_DBL CalcLdInt(INT i);
    113 
    114 extern const USHORT sqrt_tab[49];
    115 
    116 inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x)
    117 {
    118   UINT y = (INT)x;
    119   UCHAR is_zero=(y==0);
    120   INT zeros=fixnormz_D(y) & 0x1e;
    121   y<<=zeros;
    122   UINT idx=(y>>26)-16;
    123   USHORT frac=(y>>10)&0xffff;
    124   USHORT nfrac=0xffff^frac;
    125   UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
    126   t=t>>(zeros>>1);
    127   return(is_zero ? 0 : t);
    128 }
    129 
    130 inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e)
    131 {
    132   UINT y = (INT)x;
    133   INT e;
    134 
    135   if (x == (FIXP_DBL)0) {
    136     return x;
    137   }
    138 
    139   /* Normalize */
    140   e=fixnormz_D(y);
    141   y<<=e;
    142   e  = *x_e - e + 2;
    143 
    144   /* Correct odd exponent. */
    145   if (e & 1) {
    146     y >>= 1;
    147     e ++;
    148   }
    149   /* Get square root */
    150   UINT idx=(y>>26)-16;
    151   USHORT frac=(y>>10)&0xffff;
    152   USHORT nfrac=0xffff^frac;
    153   UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
    154 
    155   /* Write back exponent */
    156   *x_e = e >> 1;
    157   return (FIXP_DBL)(LONG)(t>>1);
    158 }
    159 
    160 
    161 
    162 FIXP_DBL sqrtFixp(FIXP_DBL op);
    163 
    164 void InitInvSqrtTab();
    165 
    166 FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift);
    167 
    168 /*****************************************************************************
    169 
    170     functionname: invFixp
    171     description:  delivers 1/(op)
    172 
    173 *****************************************************************************/
    174 inline FIXP_DBL invFixp(FIXP_DBL op)
    175 {
    176     INT tmp_exp ;
    177     FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ;
    178     FDK_ASSERT((31-(2*tmp_exp+1))>=0) ;
    179     return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ;
    180 }
    181 
    182 
    183 
    184 #if defined(__mips__) && (__GNUC__==2)
    185 
    186 #define FUNCTION_schur_div
    187 inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
    188 {
    189   INT result, tmp ;
    190    __asm__ ("srl %1, %2, 15\n"
    191             "div %3, %1\n" : "=lo" (result)
    192                            : "%d" (tmp), "d" (denum) ,  "d" (num)
    193                            : "hi" ) ;
    194   return result<<16 ;
    195 }
    196 
    197 /*###########################################################################################*/
    198 #elif defined(__mips__) && (__GNUC__==3)
    199 
    200 #define FUNCTION_schur_div
    201 inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
    202 {
    203   INT result, tmp;
    204 
    205    __asm__ ("srl  %[tmp], %[denum], 15\n"
    206             "div %[result], %[num], %[tmp]\n"
    207             : [tmp] "+r" (tmp), [result]"=r"(result)
    208             : [denum]"r"(denum), [num]"r"(num)
    209             : "hi", "lo");
    210   return result << (DFRACT_BITS-16);
    211 }
    212 
    213 /*###########################################################################################*/
    214 #elif defined(SIMULATE_MIPS_DIV)
    215 
    216 #define FUNCTION_schur_div
    217 inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
    218 {
    219     FDK_ASSERT (count<=DFRACT_BITS-1);
    220     FDK_ASSERT (num>=(FIXP_DBL)0);
    221     FDK_ASSERT (denum>(FIXP_DBL)0);
    222     FDK_ASSERT (num <= denum);
    223 
    224     INT tmp = denum >> (count-1);
    225     INT result = 0;
    226 
    227     while (num > tmp)
    228     {
    229         num -= tmp;
    230         result++;
    231     }
    232 
    233     return result << (DFRACT_BITS-count);
    234 }
    235 
    236 /*###########################################################################################*/
    237 #endif /* target architecture selector */
    238 
    239 #if !defined(FUNCTION_schur_div)
    240 /**
    241  * \brief Divide two FIXP_DBL values with given precision.
    242  * \param num dividend
    243  * \param denum divisor
    244  * \param count amount of significant bits of the result (starting to the MSB)
    245  * \return num/divisor
    246  */
    247 FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count);
    248 #endif
    249 
    250 
    251 
    252 FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1,
    253                           const FIXP_SGL op2);
    254 
    255 /**
    256  * \brief multiply two values with normalization, thus max precision.
    257  * Author: Robert Weidner
    258  *
    259  * \param f1 first factor
    260  * \param f2 secod factor
    261  * \param result_e pointer to an INT where the exponent of the result is stored into
    262  * \return mantissa of the product f1*f2
    263  */
    264 FIXP_DBL fMultNorm(
    265         FIXP_DBL f1,
    266         FIXP_DBL f2,
    267         INT *result_e
    268         );
    269 
    270 inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2)
    271 {
    272   FIXP_DBL m;
    273   INT e;
    274 
    275   m = fMultNorm(f1, f2, &e);
    276 
    277   m = scaleValueSaturate(m, e);
    278 
    279   return m;
    280 }
    281 
    282 /**
    283  * \brief Divide 2 FIXP_DBL values with normalization of input values.
    284  * \param num numerator
    285  * \param denum denomintator
    286  * \return num/denum with exponent = 0
    287  */
    288 FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e);
    289 
    290 /**
    291  * \brief Divide 2 FIXP_DBL values with normalization of input values.
    292  * \param num numerator
    293  * \param denum denomintator
    294  * \param result_e pointer to an INT where the exponent of the result is stored into
    295  * \return num/denum with exponent = *result_e
    296  */
    297 FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom);
    298 
    299 /**
    300  * \brief Divide 2 FIXP_DBL values with normalization of input values.
    301  * \param num numerator
    302  * \param denum denomintator
    303  * \return num/denum with exponent = 0
    304  */
    305 FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
    306 
    307 /**
    308  * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead.
    309  * \param arg mantissa of the argument
    310  * \param arg_e exponent of the argument
    311  * \param result_e pointer to an INT to store the exponent of the result
    312  * \return the mantissa of the result.
    313  * \param
    314  */
    315 FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e);
    316 
    317 /**
    318  * \brief return 2 ^ (exp * 2^exp_e)
    319  * \param exp_m mantissa of the exponent to 2.0f
    320  * \param exp_e exponent of the exponent to 2.0f
    321  * \param result_e pointer to a INT where the exponent of the result will be stored into
    322  * \return mantissa of the result
    323  */
    324 FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e);
    325 
    326 /**
    327  * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero.
    328  * \param exp_m mantissa of the exponent to 2.0f
    329  * \param exp_e exponent of the exponent to 2.0f
    330  * \return mantissa of the result
    331  */
    332 FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e);
    333 
    334 /**
    335  * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
    336  *        the need to compute log2() of constant values (when x is a constant).
    337  * \param ldx_m mantissa of log2() of x.
    338  * \param ldx_e exponent of log2() of x.
    339  * \param exp_m mantissa of the exponent to 2.0f
    340  * \param exp_e exponent of the exponent to 2.0f
    341  * \param result_e pointer to a INT where the exponent of the result will be stored into
    342  * \return mantissa of the result
    343  */
    344 FIXP_DBL fLdPow(
    345         FIXP_DBL baseLd_m,
    346         INT baseLd_e,
    347         FIXP_DBL exp_m, INT exp_e,
    348         INT *result_e
    349         );
    350 
    351 /**
    352  * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
    353  *        the need to compute log2() of constant values (when x is a constant). This version
    354  *        does not return an exponent, which is implicitly 0.
    355  * \param ldx_m mantissa of log2() of x.
    356  * \param ldx_e exponent of log2() of x.
    357  * \param exp_m mantissa of the exponent to 2.0f
    358  * \param exp_e exponent of the exponent to 2.0f
    359  * \return mantissa of the result
    360  */
    361 FIXP_DBL fLdPow(
    362         FIXP_DBL baseLd_m, INT baseLd_e,
    363         FIXP_DBL exp_m, INT exp_e
    364         );
    365 
    366 /**
    367  * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible.
    368  * \param base_m mantissa of the base.
    369  * \param base_e exponent of the base.
    370  * \param exp_m mantissa of power to be calculated of the base.
    371  * \param exp_e exponent of power to be calculated of the base.
    372  * \param result_e pointer to a INT where the exponent of the result will be stored into.
    373  * \return mantissa of the result.
    374  */
    375 FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e);
    376 
    377 /**
    378  * \brief return (base * 2^base_e) ^ N
    379  * \param base mantissa of the base
    380  * \param base_e exponent of the base
    381  * \param power to be calculated of the base
    382  * \param result_e pointer to a INT where the exponent of the result will be stored into
    383  * \return mantissa of the result
    384  */
    385 FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e);
    386 
    387 /**
    388  * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
    389  * \param x_m mantissa of the input value.
    390  * \param x_e exponent of the input value.
    391  * \param pointer to an INT where the exponent of the result is returned into.
    392  * \return mantissa of the result.
    393  */
    394 FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e);
    395 
    396 /**
    397  * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
    398  * \param x_m mantissa of the input value.
    399  * \param x_e exponent of the input value.
    400  * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT.
    401  */
    402 FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e);
    403 
    404 /**
    405  * \brief Add with saturation of the result.
    406  * \param a first summand
    407  * \param b second summand
    408  * \return saturated sum of a and b.
    409  */
    410 inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b)
    411 {
    412   LONG sum;
    413 
    414   sum = (LONG)(SHORT)a + (LONG)(SHORT)b;
    415   sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL);
    416   return (FIXP_SGL)(SHORT)sum;
    417 }
    418 
    419 /**
    420  * \brief Add with saturation of the result.
    421  * \param a first summand
    422  * \param b second summand
    423  * \return saturated sum of a and b.
    424  */
    425 inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b)
    426 {
    427   LONG sum;
    428 
    429   sum = (LONG)(a>>1) + (LONG)(b>>1);
    430   sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1));
    431   return (FIXP_DBL)(LONG)(sum<<1);
    432 }
    433 
    434 //#define TEST_ROUNDING
    435 
    436 
    437 
    438 
    439 /*****************************************************************************
    440 
    441  array for 1/n, n=1..50
    442 
    443 ****************************************************************************/
    444 
    445   extern const FIXP_DBL invCount[50];
    446 
    447   LNK_SECTION_INITCODE
    448   inline void InitInvInt(void) {}
    449 
    450 
    451 /**
    452  * \brief Calculate the value of 1/i where i is a integer value. It supports
    453  *        input values from 1 upto 50.
    454  * \param intValue Integer input value.
    455  * \param FIXP_DBL representation of 1/intValue
    456  */
    457 inline FIXP_DBL GetInvInt(int intValue)
    458 {
    459   FDK_ASSERT((intValue > 0) && (intValue < 50));
    460   FDK_ASSERT(intValue<50);
    461 	return invCount[intValue];
    462 }
    463 
    464 
    465 #endif
    466 
    467