1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /*************************** Fraunhofer IIS FDK Tools ********************** 85 86 Author(s): M. Gayer 87 Description: Fixed point specific mathematical functions 88 89 ******************************************************************************/ 90 91 #ifndef __fixpoint_math_H 92 #define __fixpoint_math_H 93 94 95 #include "common_fix.h" 96 97 98 #define LD_DATA_SCALING (64.0f) 99 #define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */ 100 101 /** 102 * \brief deprecated. Use fLog2() instead. 103 */ 104 FIXP_DBL CalcLdData(FIXP_DBL op); 105 106 void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number); 107 108 FIXP_DBL CalcInvLdData(FIXP_DBL op); 109 110 111 void InitLdInt(); 112 FIXP_DBL CalcLdInt(INT i); 113 114 extern const USHORT sqrt_tab[49]; 115 116 inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x) 117 { 118 UINT y = (INT)x; 119 UCHAR is_zero=(y==0); 120 INT zeros=fixnormz_D(y) & 0x1e; 121 y<<=zeros; 122 UINT idx=(y>>26)-16; 123 USHORT frac=(y>>10)&0xffff; 124 USHORT nfrac=0xffff^frac; 125 UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; 126 t=t>>(zeros>>1); 127 return(is_zero ? 0 : t); 128 } 129 130 inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e) 131 { 132 UINT y = (INT)x; 133 INT e; 134 135 if (x == (FIXP_DBL)0) { 136 return x; 137 } 138 139 /* Normalize */ 140 e=fixnormz_D(y); 141 y<<=e; 142 e = *x_e - e + 2; 143 144 /* Correct odd exponent. */ 145 if (e & 1) { 146 y >>= 1; 147 e ++; 148 } 149 /* Get square root */ 150 UINT idx=(y>>26)-16; 151 USHORT frac=(y>>10)&0xffff; 152 USHORT nfrac=0xffff^frac; 153 UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; 154 155 /* Write back exponent */ 156 *x_e = e >> 1; 157 return (FIXP_DBL)(LONG)(t>>1); 158 } 159 160 161 162 FIXP_DBL sqrtFixp(FIXP_DBL op); 163 164 void InitInvSqrtTab(); 165 166 FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift); 167 168 /***************************************************************************** 169 170 functionname: invFixp 171 description: delivers 1/(op) 172 173 *****************************************************************************/ 174 inline FIXP_DBL invFixp(FIXP_DBL op) 175 { 176 INT tmp_exp ; 177 FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ; 178 FDK_ASSERT((31-(2*tmp_exp+1))>=0) ; 179 return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ; 180 } 181 182 183 184 #if defined(__mips__) && (__GNUC__==2) 185 186 #define FUNCTION_schur_div 187 inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) 188 { 189 INT result, tmp ; 190 __asm__ ("srl %1, %2, 15\n" 191 "div %3, %1\n" : "=lo" (result) 192 : "%d" (tmp), "d" (denum) , "d" (num) 193 : "hi" ) ; 194 return result<<16 ; 195 } 196 197 /*###########################################################################################*/ 198 #elif defined(__mips__) && (__GNUC__==3) 199 200 #define FUNCTION_schur_div 201 inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) 202 { 203 INT result, tmp; 204 205 __asm__ ("srl %[tmp], %[denum], 15\n" 206 "div %[result], %[num], %[tmp]\n" 207 : [tmp] "+r" (tmp), [result]"=r"(result) 208 : [denum]"r"(denum), [num]"r"(num) 209 : "hi", "lo"); 210 return result << (DFRACT_BITS-16); 211 } 212 213 /*###########################################################################################*/ 214 #elif defined(SIMULATE_MIPS_DIV) 215 216 #define FUNCTION_schur_div 217 inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) 218 { 219 FDK_ASSERT (count<=DFRACT_BITS-1); 220 FDK_ASSERT (num>=(FIXP_DBL)0); 221 FDK_ASSERT (denum>(FIXP_DBL)0); 222 FDK_ASSERT (num <= denum); 223 224 INT tmp = denum >> (count-1); 225 INT result = 0; 226 227 while (num > tmp) 228 { 229 num -= tmp; 230 result++; 231 } 232 233 return result << (DFRACT_BITS-count); 234 } 235 236 /*###########################################################################################*/ 237 #endif /* target architecture selector */ 238 239 #if !defined(FUNCTION_schur_div) 240 /** 241 * \brief Divide two FIXP_DBL values with given precision. 242 * \param num dividend 243 * \param denum divisor 244 * \param count amount of significant bits of the result (starting to the MSB) 245 * \return num/divisor 246 */ 247 FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count); 248 #endif 249 250 251 252 FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, 253 const FIXP_SGL op2); 254 255 /** 256 * \brief multiply two values with normalization, thus max precision. 257 * Author: Robert Weidner 258 * 259 * \param f1 first factor 260 * \param f2 secod factor 261 * \param result_e pointer to an INT where the exponent of the result is stored into 262 * \return mantissa of the product f1*f2 263 */ 264 FIXP_DBL fMultNorm( 265 FIXP_DBL f1, 266 FIXP_DBL f2, 267 INT *result_e 268 ); 269 270 inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2) 271 { 272 FIXP_DBL m; 273 INT e; 274 275 m = fMultNorm(f1, f2, &e); 276 277 m = scaleValueSaturate(m, e); 278 279 return m; 280 } 281 282 /** 283 * \brief Divide 2 FIXP_DBL values with normalization of input values. 284 * \param num numerator 285 * \param denum denomintator 286 * \return num/denum with exponent = 0 287 */ 288 FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e); 289 290 /** 291 * \brief Divide 2 FIXP_DBL values with normalization of input values. 292 * \param num numerator 293 * \param denum denomintator 294 * \param result_e pointer to an INT where the exponent of the result is stored into 295 * \return num/denum with exponent = *result_e 296 */ 297 FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom); 298 299 /** 300 * \brief Divide 2 FIXP_DBL values with normalization of input values. 301 * \param num numerator 302 * \param denum denomintator 303 * \return num/denum with exponent = 0 304 */ 305 FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e); 306 307 /** 308 * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead. 309 * \param arg mantissa of the argument 310 * \param arg_e exponent of the argument 311 * \param result_e pointer to an INT to store the exponent of the result 312 * \return the mantissa of the result. 313 * \param 314 */ 315 FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e); 316 317 /** 318 * \brief return 2 ^ (exp * 2^exp_e) 319 * \param exp_m mantissa of the exponent to 2.0f 320 * \param exp_e exponent of the exponent to 2.0f 321 * \param result_e pointer to a INT where the exponent of the result will be stored into 322 * \return mantissa of the result 323 */ 324 FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e); 325 326 /** 327 * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero. 328 * \param exp_m mantissa of the exponent to 2.0f 329 * \param exp_e exponent of the exponent to 2.0f 330 * \return mantissa of the result 331 */ 332 FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e); 333 334 /** 335 * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves 336 * the need to compute log2() of constant values (when x is a constant). 337 * \param ldx_m mantissa of log2() of x. 338 * \param ldx_e exponent of log2() of x. 339 * \param exp_m mantissa of the exponent to 2.0f 340 * \param exp_e exponent of the exponent to 2.0f 341 * \param result_e pointer to a INT where the exponent of the result will be stored into 342 * \return mantissa of the result 343 */ 344 FIXP_DBL fLdPow( 345 FIXP_DBL baseLd_m, 346 INT baseLd_e, 347 FIXP_DBL exp_m, INT exp_e, 348 INT *result_e 349 ); 350 351 /** 352 * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves 353 * the need to compute log2() of constant values (when x is a constant). This version 354 * does not return an exponent, which is implicitly 0. 355 * \param ldx_m mantissa of log2() of x. 356 * \param ldx_e exponent of log2() of x. 357 * \param exp_m mantissa of the exponent to 2.0f 358 * \param exp_e exponent of the exponent to 2.0f 359 * \return mantissa of the result 360 */ 361 FIXP_DBL fLdPow( 362 FIXP_DBL baseLd_m, INT baseLd_e, 363 FIXP_DBL exp_m, INT exp_e 364 ); 365 366 /** 367 * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible. 368 * \param base_m mantissa of the base. 369 * \param base_e exponent of the base. 370 * \param exp_m mantissa of power to be calculated of the base. 371 * \param exp_e exponent of power to be calculated of the base. 372 * \param result_e pointer to a INT where the exponent of the result will be stored into. 373 * \return mantissa of the result. 374 */ 375 FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e); 376 377 /** 378 * \brief return (base * 2^base_e) ^ N 379 * \param base mantissa of the base 380 * \param base_e exponent of the base 381 * \param power to be calculated of the base 382 * \param result_e pointer to a INT where the exponent of the result will be stored into 383 * \return mantissa of the result 384 */ 385 FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e); 386 387 /** 388 * \brief calculate logarithm of base 2 of x_m * 2^(x_e) 389 * \param x_m mantissa of the input value. 390 * \param x_e exponent of the input value. 391 * \param pointer to an INT where the exponent of the result is returned into. 392 * \return mantissa of the result. 393 */ 394 FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e); 395 396 /** 397 * \brief calculate logarithm of base 2 of x_m * 2^(x_e) 398 * \param x_m mantissa of the input value. 399 * \param x_e exponent of the input value. 400 * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT. 401 */ 402 FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e); 403 404 /** 405 * \brief Add with saturation of the result. 406 * \param a first summand 407 * \param b second summand 408 * \return saturated sum of a and b. 409 */ 410 inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b) 411 { 412 LONG sum; 413 414 sum = (LONG)(SHORT)a + (LONG)(SHORT)b; 415 sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL); 416 return (FIXP_SGL)(SHORT)sum; 417 } 418 419 /** 420 * \brief Add with saturation of the result. 421 * \param a first summand 422 * \param b second summand 423 * \return saturated sum of a and b. 424 */ 425 inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b) 426 { 427 LONG sum; 428 429 sum = (LONG)(a>>1) + (LONG)(b>>1); 430 sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1)); 431 return (FIXP_DBL)(LONG)(sum<<1); 432 } 433 434 //#define TEST_ROUNDING 435 436 437 438 439 /***************************************************************************** 440 441 array for 1/n, n=1..50 442 443 ****************************************************************************/ 444 445 extern const FIXP_DBL invCount[50]; 446 447 LNK_SECTION_INITCODE 448 inline void InitInvInt(void) {} 449 450 451 /** 452 * \brief Calculate the value of 1/i where i is a integer value. It supports 453 * input values from 1 upto 50. 454 * \param intValue Integer input value. 455 * \param FIXP_DBL representation of 1/intValue 456 */ 457 inline FIXP_DBL GetInvInt(int intValue) 458 { 459 FDK_ASSERT((intValue > 0) && (intValue < 50)); 460 FDK_ASSERT(intValue<50); 461 return invCount[intValue]; 462 } 463 464 465 #endif 466 467