1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /*************************** Fraunhofer IIS FDK Tools ********************** 85 86 Author(s): M. Lohwasser, M. Gayer 87 Description: Flexible fixpoint library configuration 88 89 ******************************************************************************/ 90 91 #ifndef _COMMON_FIX_H 92 #define _COMMON_FIX_H 93 94 #include "FDK_archdef.h" 95 #include "machine_type.h" 96 97 /* ***** Start of former fix.h ****** */ 98 99 /* Configure fractional or integer arithmetic */ 100 #define FIX_FRACT 0 /* Define this to "1" to use fractional arithmetic simulation in class fract instead of integer arithmetic */ 101 /* 1 for debug with extra runtime overflow checking. */ 102 103 /* Define bit sizes of integer fixpoint fractional data types */ 104 #define FRACT_BITS 16 /* single precision */ 105 #define DFRACT_BITS 32 /* double precision */ 106 #define ACCU_BITS 40 /* double precision plus overflow */ 107 108 /* Fixpoint equivalent type fot PCM audio time domain data. */ 109 #if defined(SAMPLE_BITS) 110 #if (SAMPLE_BITS == DFRACT_BITS) 111 #define FIXP_PCM FIXP_DBL 112 #define FX_PCM2FX_DBL(x) ((FIXP_DBL)(x)) 113 #define FX_DBL2FX_PCM(x) ((INT_PCM)(x)) 114 #elif (SAMPLE_BITS == FRACT_BITS) 115 #define FIXP_PCM FIXP_SGL 116 #define FX_PCM2FX_DBL(x) FX_SGL2FX_DBL((FIXP_SGL)(x)) 117 #define FX_DBL2FX_PCM(x) FX_DBL2FX_SGL(x) 118 #else 119 #error SAMPLE_BITS different from FRACT_BITS or DFRACT_BITS not implemented! 120 #endif 121 #endif 122 123 /* ****** End of former fix.h ****** */ 124 125 #define SGL_MASK ((1UL<<FRACT_BITS)-1) /* 16bit: (2^16)-1 = 0xFFFF */ 126 127 #define MAX_SHIFT_SGL (FRACT_BITS-1) /* maximum possible shift for FIXP_SGL values */ 128 #define MAX_SHIFT_DBL (DFRACT_BITS-1) /* maximum possible shift for FIXP_DBL values */ 129 130 /* Scale factor from/to float/fixpoint values. DO NOT USE THESE VALUES AS SATURATION LIMITS !! */ 131 #define FRACT_FIX_SCALE ((INT64(1)<<(FRACT_BITS-1))) 132 #define DFRACT_FIX_SCALE ((INT64(1)<<(DFRACT_BITS-1))) 133 134 /* Max and Min values for saturation purposes. DO NOT USE THESE VALUES AS SCALE VALUES !! */ 135 #define MAXVAL_SGL ((signed)0x00007FFF) /* this has to be synchronized to FRACT_BITS */ 136 #define MINVAL_SGL ((signed)0xFFFF8000) /* this has to be synchronized to FRACT_BITS */ 137 #define MAXVAL_DBL ((signed)0x7FFFFFFF) /* this has to be synchronized to DFRACT_BITS */ 138 #define MINVAL_DBL ((signed)0x80000000) /* this has to be synchronized to DFRACT_BITS */ 139 140 141 #define FX_DBL2FXCONST_SGL(val) ( ( ((((val) >> (DFRACT_BITS-FRACT_BITS-1)) + 1) > (((LONG)1<<FRACT_BITS)-1)) && ((LONG)(val) > 0) ) ? \ 142 (FIXP_SGL)(SHORT)(((LONG)1<<(FRACT_BITS-1))-1):(FIXP_SGL)(SHORT)((((val) >> (DFRACT_BITS-FRACT_BITS-1)) + 1) >> 1) ) 143 144 145 146 #define shouldBeUnion union /* unions are possible */ 147 148 typedef SHORT FIXP_SGL; 149 typedef LONG FIXP_DBL; 150 151 /* macros for compile-time conversion of constant float values to fixedpoint */ 152 #define FL2FXCONST_SPC FL2FXCONST_DBL 153 154 #define MINVAL_DBL_CONST MINVAL_DBL 155 #define MINVAL_SGL_CONST MINVAL_SGL 156 157 #define FL2FXCONST_SGL(val) \ 158 (FIXP_SGL)( ( (val) >= 0) ? \ 159 ((( (double)(val) * (FRACT_FIX_SCALE) + 0.5 ) >= (double)(MAXVAL_SGL) ) ? (SHORT)(MAXVAL_SGL) : (SHORT)( (double)(val) * (double)(FRACT_FIX_SCALE) + 0.5)) : \ 160 ((( (double)(val) * (FRACT_FIX_SCALE) - 0.5) <= (double)(MINVAL_SGL_CONST) ) ? (SHORT)(MINVAL_SGL_CONST) : (SHORT)( (double)(val) * (double)(FRACT_FIX_SCALE) - 0.5)) ) 161 162 #define FL2FXCONST_DBL(val) \ 163 (FIXP_DBL)( ( (val) >= 0) ? \ 164 ((( (double)(val) * (DFRACT_FIX_SCALE) + 0.5 ) >= (double)(MAXVAL_DBL) ) ? (LONG)(MAXVAL_DBL) : (LONG)( (double)(val) * (double)(DFRACT_FIX_SCALE) + 0.5)) : \ 165 ((( (double)(val) * (DFRACT_FIX_SCALE) - 0.5) <= (double)(MINVAL_DBL_CONST) ) ? (LONG)(MINVAL_DBL_CONST) : (LONG)( (double)(val) * (double)(DFRACT_FIX_SCALE) - 0.5)) ) 166 167 /* macros for runtime conversion of float values to integer fixedpoint. NO OVERFLOW CHECK!!! */ 168 #define FL2FX_SPC FL2FX_DBL 169 #define FL2FX_SGL(val) ( (val)>0.0f ? (SHORT)( (val)*(float)(FRACT_FIX_SCALE)+0.5f ) : (SHORT)( (val)*(float)(FRACT_FIX_SCALE)-0.5f ) ) 170 #define FL2FX_DBL(val) ( (val)>0.0f ? (LONG)( (val)*(float)(DFRACT_FIX_SCALE)+0.5f ) : (LONG)( (val)*(float)(DFRACT_FIX_SCALE)-0.5f ) ) 171 172 /* macros for runtime conversion of fixedpoint values to other fixedpoint. NO ROUNDING!!! */ 173 #define FX_ACC2FX_SGL(val) ((FIXP_SGL)((val)>>(ACCU_BITS-FRACT_BITS))) 174 #define FX_ACC2FX_DBL(val) ((FIXP_DBL)((val)>>(ACCU_BITS-DFRACT_BITS))) 175 #define FX_SGL2FX_ACC(val) ((FIXP_ACC)((LONG)(val)<<(ACCU_BITS-FRACT_BITS))) 176 #define FX_SGL2FX_DBL(val) ((FIXP_DBL)((LONG)(val)<<(DFRACT_BITS-FRACT_BITS))) 177 #define FX_DBL2FX_SGL(val) ((FIXP_SGL)((val)>>(DFRACT_BITS-FRACT_BITS))) 178 179 /* ############################################################# */ 180 181 /* macros for runtime conversion of integer fixedpoint values to float. */ 182 /* This is just for temporary use and should not be required in a final version! */ 183 184 /* #define FX_DBL2FL(val) ((float)(pow(2.,-31.)*(float)val)) */ /* version #1 */ 185 #define FX_DBL2FL(val) ((float)((double)(val)/(double)DFRACT_FIX_SCALE)) /* version #2 - identical to class dfract cast from dfract to float */ 186 187 /* ############################################################# */ 188 #include "fixmul.h" 189 190 FDK_INLINE LONG fMult(SHORT a, SHORT b) { return fixmul_SS(a, b); } 191 FDK_INLINE LONG fMult(SHORT a, LONG b) { return fixmul_SD(a, b); } 192 FDK_INLINE LONG fMult(LONG a, SHORT b) { return fixmul_DS(a, b); } 193 FDK_INLINE LONG fMult(LONG a, LONG b) { return fixmul_DD(a, b); } 194 FDK_INLINE LONG fPow2(LONG a) { return fixpow2_D(a); } 195 FDK_INLINE LONG fPow2(SHORT a) { return fixpow2_S(a); } 196 197 FDK_INLINE INT fMultI(LONG a, SHORT b) { return ( (INT)(((1<<(FRACT_BITS-2)) + 198 fixmuldiv2_DD(a,((INT)b<<FRACT_BITS)))>>(FRACT_BITS-1)) ); } 199 200 FDK_INLINE INT fMultIfloor(LONG a, INT b) { return ( (INT)((1 + 201 fixmuldiv2_DD(a,(b<<FRACT_BITS))) >> (FRACT_BITS-1)) ); } 202 203 FDK_INLINE INT fMultIceil(LONG a, INT b) { return ( (INT)(((INT)0x7fff + 204 fixmuldiv2_DD(a,(b<<FRACT_BITS))) >> (FRACT_BITS-1)) ); } 205 206 FDK_INLINE LONG fMultDiv2(SHORT a, SHORT b) { return fixmuldiv2_SS(a, b); } 207 FDK_INLINE LONG fMultDiv2(SHORT a, LONG b) { return fixmuldiv2_SD(a, b); } 208 FDK_INLINE LONG fMultDiv2(LONG a, SHORT b) { return fixmuldiv2_DS(a, b); } 209 FDK_INLINE LONG fMultDiv2(LONG a, LONG b) { return fixmuldiv2_DD(a, b); } 210 FDK_INLINE LONG fPow2Div2(LONG a) { return fixpow2div2_D(a); } 211 FDK_INLINE LONG fPow2Div2(SHORT a) { return fixpow2div2_S(a); } 212 213 FDK_INLINE LONG fMultDiv2BitExact(LONG a, LONG b) { return fixmuldiv2BitExact_DD(a, b); } 214 FDK_INLINE LONG fMultDiv2BitExact(SHORT a, LONG b) { return fixmuldiv2BitExact_SD(a, b); } 215 FDK_INLINE LONG fMultDiv2BitExact(LONG a, SHORT b) { return fixmuldiv2BitExact_DS(a, b); } 216 FDK_INLINE LONG fMultBitExact(LONG a, LONG b) { return fixmulBitExact_DD(a, b); } 217 FDK_INLINE LONG fMultBitExact(SHORT a, LONG b) { return fixmulBitExact_SD(a, b); } 218 FDK_INLINE LONG fMultBitExact(LONG a, SHORT b) { return fixmulBitExact_DS(a, b); } 219 220 /* ******************************************************************************** */ 221 #include "abs.h" 222 223 FDK_INLINE FIXP_DBL fAbs(FIXP_DBL x) 224 { return fixabs_D(x); } 225 FDK_INLINE FIXP_SGL fAbs(FIXP_SGL x) 226 { return fixabs_S(x); } 227 228 /* workaround for TI C6x compiler but not for TI ARM9E compiler */ 229 #if (!defined(__TI_COMPILER_VERSION__) || defined(__TI_TMS470_V5__)) && !defined(__x86_64__) 230 FDK_INLINE INT fAbs(INT x) 231 { return fixabs_I(x); } 232 #endif 233 234 /* ******************************************************************************** */ 235 236 #include "clz.h" 237 238 FDK_INLINE INT fNormz(FIXP_DBL x) 239 { return fixnormz_D(x); } 240 FDK_INLINE INT fNormz(FIXP_SGL x) 241 { return fixnormz_S(x); } 242 FDK_INLINE INT fNorm(FIXP_DBL x) 243 { return fixnorm_D(x); } 244 FDK_INLINE INT fNorm(FIXP_SGL x) 245 { return fixnorm_S(x); } 246 247 248 /* ******************************************************************************** */ 249 /* ******************************************************************************** */ 250 /* ******************************************************************************** */ 251 252 #include "clz.h" 253 #define fixp_abs(x) fAbs(x) 254 #define fixMin(a,b) fMin(a,b) 255 #define fixMax(a,b) fMax(a,b) 256 #define CntLeadingZeros(x) fixnormz_D(x) 257 #define CountLeadingBits(x) fixnorm_D(x) 258 259 #include "fixmadd.h" 260 261 /* y = (x+0.5*a*b) */ 262 FDK_INLINE FIXP_DBL fMultAddDiv2(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) 263 { return fixmadddiv2_DD(x, a, b); } 264 FDK_INLINE FIXP_DBL fMultAddDiv2(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) 265 { return fixmadddiv2_SD(x, a, b); } 266 FDK_INLINE FIXP_DBL fMultAddDiv2(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) 267 { return fixmadddiv2_DS(x, a, b); } 268 FDK_INLINE FIXP_DBL fMultAddDiv2(FIXP_DBL x, FIXP_SGL a, FIXP_SGL b) 269 { return fixmadddiv2_SS(x, a, b); } 270 271 FDK_INLINE FIXP_DBL fPow2AddDiv2(FIXP_DBL x, FIXP_DBL a) 272 { return fixpadddiv2_D(x, a); } 273 FDK_INLINE FIXP_DBL fPow2AddDiv2(FIXP_DBL x, FIXP_SGL a) 274 { return fixpadddiv2_S(x, a); } 275 276 277 /* y = 2*(x+0.5*a*b) = (2x+a*b) */ 278 FDK_INLINE FIXP_DBL fMultAdd(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) 279 { return fixmadd_DD(x, a, b); } 280 inline FIXP_DBL fMultAdd(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) 281 { return fixmadd_SD(x, a, b); } 282 inline FIXP_DBL fMultAdd(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) 283 { return fixmadd_DS(x, a, b); } 284 inline FIXP_DBL fMultAdd(FIXP_DBL x, FIXP_SGL a, FIXP_SGL b) 285 { return fixmadd_SS(x, a, b); } 286 287 inline FIXP_DBL fPow2Add(FIXP_DBL x, FIXP_DBL a) 288 { return fixpadd_D(x, a); } 289 inline FIXP_DBL fPow2Add(FIXP_DBL x, FIXP_SGL a) 290 { return fixpadd_S(x, a); } 291 292 293 /* y = (x-0.5*a*b) */ 294 inline FIXP_DBL fMultSubDiv2(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) 295 { return fixmsubdiv2_DD(x, a, b); } 296 inline FIXP_DBL fMultSubDiv2(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) 297 { return fixmsubdiv2_SD(x, a, b); } 298 inline FIXP_DBL fMultSubDiv2(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) 299 { return fixmsubdiv2_DS(x, a, b); } 300 inline FIXP_DBL fMultSubDiv2(FIXP_DBL x, FIXP_SGL a, FIXP_SGL b) 301 { return fixmsubdiv2_SS(x, a, b); } 302 303 /* y = 2*(x-0.5*a*b) = (2*x-a*b) */ 304 FDK_INLINE FIXP_DBL fMultSub(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) 305 { return fixmsub_DD(x, a, b); } 306 inline FIXP_DBL fMultSub(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) 307 { return fixmsub_SD(x, a, b); } 308 inline FIXP_DBL fMultSub(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) 309 { return fixmsub_DS(x, a, b); } 310 inline FIXP_DBL fMultSub(FIXP_DBL x, FIXP_SGL a, FIXP_SGL b) 311 { return fixmsub_SS(x, a, b); } 312 313 FDK_INLINE FIXP_DBL fMultAddDiv2BitExact(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) 314 { return fixmadddiv2BitExact_DD(x, a, b); } 315 FDK_INLINE FIXP_DBL fMultAddDiv2BitExact(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) 316 { return fixmadddiv2BitExact_SD(x, a, b); } 317 FDK_INLINE FIXP_DBL fMultAddDiv2BitExact(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) 318 { return fixmadddiv2BitExact_DS(x, a, b); } 319 FDK_INLINE FIXP_DBL fMultSubDiv2BitExact(FIXP_DBL x, FIXP_DBL a, FIXP_DBL b) 320 { return fixmsubdiv2BitExact_DD(x, a, b); } 321 FDK_INLINE FIXP_DBL fMultSubDiv2BitExact(FIXP_DBL x, FIXP_SGL a, FIXP_DBL b) 322 { return fixmsubdiv2BitExact_SD(x, a, b); } 323 FDK_INLINE FIXP_DBL fMultSubDiv2BitExact(FIXP_DBL x, FIXP_DBL a, FIXP_SGL b) 324 { return fixmsubdiv2BitExact_DS(x, a, b); } 325 326 #include "fixminmax.h" 327 328 FDK_INLINE FIXP_DBL fMin(FIXP_DBL a, FIXP_DBL b) 329 { return fixmin_D(a,b); } 330 FDK_INLINE FIXP_DBL fMax(FIXP_DBL a, FIXP_DBL b) 331 { return fixmax_D(a,b); } 332 333 FDK_INLINE FIXP_SGL fMin(FIXP_SGL a, FIXP_SGL b) 334 { return fixmin_S(a,b); } 335 FDK_INLINE FIXP_SGL fMax(FIXP_SGL a, FIXP_SGL b) 336 { return fixmax_S(a,b); } 337 338 /* workaround for TI C6x compiler but not for TI ARM9E */ 339 #if ((!defined(__TI_COMPILER_VERSION__) || defined(__TI_TMS470_V5__)) && !defined(__x86_64__)) || (FIX_FRACT == 1) 340 FDK_INLINE INT fMax(INT a, INT b) 341 { return fixmax_I(a,b); } 342 FDK_INLINE INT fMin(INT a, INT b) 343 { return fixmin_I(a,b); } 344 #endif 345 346 inline UINT fMax(UINT a, UINT b) 347 { return fixmax_UI(a,b); } 348 inline UINT fMin(UINT a, UINT b) 349 { return fixmin_UI(a,b); } 350 351 /* Complex data types */ 352 typedef shouldBeUnion { 353 /* vector representation for arithmetic */ 354 struct { 355 FIXP_SGL re; 356 FIXP_SGL im; 357 } v; 358 /* word representation for memory move */ 359 LONG w; 360 } FIXP_SPK; 361 362 typedef shouldBeUnion { 363 /* vector representation for arithmetic */ 364 struct { 365 FIXP_DBL re; 366 FIXP_DBL im; 367 } v; 368 /* word representation for memory move */ 369 INT64 w; 370 } FIXP_DPK; 371 372 #include "fixmul.h" 373 #include "fixmadd.h" 374 #include "cplx_mul.h" 375 #include "scale.h" 376 #include "fixpoint_math.h" 377 378 #endif 379