Home | History | Annotate | Download | only in AsmParser
      1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the parser class for .ll files.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LLParser.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/AutoUpgrade.h"
     17 #include "llvm/IR/CallingConv.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DerivedTypes.h"
     20 #include "llvm/IR/InlineAsm.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/Module.h"
     23 #include "llvm/IR/Operator.h"
     24 #include "llvm/IR/ValueSymbolTable.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 using namespace llvm;
     28 
     29 static std::string getTypeString(Type *T) {
     30   std::string Result;
     31   raw_string_ostream Tmp(Result);
     32   Tmp << *T;
     33   return Tmp.str();
     34 }
     35 
     36 /// Run: module ::= toplevelentity*
     37 bool LLParser::Run() {
     38   // Prime the lexer.
     39   Lex.Lex();
     40 
     41   return ParseTopLevelEntities() ||
     42          ValidateEndOfModule();
     43 }
     44 
     45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
     46 /// module.
     47 bool LLParser::ValidateEndOfModule() {
     48   // Handle any instruction metadata forward references.
     49   if (!ForwardRefInstMetadata.empty()) {
     50     for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
     51          I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
     52          I != E; ++I) {
     53       Instruction *Inst = I->first;
     54       const std::vector<MDRef> &MDList = I->second;
     55 
     56       for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
     57         unsigned SlotNo = MDList[i].MDSlot;
     58 
     59         if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
     60           return Error(MDList[i].Loc, "use of undefined metadata '!" +
     61                        Twine(SlotNo) + "'");
     62         Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
     63       }
     64     }
     65     ForwardRefInstMetadata.clear();
     66   }
     67 
     68   // Handle any function attribute group forward references.
     69   for (std::map<Value*, std::vector<unsigned> >::iterator
     70          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
     71          I != E; ++I) {
     72     Value *V = I->first;
     73     std::vector<unsigned> &Vec = I->second;
     74     AttrBuilder B;
     75 
     76     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
     77          VI != VE; ++VI)
     78       B.merge(NumberedAttrBuilders[*VI]);
     79 
     80     if (Function *Fn = dyn_cast<Function>(V)) {
     81       AttributeSet AS = Fn->getAttributes();
     82       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
     83       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
     84                                AS.getFnAttributes());
     85 
     86       FnAttrs.merge(B);
     87 
     88       // If the alignment was parsed as an attribute, move to the alignment
     89       // field.
     90       if (FnAttrs.hasAlignmentAttr()) {
     91         Fn->setAlignment(FnAttrs.getAlignment());
     92         FnAttrs.removeAttribute(Attribute::Alignment);
     93       }
     94 
     95       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
     96                             AttributeSet::get(Context,
     97                                               AttributeSet::FunctionIndex,
     98                                               FnAttrs));
     99       Fn->setAttributes(AS);
    100     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
    101       AttributeSet AS = CI->getAttributes();
    102       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    103       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    104                                AS.getFnAttributes());
    105       FnAttrs.merge(B);
    106       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    107                             AttributeSet::get(Context,
    108                                               AttributeSet::FunctionIndex,
    109                                               FnAttrs));
    110       CI->setAttributes(AS);
    111     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
    112       AttributeSet AS = II->getAttributes();
    113       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    114       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    115                                AS.getFnAttributes());
    116       FnAttrs.merge(B);
    117       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    118                             AttributeSet::get(Context,
    119                                               AttributeSet::FunctionIndex,
    120                                               FnAttrs));
    121       II->setAttributes(AS);
    122     } else {
    123       llvm_unreachable("invalid object with forward attribute group reference");
    124     }
    125   }
    126 
    127   // If there are entries in ForwardRefBlockAddresses at this point, they are
    128   // references after the function was defined.  Resolve those now.
    129   while (!ForwardRefBlockAddresses.empty()) {
    130     // Okay, we are referencing an already-parsed function, resolve them now.
    131     Function *TheFn = 0;
    132     const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
    133     if (Fn.Kind == ValID::t_GlobalName)
    134       TheFn = M->getFunction(Fn.StrVal);
    135     else if (Fn.UIntVal < NumberedVals.size())
    136       TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
    137 
    138     if (TheFn == 0)
    139       return Error(Fn.Loc, "unknown function referenced by blockaddress");
    140 
    141     // Resolve all these references.
    142     if (ResolveForwardRefBlockAddresses(TheFn,
    143                                       ForwardRefBlockAddresses.begin()->second,
    144                                         0))
    145       return true;
    146 
    147     ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
    148   }
    149 
    150   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
    151     if (NumberedTypes[i].second.isValid())
    152       return Error(NumberedTypes[i].second,
    153                    "use of undefined type '%" + Twine(i) + "'");
    154 
    155   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
    156        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
    157     if (I->second.second.isValid())
    158       return Error(I->second.second,
    159                    "use of undefined type named '" + I->getKey() + "'");
    160 
    161   if (!ForwardRefVals.empty())
    162     return Error(ForwardRefVals.begin()->second.second,
    163                  "use of undefined value '@" + ForwardRefVals.begin()->first +
    164                  "'");
    165 
    166   if (!ForwardRefValIDs.empty())
    167     return Error(ForwardRefValIDs.begin()->second.second,
    168                  "use of undefined value '@" +
    169                  Twine(ForwardRefValIDs.begin()->first) + "'");
    170 
    171   if (!ForwardRefMDNodes.empty())
    172     return Error(ForwardRefMDNodes.begin()->second.second,
    173                  "use of undefined metadata '!" +
    174                  Twine(ForwardRefMDNodes.begin()->first) + "'");
    175 
    176 
    177   // Look for intrinsic functions and CallInst that need to be upgraded
    178   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
    179     UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
    180 
    181   return false;
    182 }
    183 
    184 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
    185                              std::vector<std::pair<ValID, GlobalValue*> > &Refs,
    186                                                PerFunctionState *PFS) {
    187   // Loop over all the references, resolving them.
    188   for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
    189     BasicBlock *Res;
    190     if (PFS) {
    191       if (Refs[i].first.Kind == ValID::t_LocalName)
    192         Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
    193       else
    194         Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
    195     } else if (Refs[i].first.Kind == ValID::t_LocalID) {
    196       return Error(Refs[i].first.Loc,
    197        "cannot take address of numeric label after the function is defined");
    198     } else {
    199       Res = dyn_cast_or_null<BasicBlock>(
    200                      TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
    201     }
    202 
    203     if (Res == 0)
    204       return Error(Refs[i].first.Loc,
    205                    "referenced value is not a basic block");
    206 
    207     // Get the BlockAddress for this and update references to use it.
    208     BlockAddress *BA = BlockAddress::get(TheFn, Res);
    209     Refs[i].second->replaceAllUsesWith(BA);
    210     Refs[i].second->eraseFromParent();
    211   }
    212   return false;
    213 }
    214 
    215 
    216 //===----------------------------------------------------------------------===//
    217 // Top-Level Entities
    218 //===----------------------------------------------------------------------===//
    219 
    220 bool LLParser::ParseTopLevelEntities() {
    221   while (1) {
    222     switch (Lex.getKind()) {
    223     default:         return TokError("expected top-level entity");
    224     case lltok::Eof: return false;
    225     case lltok::kw_declare: if (ParseDeclare()) return true; break;
    226     case lltok::kw_define:  if (ParseDefine()) return true; break;
    227     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
    228     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
    229     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
    230     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
    231     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
    232     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
    233     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
    234     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
    235     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
    236 
    237     // The Global variable production with no name can have many different
    238     // optional leading prefixes, the production is:
    239     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
    240     //               OptionalAddrSpace OptionalUnNammedAddr
    241     //               ('constant'|'global') ...
    242     case lltok::kw_private:             // OptionalLinkage
    243     case lltok::kw_linker_private:      // OptionalLinkage
    244     case lltok::kw_linker_private_weak: // OptionalLinkage
    245     case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
    246     case lltok::kw_internal:            // OptionalLinkage
    247     case lltok::kw_weak:                // OptionalLinkage
    248     case lltok::kw_weak_odr:            // OptionalLinkage
    249     case lltok::kw_linkonce:            // OptionalLinkage
    250     case lltok::kw_linkonce_odr:        // OptionalLinkage
    251     case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
    252     case lltok::kw_appending:           // OptionalLinkage
    253     case lltok::kw_dllexport:           // OptionalLinkage
    254     case lltok::kw_common:              // OptionalLinkage
    255     case lltok::kw_dllimport:           // OptionalLinkage
    256     case lltok::kw_extern_weak:         // OptionalLinkage
    257     case lltok::kw_external: {          // OptionalLinkage
    258       unsigned Linkage, Visibility;
    259       if (ParseOptionalLinkage(Linkage) ||
    260           ParseOptionalVisibility(Visibility) ||
    261           ParseGlobal("", SMLoc(), Linkage, true, Visibility))
    262         return true;
    263       break;
    264     }
    265     case lltok::kw_default:       // OptionalVisibility
    266     case lltok::kw_hidden:        // OptionalVisibility
    267     case lltok::kw_protected: {   // OptionalVisibility
    268       unsigned Visibility;
    269       if (ParseOptionalVisibility(Visibility) ||
    270           ParseGlobal("", SMLoc(), 0, false, Visibility))
    271         return true;
    272       break;
    273     }
    274 
    275     case lltok::kw_thread_local:  // OptionalThreadLocal
    276     case lltok::kw_addrspace:     // OptionalAddrSpace
    277     case lltok::kw_constant:      // GlobalType
    278     case lltok::kw_global:        // GlobalType
    279       if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
    280       break;
    281 
    282     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
    283     }
    284   }
    285 }
    286 
    287 
    288 /// toplevelentity
    289 ///   ::= 'module' 'asm' STRINGCONSTANT
    290 bool LLParser::ParseModuleAsm() {
    291   assert(Lex.getKind() == lltok::kw_module);
    292   Lex.Lex();
    293 
    294   std::string AsmStr;
    295   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
    296       ParseStringConstant(AsmStr)) return true;
    297 
    298   M->appendModuleInlineAsm(AsmStr);
    299   return false;
    300 }
    301 
    302 /// toplevelentity
    303 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
    304 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
    305 bool LLParser::ParseTargetDefinition() {
    306   assert(Lex.getKind() == lltok::kw_target);
    307   std::string Str;
    308   switch (Lex.Lex()) {
    309   default: return TokError("unknown target property");
    310   case lltok::kw_triple:
    311     Lex.Lex();
    312     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
    313         ParseStringConstant(Str))
    314       return true;
    315     M->setTargetTriple(Str);
    316     return false;
    317   case lltok::kw_datalayout:
    318     Lex.Lex();
    319     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
    320         ParseStringConstant(Str))
    321       return true;
    322     M->setDataLayout(Str);
    323     return false;
    324   }
    325 }
    326 
    327 /// toplevelentity
    328 ///   ::= 'deplibs' '=' '[' ']'
    329 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
    330 /// FIXME: Remove in 4.0. Currently parse, but ignore.
    331 bool LLParser::ParseDepLibs() {
    332   assert(Lex.getKind() == lltok::kw_deplibs);
    333   Lex.Lex();
    334   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
    335       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
    336     return true;
    337 
    338   if (EatIfPresent(lltok::rsquare))
    339     return false;
    340 
    341   do {
    342     std::string Str;
    343     if (ParseStringConstant(Str)) return true;
    344   } while (EatIfPresent(lltok::comma));
    345 
    346   return ParseToken(lltok::rsquare, "expected ']' at end of list");
    347 }
    348 
    349 /// ParseUnnamedType:
    350 ///   ::= LocalVarID '=' 'type' type
    351 bool LLParser::ParseUnnamedType() {
    352   LocTy TypeLoc = Lex.getLoc();
    353   unsigned TypeID = Lex.getUIntVal();
    354   Lex.Lex(); // eat LocalVarID;
    355 
    356   if (ParseToken(lltok::equal, "expected '=' after name") ||
    357       ParseToken(lltok::kw_type, "expected 'type' after '='"))
    358     return true;
    359 
    360   if (TypeID >= NumberedTypes.size())
    361     NumberedTypes.resize(TypeID+1);
    362 
    363   Type *Result = 0;
    364   if (ParseStructDefinition(TypeLoc, "",
    365                             NumberedTypes[TypeID], Result)) return true;
    366 
    367   if (!isa<StructType>(Result)) {
    368     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
    369     if (Entry.first)
    370       return Error(TypeLoc, "non-struct types may not be recursive");
    371     Entry.first = Result;
    372     Entry.second = SMLoc();
    373   }
    374 
    375   return false;
    376 }
    377 
    378 
    379 /// toplevelentity
    380 ///   ::= LocalVar '=' 'type' type
    381 bool LLParser::ParseNamedType() {
    382   std::string Name = Lex.getStrVal();
    383   LocTy NameLoc = Lex.getLoc();
    384   Lex.Lex();  // eat LocalVar.
    385 
    386   if (ParseToken(lltok::equal, "expected '=' after name") ||
    387       ParseToken(lltok::kw_type, "expected 'type' after name"))
    388     return true;
    389 
    390   Type *Result = 0;
    391   if (ParseStructDefinition(NameLoc, Name,
    392                             NamedTypes[Name], Result)) return true;
    393 
    394   if (!isa<StructType>(Result)) {
    395     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
    396     if (Entry.first)
    397       return Error(NameLoc, "non-struct types may not be recursive");
    398     Entry.first = Result;
    399     Entry.second = SMLoc();
    400   }
    401 
    402   return false;
    403 }
    404 
    405 
    406 /// toplevelentity
    407 ///   ::= 'declare' FunctionHeader
    408 bool LLParser::ParseDeclare() {
    409   assert(Lex.getKind() == lltok::kw_declare);
    410   Lex.Lex();
    411 
    412   Function *F;
    413   return ParseFunctionHeader(F, false);
    414 }
    415 
    416 /// toplevelentity
    417 ///   ::= 'define' FunctionHeader '{' ...
    418 bool LLParser::ParseDefine() {
    419   assert(Lex.getKind() == lltok::kw_define);
    420   Lex.Lex();
    421 
    422   Function *F;
    423   return ParseFunctionHeader(F, true) ||
    424          ParseFunctionBody(*F);
    425 }
    426 
    427 /// ParseGlobalType
    428 ///   ::= 'constant'
    429 ///   ::= 'global'
    430 bool LLParser::ParseGlobalType(bool &IsConstant) {
    431   if (Lex.getKind() == lltok::kw_constant)
    432     IsConstant = true;
    433   else if (Lex.getKind() == lltok::kw_global)
    434     IsConstant = false;
    435   else {
    436     IsConstant = false;
    437     return TokError("expected 'global' or 'constant'");
    438   }
    439   Lex.Lex();
    440   return false;
    441 }
    442 
    443 /// ParseUnnamedGlobal:
    444 ///   OptionalVisibility ALIAS ...
    445 ///   OptionalLinkage OptionalVisibility ...   -> global variable
    446 ///   GlobalID '=' OptionalVisibility ALIAS ...
    447 ///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
    448 bool LLParser::ParseUnnamedGlobal() {
    449   unsigned VarID = NumberedVals.size();
    450   std::string Name;
    451   LocTy NameLoc = Lex.getLoc();
    452 
    453   // Handle the GlobalID form.
    454   if (Lex.getKind() == lltok::GlobalID) {
    455     if (Lex.getUIntVal() != VarID)
    456       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
    457                    Twine(VarID) + "'");
    458     Lex.Lex(); // eat GlobalID;
    459 
    460     if (ParseToken(lltok::equal, "expected '=' after name"))
    461       return true;
    462   }
    463 
    464   bool HasLinkage;
    465   unsigned Linkage, Visibility;
    466   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
    467       ParseOptionalVisibility(Visibility))
    468     return true;
    469 
    470   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
    471     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
    472   return ParseAlias(Name, NameLoc, Visibility);
    473 }
    474 
    475 /// ParseNamedGlobal:
    476 ///   GlobalVar '=' OptionalVisibility ALIAS ...
    477 ///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
    478 bool LLParser::ParseNamedGlobal() {
    479   assert(Lex.getKind() == lltok::GlobalVar);
    480   LocTy NameLoc = Lex.getLoc();
    481   std::string Name = Lex.getStrVal();
    482   Lex.Lex();
    483 
    484   bool HasLinkage;
    485   unsigned Linkage, Visibility;
    486   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
    487       ParseOptionalLinkage(Linkage, HasLinkage) ||
    488       ParseOptionalVisibility(Visibility))
    489     return true;
    490 
    491   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
    492     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
    493   return ParseAlias(Name, NameLoc, Visibility);
    494 }
    495 
    496 // MDString:
    497 //   ::= '!' STRINGCONSTANT
    498 bool LLParser::ParseMDString(MDString *&Result) {
    499   std::string Str;
    500   if (ParseStringConstant(Str)) return true;
    501   Result = MDString::get(Context, Str);
    502   return false;
    503 }
    504 
    505 // MDNode:
    506 //   ::= '!' MDNodeNumber
    507 //
    508 /// This version of ParseMDNodeID returns the slot number and null in the case
    509 /// of a forward reference.
    510 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
    511   // !{ ..., !42, ... }
    512   if (ParseUInt32(SlotNo)) return true;
    513 
    514   // Check existing MDNode.
    515   if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
    516     Result = NumberedMetadata[SlotNo];
    517   else
    518     Result = 0;
    519   return false;
    520 }
    521 
    522 bool LLParser::ParseMDNodeID(MDNode *&Result) {
    523   // !{ ..., !42, ... }
    524   unsigned MID = 0;
    525   if (ParseMDNodeID(Result, MID)) return true;
    526 
    527   // If not a forward reference, just return it now.
    528   if (Result) return false;
    529 
    530   // Otherwise, create MDNode forward reference.
    531   MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
    532   ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
    533 
    534   if (NumberedMetadata.size() <= MID)
    535     NumberedMetadata.resize(MID+1);
    536   NumberedMetadata[MID] = FwdNode;
    537   Result = FwdNode;
    538   return false;
    539 }
    540 
    541 /// ParseNamedMetadata:
    542 ///   !foo = !{ !1, !2 }
    543 bool LLParser::ParseNamedMetadata() {
    544   assert(Lex.getKind() == lltok::MetadataVar);
    545   std::string Name = Lex.getStrVal();
    546   Lex.Lex();
    547 
    548   if (ParseToken(lltok::equal, "expected '=' here") ||
    549       ParseToken(lltok::exclaim, "Expected '!' here") ||
    550       ParseToken(lltok::lbrace, "Expected '{' here"))
    551     return true;
    552 
    553   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
    554   if (Lex.getKind() != lltok::rbrace)
    555     do {
    556       if (ParseToken(lltok::exclaim, "Expected '!' here"))
    557         return true;
    558 
    559       MDNode *N = 0;
    560       if (ParseMDNodeID(N)) return true;
    561       NMD->addOperand(N);
    562     } while (EatIfPresent(lltok::comma));
    563 
    564   if (ParseToken(lltok::rbrace, "expected end of metadata node"))
    565     return true;
    566 
    567   return false;
    568 }
    569 
    570 /// ParseStandaloneMetadata:
    571 ///   !42 = !{...}
    572 bool LLParser::ParseStandaloneMetadata() {
    573   assert(Lex.getKind() == lltok::exclaim);
    574   Lex.Lex();
    575   unsigned MetadataID = 0;
    576 
    577   LocTy TyLoc;
    578   Type *Ty = 0;
    579   SmallVector<Value *, 16> Elts;
    580   if (ParseUInt32(MetadataID) ||
    581       ParseToken(lltok::equal, "expected '=' here") ||
    582       ParseType(Ty, TyLoc) ||
    583       ParseToken(lltok::exclaim, "Expected '!' here") ||
    584       ParseToken(lltok::lbrace, "Expected '{' here") ||
    585       ParseMDNodeVector(Elts, NULL) ||
    586       ParseToken(lltok::rbrace, "expected end of metadata node"))
    587     return true;
    588 
    589   MDNode *Init = MDNode::get(Context, Elts);
    590 
    591   // See if this was forward referenced, if so, handle it.
    592   std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
    593     FI = ForwardRefMDNodes.find(MetadataID);
    594   if (FI != ForwardRefMDNodes.end()) {
    595     MDNode *Temp = FI->second.first;
    596     Temp->replaceAllUsesWith(Init);
    597     MDNode::deleteTemporary(Temp);
    598     ForwardRefMDNodes.erase(FI);
    599 
    600     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
    601   } else {
    602     if (MetadataID >= NumberedMetadata.size())
    603       NumberedMetadata.resize(MetadataID+1);
    604 
    605     if (NumberedMetadata[MetadataID] != 0)
    606       return TokError("Metadata id is already used");
    607     NumberedMetadata[MetadataID] = Init;
    608   }
    609 
    610   return false;
    611 }
    612 
    613 /// ParseAlias:
    614 ///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
    615 /// Aliasee
    616 ///   ::= TypeAndValue
    617 ///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
    618 ///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
    619 ///
    620 /// Everything through visibility has already been parsed.
    621 ///
    622 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
    623                           unsigned Visibility) {
    624   assert(Lex.getKind() == lltok::kw_alias);
    625   Lex.Lex();
    626   unsigned Linkage;
    627   LocTy LinkageLoc = Lex.getLoc();
    628   if (ParseOptionalLinkage(Linkage))
    629     return true;
    630 
    631   if (Linkage != GlobalValue::ExternalLinkage &&
    632       Linkage != GlobalValue::WeakAnyLinkage &&
    633       Linkage != GlobalValue::WeakODRLinkage &&
    634       Linkage != GlobalValue::InternalLinkage &&
    635       Linkage != GlobalValue::PrivateLinkage &&
    636       Linkage != GlobalValue::LinkerPrivateLinkage &&
    637       Linkage != GlobalValue::LinkerPrivateWeakLinkage)
    638     return Error(LinkageLoc, "invalid linkage type for alias");
    639 
    640   Constant *Aliasee;
    641   LocTy AliaseeLoc = Lex.getLoc();
    642   if (Lex.getKind() != lltok::kw_bitcast &&
    643       Lex.getKind() != lltok::kw_getelementptr) {
    644     if (ParseGlobalTypeAndValue(Aliasee)) return true;
    645   } else {
    646     // The bitcast dest type is not present, it is implied by the dest type.
    647     ValID ID;
    648     if (ParseValID(ID)) return true;
    649     if (ID.Kind != ValID::t_Constant)
    650       return Error(AliaseeLoc, "invalid aliasee");
    651     Aliasee = ID.ConstantVal;
    652   }
    653 
    654   if (!Aliasee->getType()->isPointerTy())
    655     return Error(AliaseeLoc, "alias must have pointer type");
    656 
    657   // Okay, create the alias but do not insert it into the module yet.
    658   GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
    659                                     (GlobalValue::LinkageTypes)Linkage, Name,
    660                                     Aliasee);
    661   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    662 
    663   // See if this value already exists in the symbol table.  If so, it is either
    664   // a redefinition or a definition of a forward reference.
    665   if (GlobalValue *Val = M->getNamedValue(Name)) {
    666     // See if this was a redefinition.  If so, there is no entry in
    667     // ForwardRefVals.
    668     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
    669       I = ForwardRefVals.find(Name);
    670     if (I == ForwardRefVals.end())
    671       return Error(NameLoc, "redefinition of global named '@" + Name + "'");
    672 
    673     // Otherwise, this was a definition of forward ref.  Verify that types
    674     // agree.
    675     if (Val->getType() != GA->getType())
    676       return Error(NameLoc,
    677               "forward reference and definition of alias have different types");
    678 
    679     // If they agree, just RAUW the old value with the alias and remove the
    680     // forward ref info.
    681     Val->replaceAllUsesWith(GA);
    682     Val->eraseFromParent();
    683     ForwardRefVals.erase(I);
    684   }
    685 
    686   // Insert into the module, we know its name won't collide now.
    687   M->getAliasList().push_back(GA);
    688   assert(GA->getName() == Name && "Should not be a name conflict!");
    689 
    690   return false;
    691 }
    692 
    693 /// ParseGlobal
    694 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
    695 ///       OptionalAddrSpace OptionalUnNammedAddr
    696 ///       OptionalExternallyInitialized GlobalType Type Const
    697 ///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
    698 ///       OptionalAddrSpace OptionalUnNammedAddr
    699 ///       OptionalExternallyInitialized GlobalType Type Const
    700 ///
    701 /// Everything through visibility has been parsed already.
    702 ///
    703 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
    704                            unsigned Linkage, bool HasLinkage,
    705                            unsigned Visibility) {
    706   unsigned AddrSpace;
    707   bool IsConstant, UnnamedAddr, IsExternallyInitialized;
    708   GlobalVariable::ThreadLocalMode TLM;
    709   LocTy UnnamedAddrLoc;
    710   LocTy IsExternallyInitializedLoc;
    711   LocTy TyLoc;
    712 
    713   Type *Ty = 0;
    714   if (ParseOptionalThreadLocal(TLM) ||
    715       ParseOptionalAddrSpace(AddrSpace) ||
    716       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
    717                          &UnnamedAddrLoc) ||
    718       ParseOptionalToken(lltok::kw_externally_initialized,
    719                          IsExternallyInitialized,
    720                          &IsExternallyInitializedLoc) ||
    721       ParseGlobalType(IsConstant) ||
    722       ParseType(Ty, TyLoc))
    723     return true;
    724 
    725   // If the linkage is specified and is external, then no initializer is
    726   // present.
    727   Constant *Init = 0;
    728   if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
    729                       Linkage != GlobalValue::ExternalWeakLinkage &&
    730                       Linkage != GlobalValue::ExternalLinkage)) {
    731     if (ParseGlobalValue(Ty, Init))
    732       return true;
    733   }
    734 
    735   if (Ty->isFunctionTy() || Ty->isLabelTy())
    736     return Error(TyLoc, "invalid type for global variable");
    737 
    738   GlobalVariable *GV = 0;
    739 
    740   // See if the global was forward referenced, if so, use the global.
    741   if (!Name.empty()) {
    742     if (GlobalValue *GVal = M->getNamedValue(Name)) {
    743       if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
    744         return Error(NameLoc, "redefinition of global '@" + Name + "'");
    745       GV = cast<GlobalVariable>(GVal);
    746     }
    747   } else {
    748     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
    749       I = ForwardRefValIDs.find(NumberedVals.size());
    750     if (I != ForwardRefValIDs.end()) {
    751       GV = cast<GlobalVariable>(I->second.first);
    752       ForwardRefValIDs.erase(I);
    753     }
    754   }
    755 
    756   if (GV == 0) {
    757     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
    758                             Name, 0, GlobalVariable::NotThreadLocal,
    759                             AddrSpace);
    760   } else {
    761     if (GV->getType()->getElementType() != Ty)
    762       return Error(TyLoc,
    763             "forward reference and definition of global have different types");
    764 
    765     // Move the forward-reference to the correct spot in the module.
    766     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
    767   }
    768 
    769   if (Name.empty())
    770     NumberedVals.push_back(GV);
    771 
    772   // Set the parsed properties on the global.
    773   if (Init)
    774     GV->setInitializer(Init);
    775   GV->setConstant(IsConstant);
    776   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
    777   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    778   GV->setExternallyInitialized(IsExternallyInitialized);
    779   GV->setThreadLocalMode(TLM);
    780   GV->setUnnamedAddr(UnnamedAddr);
    781 
    782   // Parse attributes on the global.
    783   while (Lex.getKind() == lltok::comma) {
    784     Lex.Lex();
    785 
    786     if (Lex.getKind() == lltok::kw_section) {
    787       Lex.Lex();
    788       GV->setSection(Lex.getStrVal());
    789       if (ParseToken(lltok::StringConstant, "expected global section string"))
    790         return true;
    791     } else if (Lex.getKind() == lltok::kw_align) {
    792       unsigned Alignment;
    793       if (ParseOptionalAlignment(Alignment)) return true;
    794       GV->setAlignment(Alignment);
    795     } else {
    796       TokError("unknown global variable property!");
    797     }
    798   }
    799 
    800   return false;
    801 }
    802 
    803 /// ParseUnnamedAttrGrp
    804 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
    805 bool LLParser::ParseUnnamedAttrGrp() {
    806   assert(Lex.getKind() == lltok::kw_attributes);
    807   LocTy AttrGrpLoc = Lex.getLoc();
    808   Lex.Lex();
    809 
    810   assert(Lex.getKind() == lltok::AttrGrpID);
    811   unsigned VarID = Lex.getUIntVal();
    812   std::vector<unsigned> unused;
    813   LocTy NoBuiltinLoc;
    814   Lex.Lex();
    815 
    816   if (ParseToken(lltok::equal, "expected '=' here") ||
    817       ParseToken(lltok::lbrace, "expected '{' here") ||
    818       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
    819                                  NoBuiltinLoc) ||
    820       ParseToken(lltok::rbrace, "expected end of attribute group"))
    821     return true;
    822 
    823   if (!NumberedAttrBuilders[VarID].hasAttributes())
    824     return Error(AttrGrpLoc, "attribute group has no attributes");
    825 
    826   return false;
    827 }
    828 
    829 /// ParseFnAttributeValuePairs
    830 ///   ::= <attr> | <attr> '=' <value>
    831 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
    832                                           std::vector<unsigned> &FwdRefAttrGrps,
    833                                           bool inAttrGrp, LocTy &NoBuiltinLoc) {
    834   bool HaveError = false;
    835 
    836   B.clear();
    837 
    838   while (true) {
    839     lltok::Kind Token = Lex.getKind();
    840     if (Token == lltok::kw_nobuiltin)
    841       NoBuiltinLoc = Lex.getLoc();
    842     switch (Token) {
    843     default:
    844       if (!inAttrGrp) return HaveError;
    845       return Error(Lex.getLoc(), "unterminated attribute group");
    846     case lltok::rbrace:
    847       // Finished.
    848       return false;
    849 
    850     case lltok::AttrGrpID: {
    851       // Allow a function to reference an attribute group:
    852       //
    853       //   define void @foo() #1 { ... }
    854       if (inAttrGrp)
    855         HaveError |=
    856           Error(Lex.getLoc(),
    857               "cannot have an attribute group reference in an attribute group");
    858 
    859       unsigned AttrGrpNum = Lex.getUIntVal();
    860       if (inAttrGrp) break;
    861 
    862       // Save the reference to the attribute group. We'll fill it in later.
    863       FwdRefAttrGrps.push_back(AttrGrpNum);
    864       break;
    865     }
    866     // Target-dependent attributes:
    867     case lltok::StringConstant: {
    868       std::string Attr = Lex.getStrVal();
    869       Lex.Lex();
    870       std::string Val;
    871       if (EatIfPresent(lltok::equal) &&
    872           ParseStringConstant(Val))
    873         return true;
    874 
    875       B.addAttribute(Attr, Val);
    876       continue;
    877     }
    878 
    879     // Target-independent attributes:
    880     case lltok::kw_align: {
    881       // As a hack, we allow "align 2" on functions as a synonym for "alignstack
    882       // 2".
    883       unsigned Alignment;
    884       if (inAttrGrp) {
    885         Lex.Lex();
    886         if (ParseToken(lltok::equal, "expected '=' here") ||
    887             ParseUInt32(Alignment))
    888           return true;
    889       } else {
    890         if (ParseOptionalAlignment(Alignment))
    891           return true;
    892       }
    893       B.addAlignmentAttr(Alignment);
    894       continue;
    895     }
    896     case lltok::kw_alignstack: {
    897       unsigned Alignment;
    898       if (inAttrGrp) {
    899         Lex.Lex();
    900         if (ParseToken(lltok::equal, "expected '=' here") ||
    901             ParseUInt32(Alignment))
    902           return true;
    903       } else {
    904         if (ParseOptionalStackAlignment(Alignment))
    905           return true;
    906       }
    907       B.addStackAlignmentAttr(Alignment);
    908       continue;
    909     }
    910     case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
    911     case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
    912     case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
    913     case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
    914     case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
    915     case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
    916     case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
    917     case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
    918     case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
    919     case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
    920     case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
    921     case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
    922     case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
    923     case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
    924     case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
    925     case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
    926     case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
    927     case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
    928     case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
    929     case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
    930     case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
    931     case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
    932     case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
    933 
    934     // Error handling.
    935     case lltok::kw_inreg:
    936     case lltok::kw_signext:
    937     case lltok::kw_zeroext:
    938       HaveError |=
    939         Error(Lex.getLoc(),
    940               "invalid use of attribute on a function");
    941       break;
    942     case lltok::kw_byval:
    943     case lltok::kw_nest:
    944     case lltok::kw_noalias:
    945     case lltok::kw_nocapture:
    946     case lltok::kw_sret:
    947       HaveError |=
    948         Error(Lex.getLoc(),
    949               "invalid use of parameter-only attribute on a function");
    950       break;
    951     }
    952 
    953     Lex.Lex();
    954   }
    955 }
    956 
    957 //===----------------------------------------------------------------------===//
    958 // GlobalValue Reference/Resolution Routines.
    959 //===----------------------------------------------------------------------===//
    960 
    961 /// GetGlobalVal - Get a value with the specified name or ID, creating a
    962 /// forward reference record if needed.  This can return null if the value
    963 /// exists but does not have the right type.
    964 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
    965                                     LocTy Loc) {
    966   PointerType *PTy = dyn_cast<PointerType>(Ty);
    967   if (PTy == 0) {
    968     Error(Loc, "global variable reference must have pointer type");
    969     return 0;
    970   }
    971 
    972   // Look this name up in the normal function symbol table.
    973   GlobalValue *Val =
    974     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
    975 
    976   // If this is a forward reference for the value, see if we already created a
    977   // forward ref record.
    978   if (Val == 0) {
    979     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
    980       I = ForwardRefVals.find(Name);
    981     if (I != ForwardRefVals.end())
    982       Val = I->second.first;
    983   }
    984 
    985   // If we have the value in the symbol table or fwd-ref table, return it.
    986   if (Val) {
    987     if (Val->getType() == Ty) return Val;
    988     Error(Loc, "'@" + Name + "' defined with type '" +
    989           getTypeString(Val->getType()) + "'");
    990     return 0;
    991   }
    992 
    993   // Otherwise, create a new forward reference for this value and remember it.
    994   GlobalValue *FwdVal;
    995   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
    996     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
    997   else
    998     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
    999                                 GlobalValue::ExternalWeakLinkage, 0, Name,
   1000                                 0, GlobalVariable::NotThreadLocal,
   1001                                 PTy->getAddressSpace());
   1002 
   1003   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   1004   return FwdVal;
   1005 }
   1006 
   1007 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
   1008   PointerType *PTy = dyn_cast<PointerType>(Ty);
   1009   if (PTy == 0) {
   1010     Error(Loc, "global variable reference must have pointer type");
   1011     return 0;
   1012   }
   1013 
   1014   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
   1015 
   1016   // If this is a forward reference for the value, see if we already created a
   1017   // forward ref record.
   1018   if (Val == 0) {
   1019     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
   1020       I = ForwardRefValIDs.find(ID);
   1021     if (I != ForwardRefValIDs.end())
   1022       Val = I->second.first;
   1023   }
   1024 
   1025   // If we have the value in the symbol table or fwd-ref table, return it.
   1026   if (Val) {
   1027     if (Val->getType() == Ty) return Val;
   1028     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
   1029           getTypeString(Val->getType()) + "'");
   1030     return 0;
   1031   }
   1032 
   1033   // Otherwise, create a new forward reference for this value and remember it.
   1034   GlobalValue *FwdVal;
   1035   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
   1036     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
   1037   else
   1038     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
   1039                                 GlobalValue::ExternalWeakLinkage, 0, "");
   1040 
   1041   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   1042   return FwdVal;
   1043 }
   1044 
   1045 
   1046 //===----------------------------------------------------------------------===//
   1047 // Helper Routines.
   1048 //===----------------------------------------------------------------------===//
   1049 
   1050 /// ParseToken - If the current token has the specified kind, eat it and return
   1051 /// success.  Otherwise, emit the specified error and return failure.
   1052 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
   1053   if (Lex.getKind() != T)
   1054     return TokError(ErrMsg);
   1055   Lex.Lex();
   1056   return false;
   1057 }
   1058 
   1059 /// ParseStringConstant
   1060 ///   ::= StringConstant
   1061 bool LLParser::ParseStringConstant(std::string &Result) {
   1062   if (Lex.getKind() != lltok::StringConstant)
   1063     return TokError("expected string constant");
   1064   Result = Lex.getStrVal();
   1065   Lex.Lex();
   1066   return false;
   1067 }
   1068 
   1069 /// ParseUInt32
   1070 ///   ::= uint32
   1071 bool LLParser::ParseUInt32(unsigned &Val) {
   1072   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   1073     return TokError("expected integer");
   1074   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
   1075   if (Val64 != unsigned(Val64))
   1076     return TokError("expected 32-bit integer (too large)");
   1077   Val = Val64;
   1078   Lex.Lex();
   1079   return false;
   1080 }
   1081 
   1082 /// ParseTLSModel
   1083 ///   := 'localdynamic'
   1084 ///   := 'initialexec'
   1085 ///   := 'localexec'
   1086 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
   1087   switch (Lex.getKind()) {
   1088     default:
   1089       return TokError("expected localdynamic, initialexec or localexec");
   1090     case lltok::kw_localdynamic:
   1091       TLM = GlobalVariable::LocalDynamicTLSModel;
   1092       break;
   1093     case lltok::kw_initialexec:
   1094       TLM = GlobalVariable::InitialExecTLSModel;
   1095       break;
   1096     case lltok::kw_localexec:
   1097       TLM = GlobalVariable::LocalExecTLSModel;
   1098       break;
   1099   }
   1100 
   1101   Lex.Lex();
   1102   return false;
   1103 }
   1104 
   1105 /// ParseOptionalThreadLocal
   1106 ///   := /*empty*/
   1107 ///   := 'thread_local'
   1108 ///   := 'thread_local' '(' tlsmodel ')'
   1109 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
   1110   TLM = GlobalVariable::NotThreadLocal;
   1111   if (!EatIfPresent(lltok::kw_thread_local))
   1112     return false;
   1113 
   1114   TLM = GlobalVariable::GeneralDynamicTLSModel;
   1115   if (Lex.getKind() == lltok::lparen) {
   1116     Lex.Lex();
   1117     return ParseTLSModel(TLM) ||
   1118       ParseToken(lltok::rparen, "expected ')' after thread local model");
   1119   }
   1120   return false;
   1121 }
   1122 
   1123 /// ParseOptionalAddrSpace
   1124 ///   := /*empty*/
   1125 ///   := 'addrspace' '(' uint32 ')'
   1126 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
   1127   AddrSpace = 0;
   1128   if (!EatIfPresent(lltok::kw_addrspace))
   1129     return false;
   1130   return ParseToken(lltok::lparen, "expected '(' in address space") ||
   1131          ParseUInt32(AddrSpace) ||
   1132          ParseToken(lltok::rparen, "expected ')' in address space");
   1133 }
   1134 
   1135 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
   1136 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
   1137   bool HaveError = false;
   1138 
   1139   B.clear();
   1140 
   1141   while (1) {
   1142     lltok::Kind Token = Lex.getKind();
   1143     switch (Token) {
   1144     default:  // End of attributes.
   1145       return HaveError;
   1146     case lltok::kw_align: {
   1147       unsigned Alignment;
   1148       if (ParseOptionalAlignment(Alignment))
   1149         return true;
   1150       B.addAlignmentAttr(Alignment);
   1151       continue;
   1152     }
   1153     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
   1154     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
   1155     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
   1156     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
   1157     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
   1158     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
   1159     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
   1160     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
   1161 
   1162     case lltok::kw_alignstack:      case lltok::kw_nounwind:
   1163     case lltok::kw_alwaysinline:    case lltok::kw_optsize:
   1164     case lltok::kw_inlinehint:      case lltok::kw_readnone:
   1165     case lltok::kw_minsize:         case lltok::kw_readonly:
   1166     case lltok::kw_naked:           case lltok::kw_returns_twice:
   1167     case lltok::kw_nobuiltin:       case lltok::kw_sanitize_address:
   1168     case lltok::kw_noimplicitfloat: case lltok::kw_sanitize_memory:
   1169     case lltok::kw_noinline:        case lltok::kw_sanitize_thread:
   1170     case lltok::kw_nonlazybind:     case lltok::kw_ssp:
   1171     case lltok::kw_noredzone:       case lltok::kw_sspreq:
   1172     case lltok::kw_noreturn:        case lltok::kw_uwtable:
   1173       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
   1174       break;
   1175     }
   1176 
   1177     Lex.Lex();
   1178   }
   1179 }
   1180 
   1181 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
   1182 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
   1183   bool HaveError = false;
   1184 
   1185   B.clear();
   1186 
   1187   while (1) {
   1188     lltok::Kind Token = Lex.getKind();
   1189     switch (Token) {
   1190     default:  // End of attributes.
   1191       return HaveError;
   1192     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
   1193     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
   1194     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
   1195     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
   1196 
   1197     // Error handling.
   1198     case lltok::kw_sret:  case lltok::kw_nocapture:
   1199     case lltok::kw_byval: case lltok::kw_nest:
   1200       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
   1201       break;
   1202 
   1203     case lltok::kw_align:                 case lltok::kw_noreturn:
   1204     case lltok::kw_alignstack:            case lltok::kw_nounwind:
   1205     case lltok::kw_alwaysinline:          case lltok::kw_optsize:
   1206     case lltok::kw_inlinehint:            case lltok::kw_readnone:
   1207     case lltok::kw_minsize:               case lltok::kw_readonly:
   1208     case lltok::kw_naked:                 case lltok::kw_returns_twice:
   1209     case lltok::kw_nobuiltin:             case lltok::kw_sanitize_address:
   1210     case lltok::kw_noduplicate:           case lltok::kw_sanitize_memory:
   1211     case lltok::kw_noimplicitfloat:       case lltok::kw_sanitize_thread:
   1212     case lltok::kw_noinline:              case lltok::kw_ssp:
   1213     case lltok::kw_nonlazybind:           case lltok::kw_sspreq:
   1214     case lltok::kw_noredzone:             case lltok::kw_sspstrong:
   1215                                           case lltok::kw_uwtable:
   1216       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
   1217       break;
   1218     }
   1219 
   1220     Lex.Lex();
   1221   }
   1222 }
   1223 
   1224 /// ParseOptionalLinkage
   1225 ///   ::= /*empty*/
   1226 ///   ::= 'private'
   1227 ///   ::= 'linker_private'
   1228 ///   ::= 'linker_private_weak'
   1229 ///   ::= 'internal'
   1230 ///   ::= 'weak'
   1231 ///   ::= 'weak_odr'
   1232 ///   ::= 'linkonce'
   1233 ///   ::= 'linkonce_odr'
   1234 ///   ::= 'linkonce_odr_auto_hide'
   1235 ///   ::= 'available_externally'
   1236 ///   ::= 'appending'
   1237 ///   ::= 'dllexport'
   1238 ///   ::= 'common'
   1239 ///   ::= 'dllimport'
   1240 ///   ::= 'extern_weak'
   1241 ///   ::= 'external'
   1242 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
   1243   HasLinkage = false;
   1244   switch (Lex.getKind()) {
   1245   default:                       Res=GlobalValue::ExternalLinkage; return false;
   1246   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
   1247   case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
   1248   case lltok::kw_linker_private_weak:
   1249     Res = GlobalValue::LinkerPrivateWeakLinkage;
   1250     break;
   1251   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
   1252   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
   1253   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
   1254   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
   1255   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
   1256   case lltok::kw_linkonce_odr_auto_hide:
   1257   case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
   1258     Res = GlobalValue::LinkOnceODRAutoHideLinkage;
   1259     break;
   1260   case lltok::kw_available_externally:
   1261     Res = GlobalValue::AvailableExternallyLinkage;
   1262     break;
   1263   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
   1264   case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
   1265   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
   1266   case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
   1267   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
   1268   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
   1269   }
   1270   Lex.Lex();
   1271   HasLinkage = true;
   1272   return false;
   1273 }
   1274 
   1275 /// ParseOptionalVisibility
   1276 ///   ::= /*empty*/
   1277 ///   ::= 'default'
   1278 ///   ::= 'hidden'
   1279 ///   ::= 'protected'
   1280 ///
   1281 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
   1282   switch (Lex.getKind()) {
   1283   default:                  Res = GlobalValue::DefaultVisibility; return false;
   1284   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
   1285   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
   1286   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
   1287   }
   1288   Lex.Lex();
   1289   return false;
   1290 }
   1291 
   1292 /// ParseOptionalCallingConv
   1293 ///   ::= /*empty*/
   1294 ///   ::= 'ccc'
   1295 ///   ::= 'fastcc'
   1296 ///   ::= 'kw_intel_ocl_bicc'
   1297 ///   ::= 'coldcc'
   1298 ///   ::= 'x86_stdcallcc'
   1299 ///   ::= 'x86_fastcallcc'
   1300 ///   ::= 'x86_thiscallcc'
   1301 ///   ::= 'arm_apcscc'
   1302 ///   ::= 'arm_aapcscc'
   1303 ///   ::= 'arm_aapcs_vfpcc'
   1304 ///   ::= 'msp430_intrcc'
   1305 ///   ::= 'ptx_kernel'
   1306 ///   ::= 'ptx_device'
   1307 ///   ::= 'spir_func'
   1308 ///   ::= 'spir_kernel'
   1309 ///   ::= 'cc' UINT
   1310 ///
   1311 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
   1312   switch (Lex.getKind()) {
   1313   default:                       CC = CallingConv::C; return false;
   1314   case lltok::kw_ccc:            CC = CallingConv::C; break;
   1315   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
   1316   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
   1317   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
   1318   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
   1319   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
   1320   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
   1321   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
   1322   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
   1323   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
   1324   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
   1325   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
   1326   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
   1327   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
   1328   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
   1329   case lltok::kw_cc: {
   1330       unsigned ArbitraryCC;
   1331       Lex.Lex();
   1332       if (ParseUInt32(ArbitraryCC))
   1333         return true;
   1334       CC = static_cast<CallingConv::ID>(ArbitraryCC);
   1335       return false;
   1336     }
   1337   }
   1338 
   1339   Lex.Lex();
   1340   return false;
   1341 }
   1342 
   1343 /// ParseInstructionMetadata
   1344 ///   ::= !dbg !42 (',' !dbg !57)*
   1345 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
   1346                                         PerFunctionState *PFS) {
   1347   do {
   1348     if (Lex.getKind() != lltok::MetadataVar)
   1349       return TokError("expected metadata after comma");
   1350 
   1351     std::string Name = Lex.getStrVal();
   1352     unsigned MDK = M->getMDKindID(Name);
   1353     Lex.Lex();
   1354 
   1355     MDNode *Node;
   1356     SMLoc Loc = Lex.getLoc();
   1357 
   1358     if (ParseToken(lltok::exclaim, "expected '!' here"))
   1359       return true;
   1360 
   1361     // This code is similar to that of ParseMetadataValue, however it needs to
   1362     // have special-case code for a forward reference; see the comments on
   1363     // ForwardRefInstMetadata for details. Also, MDStrings are not supported
   1364     // at the top level here.
   1365     if (Lex.getKind() == lltok::lbrace) {
   1366       ValID ID;
   1367       if (ParseMetadataListValue(ID, PFS))
   1368         return true;
   1369       assert(ID.Kind == ValID::t_MDNode);
   1370       Inst->setMetadata(MDK, ID.MDNodeVal);
   1371     } else {
   1372       unsigned NodeID = 0;
   1373       if (ParseMDNodeID(Node, NodeID))
   1374         return true;
   1375       if (Node) {
   1376         // If we got the node, add it to the instruction.
   1377         Inst->setMetadata(MDK, Node);
   1378       } else {
   1379         MDRef R = { Loc, MDK, NodeID };
   1380         // Otherwise, remember that this should be resolved later.
   1381         ForwardRefInstMetadata[Inst].push_back(R);
   1382       }
   1383     }
   1384 
   1385     // If this is the end of the list, we're done.
   1386   } while (EatIfPresent(lltok::comma));
   1387   return false;
   1388 }
   1389 
   1390 /// ParseOptionalAlignment
   1391 ///   ::= /* empty */
   1392 ///   ::= 'align' 4
   1393 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
   1394   Alignment = 0;
   1395   if (!EatIfPresent(lltok::kw_align))
   1396     return false;
   1397   LocTy AlignLoc = Lex.getLoc();
   1398   if (ParseUInt32(Alignment)) return true;
   1399   if (!isPowerOf2_32(Alignment))
   1400     return Error(AlignLoc, "alignment is not a power of two");
   1401   if (Alignment > Value::MaximumAlignment)
   1402     return Error(AlignLoc, "huge alignments are not supported yet");
   1403   return false;
   1404 }
   1405 
   1406 /// ParseOptionalCommaAlign
   1407 ///   ::=
   1408 ///   ::= ',' align 4
   1409 ///
   1410 /// This returns with AteExtraComma set to true if it ate an excess comma at the
   1411 /// end.
   1412 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
   1413                                        bool &AteExtraComma) {
   1414   AteExtraComma = false;
   1415   while (EatIfPresent(lltok::comma)) {
   1416     // Metadata at the end is an early exit.
   1417     if (Lex.getKind() == lltok::MetadataVar) {
   1418       AteExtraComma = true;
   1419       return false;
   1420     }
   1421 
   1422     if (Lex.getKind() != lltok::kw_align)
   1423       return Error(Lex.getLoc(), "expected metadata or 'align'");
   1424 
   1425     if (ParseOptionalAlignment(Alignment)) return true;
   1426   }
   1427 
   1428   return false;
   1429 }
   1430 
   1431 /// ParseScopeAndOrdering
   1432 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
   1433 ///   else: ::=
   1434 ///
   1435 /// This sets Scope and Ordering to the parsed values.
   1436 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
   1437                                      AtomicOrdering &Ordering) {
   1438   if (!isAtomic)
   1439     return false;
   1440 
   1441   Scope = CrossThread;
   1442   if (EatIfPresent(lltok::kw_singlethread))
   1443     Scope = SingleThread;
   1444   switch (Lex.getKind()) {
   1445   default: return TokError("Expected ordering on atomic instruction");
   1446   case lltok::kw_unordered: Ordering = Unordered; break;
   1447   case lltok::kw_monotonic: Ordering = Monotonic; break;
   1448   case lltok::kw_acquire: Ordering = Acquire; break;
   1449   case lltok::kw_release: Ordering = Release; break;
   1450   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
   1451   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
   1452   }
   1453   Lex.Lex();
   1454   return false;
   1455 }
   1456 
   1457 /// ParseOptionalStackAlignment
   1458 ///   ::= /* empty */
   1459 ///   ::= 'alignstack' '(' 4 ')'
   1460 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
   1461   Alignment = 0;
   1462   if (!EatIfPresent(lltok::kw_alignstack))
   1463     return false;
   1464   LocTy ParenLoc = Lex.getLoc();
   1465   if (!EatIfPresent(lltok::lparen))
   1466     return Error(ParenLoc, "expected '('");
   1467   LocTy AlignLoc = Lex.getLoc();
   1468   if (ParseUInt32(Alignment)) return true;
   1469   ParenLoc = Lex.getLoc();
   1470   if (!EatIfPresent(lltok::rparen))
   1471     return Error(ParenLoc, "expected ')'");
   1472   if (!isPowerOf2_32(Alignment))
   1473     return Error(AlignLoc, "stack alignment is not a power of two");
   1474   return false;
   1475 }
   1476 
   1477 /// ParseIndexList - This parses the index list for an insert/extractvalue
   1478 /// instruction.  This sets AteExtraComma in the case where we eat an extra
   1479 /// comma at the end of the line and find that it is followed by metadata.
   1480 /// Clients that don't allow metadata can call the version of this function that
   1481 /// only takes one argument.
   1482 ///
   1483 /// ParseIndexList
   1484 ///    ::=  (',' uint32)+
   1485 ///
   1486 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
   1487                               bool &AteExtraComma) {
   1488   AteExtraComma = false;
   1489 
   1490   if (Lex.getKind() != lltok::comma)
   1491     return TokError("expected ',' as start of index list");
   1492 
   1493   while (EatIfPresent(lltok::comma)) {
   1494     if (Lex.getKind() == lltok::MetadataVar) {
   1495       AteExtraComma = true;
   1496       return false;
   1497     }
   1498     unsigned Idx = 0;
   1499     if (ParseUInt32(Idx)) return true;
   1500     Indices.push_back(Idx);
   1501   }
   1502 
   1503   return false;
   1504 }
   1505 
   1506 //===----------------------------------------------------------------------===//
   1507 // Type Parsing.
   1508 //===----------------------------------------------------------------------===//
   1509 
   1510 /// ParseType - Parse a type.
   1511 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
   1512   SMLoc TypeLoc = Lex.getLoc();
   1513   switch (Lex.getKind()) {
   1514   default:
   1515     return TokError("expected type");
   1516   case lltok::Type:
   1517     // Type ::= 'float' | 'void' (etc)
   1518     Result = Lex.getTyVal();
   1519     Lex.Lex();
   1520     break;
   1521   case lltok::lbrace:
   1522     // Type ::= StructType
   1523     if (ParseAnonStructType(Result, false))
   1524       return true;
   1525     break;
   1526   case lltok::lsquare:
   1527     // Type ::= '[' ... ']'
   1528     Lex.Lex(); // eat the lsquare.
   1529     if (ParseArrayVectorType(Result, false))
   1530       return true;
   1531     break;
   1532   case lltok::less: // Either vector or packed struct.
   1533     // Type ::= '<' ... '>'
   1534     Lex.Lex();
   1535     if (Lex.getKind() == lltok::lbrace) {
   1536       if (ParseAnonStructType(Result, true) ||
   1537           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
   1538         return true;
   1539     } else if (ParseArrayVectorType(Result, true))
   1540       return true;
   1541     break;
   1542   case lltok::LocalVar: {
   1543     // Type ::= %foo
   1544     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
   1545 
   1546     // If the type hasn't been defined yet, create a forward definition and
   1547     // remember where that forward def'n was seen (in case it never is defined).
   1548     if (Entry.first == 0) {
   1549       Entry.first = StructType::create(Context, Lex.getStrVal());
   1550       Entry.second = Lex.getLoc();
   1551     }
   1552     Result = Entry.first;
   1553     Lex.Lex();
   1554     break;
   1555   }
   1556 
   1557   case lltok::LocalVarID: {
   1558     // Type ::= %4
   1559     if (Lex.getUIntVal() >= NumberedTypes.size())
   1560       NumberedTypes.resize(Lex.getUIntVal()+1);
   1561     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
   1562 
   1563     // If the type hasn't been defined yet, create a forward definition and
   1564     // remember where that forward def'n was seen (in case it never is defined).
   1565     if (Entry.first == 0) {
   1566       Entry.first = StructType::create(Context);
   1567       Entry.second = Lex.getLoc();
   1568     }
   1569     Result = Entry.first;
   1570     Lex.Lex();
   1571     break;
   1572   }
   1573   }
   1574 
   1575   // Parse the type suffixes.
   1576   while (1) {
   1577     switch (Lex.getKind()) {
   1578     // End of type.
   1579     default:
   1580       if (!AllowVoid && Result->isVoidTy())
   1581         return Error(TypeLoc, "void type only allowed for function results");
   1582       return false;
   1583 
   1584     // Type ::= Type '*'
   1585     case lltok::star:
   1586       if (Result->isLabelTy())
   1587         return TokError("basic block pointers are invalid");
   1588       if (Result->isVoidTy())
   1589         return TokError("pointers to void are invalid - use i8* instead");
   1590       if (!PointerType::isValidElementType(Result))
   1591         return TokError("pointer to this type is invalid");
   1592       Result = PointerType::getUnqual(Result);
   1593       Lex.Lex();
   1594       break;
   1595 
   1596     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
   1597     case lltok::kw_addrspace: {
   1598       if (Result->isLabelTy())
   1599         return TokError("basic block pointers are invalid");
   1600       if (Result->isVoidTy())
   1601         return TokError("pointers to void are invalid; use i8* instead");
   1602       if (!PointerType::isValidElementType(Result))
   1603         return TokError("pointer to this type is invalid");
   1604       unsigned AddrSpace;
   1605       if (ParseOptionalAddrSpace(AddrSpace) ||
   1606           ParseToken(lltok::star, "expected '*' in address space"))
   1607         return true;
   1608 
   1609       Result = PointerType::get(Result, AddrSpace);
   1610       break;
   1611     }
   1612 
   1613     /// Types '(' ArgTypeListI ')' OptFuncAttrs
   1614     case lltok::lparen:
   1615       if (ParseFunctionType(Result))
   1616         return true;
   1617       break;
   1618     }
   1619   }
   1620 }
   1621 
   1622 /// ParseParameterList
   1623 ///    ::= '(' ')'
   1624 ///    ::= '(' Arg (',' Arg)* ')'
   1625 ///  Arg
   1626 ///    ::= Type OptionalAttributes Value OptionalAttributes
   1627 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
   1628                                   PerFunctionState &PFS) {
   1629   if (ParseToken(lltok::lparen, "expected '(' in call"))
   1630     return true;
   1631 
   1632   unsigned AttrIndex = 1;
   1633   while (Lex.getKind() != lltok::rparen) {
   1634     // If this isn't the first argument, we need a comma.
   1635     if (!ArgList.empty() &&
   1636         ParseToken(lltok::comma, "expected ',' in argument list"))
   1637       return true;
   1638 
   1639     // Parse the argument.
   1640     LocTy ArgLoc;
   1641     Type *ArgTy = 0;
   1642     AttrBuilder ArgAttrs;
   1643     Value *V;
   1644     if (ParseType(ArgTy, ArgLoc))
   1645       return true;
   1646 
   1647     // Otherwise, handle normal operands.
   1648     if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
   1649       return true;
   1650     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
   1651                                                              AttrIndex++,
   1652                                                              ArgAttrs)));
   1653   }
   1654 
   1655   Lex.Lex();  // Lex the ')'.
   1656   return false;
   1657 }
   1658 
   1659 
   1660 
   1661 /// ParseArgumentList - Parse the argument list for a function type or function
   1662 /// prototype.
   1663 ///   ::= '(' ArgTypeListI ')'
   1664 /// ArgTypeListI
   1665 ///   ::= /*empty*/
   1666 ///   ::= '...'
   1667 ///   ::= ArgTypeList ',' '...'
   1668 ///   ::= ArgType (',' ArgType)*
   1669 ///
   1670 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
   1671                                  bool &isVarArg){
   1672   isVarArg = false;
   1673   assert(Lex.getKind() == lltok::lparen);
   1674   Lex.Lex(); // eat the (.
   1675 
   1676   if (Lex.getKind() == lltok::rparen) {
   1677     // empty
   1678   } else if (Lex.getKind() == lltok::dotdotdot) {
   1679     isVarArg = true;
   1680     Lex.Lex();
   1681   } else {
   1682     LocTy TypeLoc = Lex.getLoc();
   1683     Type *ArgTy = 0;
   1684     AttrBuilder Attrs;
   1685     std::string Name;
   1686 
   1687     if (ParseType(ArgTy) ||
   1688         ParseOptionalParamAttrs(Attrs)) return true;
   1689 
   1690     if (ArgTy->isVoidTy())
   1691       return Error(TypeLoc, "argument can not have void type");
   1692 
   1693     if (Lex.getKind() == lltok::LocalVar) {
   1694       Name = Lex.getStrVal();
   1695       Lex.Lex();
   1696     }
   1697 
   1698     if (!FunctionType::isValidArgumentType(ArgTy))
   1699       return Error(TypeLoc, "invalid type for function argument");
   1700 
   1701     unsigned AttrIndex = 1;
   1702     ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
   1703                               AttributeSet::get(ArgTy->getContext(),
   1704                                                 AttrIndex++, Attrs), Name));
   1705 
   1706     while (EatIfPresent(lltok::comma)) {
   1707       // Handle ... at end of arg list.
   1708       if (EatIfPresent(lltok::dotdotdot)) {
   1709         isVarArg = true;
   1710         break;
   1711       }
   1712 
   1713       // Otherwise must be an argument type.
   1714       TypeLoc = Lex.getLoc();
   1715       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
   1716 
   1717       if (ArgTy->isVoidTy())
   1718         return Error(TypeLoc, "argument can not have void type");
   1719 
   1720       if (Lex.getKind() == lltok::LocalVar) {
   1721         Name = Lex.getStrVal();
   1722         Lex.Lex();
   1723       } else {
   1724         Name = "";
   1725       }
   1726 
   1727       if (!ArgTy->isFirstClassType())
   1728         return Error(TypeLoc, "invalid type for function argument");
   1729 
   1730       ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
   1731                                 AttributeSet::get(ArgTy->getContext(),
   1732                                                   AttrIndex++, Attrs),
   1733                                 Name));
   1734     }
   1735   }
   1736 
   1737   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
   1738 }
   1739 
   1740 /// ParseFunctionType
   1741 ///  ::= Type ArgumentList OptionalAttrs
   1742 bool LLParser::ParseFunctionType(Type *&Result) {
   1743   assert(Lex.getKind() == lltok::lparen);
   1744 
   1745   if (!FunctionType::isValidReturnType(Result))
   1746     return TokError("invalid function return type");
   1747 
   1748   SmallVector<ArgInfo, 8> ArgList;
   1749   bool isVarArg;
   1750   if (ParseArgumentList(ArgList, isVarArg))
   1751     return true;
   1752 
   1753   // Reject names on the arguments lists.
   1754   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   1755     if (!ArgList[i].Name.empty())
   1756       return Error(ArgList[i].Loc, "argument name invalid in function type");
   1757     if (ArgList[i].Attrs.hasAttributes(i + 1))
   1758       return Error(ArgList[i].Loc,
   1759                    "argument attributes invalid in function type");
   1760   }
   1761 
   1762   SmallVector<Type*, 16> ArgListTy;
   1763   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   1764     ArgListTy.push_back(ArgList[i].Ty);
   1765 
   1766   Result = FunctionType::get(Result, ArgListTy, isVarArg);
   1767   return false;
   1768 }
   1769 
   1770 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
   1771 /// other structs.
   1772 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
   1773   SmallVector<Type*, 8> Elts;
   1774   if (ParseStructBody(Elts)) return true;
   1775 
   1776   Result = StructType::get(Context, Elts, Packed);
   1777   return false;
   1778 }
   1779 
   1780 /// ParseStructDefinition - Parse a struct in a 'type' definition.
   1781 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
   1782                                      std::pair<Type*, LocTy> &Entry,
   1783                                      Type *&ResultTy) {
   1784   // If the type was already defined, diagnose the redefinition.
   1785   if (Entry.first && !Entry.second.isValid())
   1786     return Error(TypeLoc, "redefinition of type");
   1787 
   1788   // If we have opaque, just return without filling in the definition for the
   1789   // struct.  This counts as a definition as far as the .ll file goes.
   1790   if (EatIfPresent(lltok::kw_opaque)) {
   1791     // This type is being defined, so clear the location to indicate this.
   1792     Entry.second = SMLoc();
   1793 
   1794     // If this type number has never been uttered, create it.
   1795     if (Entry.first == 0)
   1796       Entry.first = StructType::create(Context, Name);
   1797     ResultTy = Entry.first;
   1798     return false;
   1799   }
   1800 
   1801   // If the type starts with '<', then it is either a packed struct or a vector.
   1802   bool isPacked = EatIfPresent(lltok::less);
   1803 
   1804   // If we don't have a struct, then we have a random type alias, which we
   1805   // accept for compatibility with old files.  These types are not allowed to be
   1806   // forward referenced and not allowed to be recursive.
   1807   if (Lex.getKind() != lltok::lbrace) {
   1808     if (Entry.first)
   1809       return Error(TypeLoc, "forward references to non-struct type");
   1810 
   1811     ResultTy = 0;
   1812     if (isPacked)
   1813       return ParseArrayVectorType(ResultTy, true);
   1814     return ParseType(ResultTy);
   1815   }
   1816 
   1817   // This type is being defined, so clear the location to indicate this.
   1818   Entry.second = SMLoc();
   1819 
   1820   // If this type number has never been uttered, create it.
   1821   if (Entry.first == 0)
   1822     Entry.first = StructType::create(Context, Name);
   1823 
   1824   StructType *STy = cast<StructType>(Entry.first);
   1825 
   1826   SmallVector<Type*, 8> Body;
   1827   if (ParseStructBody(Body) ||
   1828       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
   1829     return true;
   1830 
   1831   STy->setBody(Body, isPacked);
   1832   ResultTy = STy;
   1833   return false;
   1834 }
   1835 
   1836 
   1837 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
   1838 ///   StructType
   1839 ///     ::= '{' '}'
   1840 ///     ::= '{' Type (',' Type)* '}'
   1841 ///     ::= '<' '{' '}' '>'
   1842 ///     ::= '<' '{' Type (',' Type)* '}' '>'
   1843 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
   1844   assert(Lex.getKind() == lltok::lbrace);
   1845   Lex.Lex(); // Consume the '{'
   1846 
   1847   // Handle the empty struct.
   1848   if (EatIfPresent(lltok::rbrace))
   1849     return false;
   1850 
   1851   LocTy EltTyLoc = Lex.getLoc();
   1852   Type *Ty = 0;
   1853   if (ParseType(Ty)) return true;
   1854   Body.push_back(Ty);
   1855 
   1856   if (!StructType::isValidElementType(Ty))
   1857     return Error(EltTyLoc, "invalid element type for struct");
   1858 
   1859   while (EatIfPresent(lltok::comma)) {
   1860     EltTyLoc = Lex.getLoc();
   1861     if (ParseType(Ty)) return true;
   1862 
   1863     if (!StructType::isValidElementType(Ty))
   1864       return Error(EltTyLoc, "invalid element type for struct");
   1865 
   1866     Body.push_back(Ty);
   1867   }
   1868 
   1869   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
   1870 }
   1871 
   1872 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
   1873 /// token has already been consumed.
   1874 ///   Type
   1875 ///     ::= '[' APSINTVAL 'x' Types ']'
   1876 ///     ::= '<' APSINTVAL 'x' Types '>'
   1877 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
   1878   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
   1879       Lex.getAPSIntVal().getBitWidth() > 64)
   1880     return TokError("expected number in address space");
   1881 
   1882   LocTy SizeLoc = Lex.getLoc();
   1883   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
   1884   Lex.Lex();
   1885 
   1886   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
   1887       return true;
   1888 
   1889   LocTy TypeLoc = Lex.getLoc();
   1890   Type *EltTy = 0;
   1891   if (ParseType(EltTy)) return true;
   1892 
   1893   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
   1894                  "expected end of sequential type"))
   1895     return true;
   1896 
   1897   if (isVector) {
   1898     if (Size == 0)
   1899       return Error(SizeLoc, "zero element vector is illegal");
   1900     if ((unsigned)Size != Size)
   1901       return Error(SizeLoc, "size too large for vector");
   1902     if (!VectorType::isValidElementType(EltTy))
   1903       return Error(TypeLoc, "invalid vector element type");
   1904     Result = VectorType::get(EltTy, unsigned(Size));
   1905   } else {
   1906     if (!ArrayType::isValidElementType(EltTy))
   1907       return Error(TypeLoc, "invalid array element type");
   1908     Result = ArrayType::get(EltTy, Size);
   1909   }
   1910   return false;
   1911 }
   1912 
   1913 //===----------------------------------------------------------------------===//
   1914 // Function Semantic Analysis.
   1915 //===----------------------------------------------------------------------===//
   1916 
   1917 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
   1918                                              int functionNumber)
   1919   : P(p), F(f), FunctionNumber(functionNumber) {
   1920 
   1921   // Insert unnamed arguments into the NumberedVals list.
   1922   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
   1923        AI != E; ++AI)
   1924     if (!AI->hasName())
   1925       NumberedVals.push_back(AI);
   1926 }
   1927 
   1928 LLParser::PerFunctionState::~PerFunctionState() {
   1929   // If there were any forward referenced non-basicblock values, delete them.
   1930   for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
   1931        I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
   1932     if (!isa<BasicBlock>(I->second.first)) {
   1933       I->second.first->replaceAllUsesWith(
   1934                            UndefValue::get(I->second.first->getType()));
   1935       delete I->second.first;
   1936       I->second.first = 0;
   1937     }
   1938 
   1939   for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
   1940        I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
   1941     if (!isa<BasicBlock>(I->second.first)) {
   1942       I->second.first->replaceAllUsesWith(
   1943                            UndefValue::get(I->second.first->getType()));
   1944       delete I->second.first;
   1945       I->second.first = 0;
   1946     }
   1947 }
   1948 
   1949 bool LLParser::PerFunctionState::FinishFunction() {
   1950   // Check to see if someone took the address of labels in this block.
   1951   if (!P.ForwardRefBlockAddresses.empty()) {
   1952     ValID FunctionID;
   1953     if (!F.getName().empty()) {
   1954       FunctionID.Kind = ValID::t_GlobalName;
   1955       FunctionID.StrVal = F.getName();
   1956     } else {
   1957       FunctionID.Kind = ValID::t_GlobalID;
   1958       FunctionID.UIntVal = FunctionNumber;
   1959     }
   1960 
   1961     std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
   1962       FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
   1963     if (FRBAI != P.ForwardRefBlockAddresses.end()) {
   1964       // Resolve all these references.
   1965       if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
   1966         return true;
   1967 
   1968       P.ForwardRefBlockAddresses.erase(FRBAI);
   1969     }
   1970   }
   1971 
   1972   if (!ForwardRefVals.empty())
   1973     return P.Error(ForwardRefVals.begin()->second.second,
   1974                    "use of undefined value '%" + ForwardRefVals.begin()->first +
   1975                    "'");
   1976   if (!ForwardRefValIDs.empty())
   1977     return P.Error(ForwardRefValIDs.begin()->second.second,
   1978                    "use of undefined value '%" +
   1979                    Twine(ForwardRefValIDs.begin()->first) + "'");
   1980   return false;
   1981 }
   1982 
   1983 
   1984 /// GetVal - Get a value with the specified name or ID, creating a
   1985 /// forward reference record if needed.  This can return null if the value
   1986 /// exists but does not have the right type.
   1987 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
   1988                                           Type *Ty, LocTy Loc) {
   1989   // Look this name up in the normal function symbol table.
   1990   Value *Val = F.getValueSymbolTable().lookup(Name);
   1991 
   1992   // If this is a forward reference for the value, see if we already created a
   1993   // forward ref record.
   1994   if (Val == 0) {
   1995     std::map<std::string, std::pair<Value*, LocTy> >::iterator
   1996       I = ForwardRefVals.find(Name);
   1997     if (I != ForwardRefVals.end())
   1998       Val = I->second.first;
   1999   }
   2000 
   2001   // If we have the value in the symbol table or fwd-ref table, return it.
   2002   if (Val) {
   2003     if (Val->getType() == Ty) return Val;
   2004     if (Ty->isLabelTy())
   2005       P.Error(Loc, "'%" + Name + "' is not a basic block");
   2006     else
   2007       P.Error(Loc, "'%" + Name + "' defined with type '" +
   2008               getTypeString(Val->getType()) + "'");
   2009     return 0;
   2010   }
   2011 
   2012   // Don't make placeholders with invalid type.
   2013   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
   2014     P.Error(Loc, "invalid use of a non-first-class type");
   2015     return 0;
   2016   }
   2017 
   2018   // Otherwise, create a new forward reference for this value and remember it.
   2019   Value *FwdVal;
   2020   if (Ty->isLabelTy())
   2021     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
   2022   else
   2023     FwdVal = new Argument(Ty, Name);
   2024 
   2025   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   2026   return FwdVal;
   2027 }
   2028 
   2029 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
   2030                                           LocTy Loc) {
   2031   // Look this name up in the normal function symbol table.
   2032   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
   2033 
   2034   // If this is a forward reference for the value, see if we already created a
   2035   // forward ref record.
   2036   if (Val == 0) {
   2037     std::map<unsigned, std::pair<Value*, LocTy> >::iterator
   2038       I = ForwardRefValIDs.find(ID);
   2039     if (I != ForwardRefValIDs.end())
   2040       Val = I->second.first;
   2041   }
   2042 
   2043   // If we have the value in the symbol table or fwd-ref table, return it.
   2044   if (Val) {
   2045     if (Val->getType() == Ty) return Val;
   2046     if (Ty->isLabelTy())
   2047       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
   2048     else
   2049       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
   2050               getTypeString(Val->getType()) + "'");
   2051     return 0;
   2052   }
   2053 
   2054   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
   2055     P.Error(Loc, "invalid use of a non-first-class type");
   2056     return 0;
   2057   }
   2058 
   2059   // Otherwise, create a new forward reference for this value and remember it.
   2060   Value *FwdVal;
   2061   if (Ty->isLabelTy())
   2062     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
   2063   else
   2064     FwdVal = new Argument(Ty);
   2065 
   2066   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   2067   return FwdVal;
   2068 }
   2069 
   2070 /// SetInstName - After an instruction is parsed and inserted into its
   2071 /// basic block, this installs its name.
   2072 bool LLParser::PerFunctionState::SetInstName(int NameID,
   2073                                              const std::string &NameStr,
   2074                                              LocTy NameLoc, Instruction *Inst) {
   2075   // If this instruction has void type, it cannot have a name or ID specified.
   2076   if (Inst->getType()->isVoidTy()) {
   2077     if (NameID != -1 || !NameStr.empty())
   2078       return P.Error(NameLoc, "instructions returning void cannot have a name");
   2079     return false;
   2080   }
   2081 
   2082   // If this was a numbered instruction, verify that the instruction is the
   2083   // expected value and resolve any forward references.
   2084   if (NameStr.empty()) {
   2085     // If neither a name nor an ID was specified, just use the next ID.
   2086     if (NameID == -1)
   2087       NameID = NumberedVals.size();
   2088 
   2089     if (unsigned(NameID) != NumberedVals.size())
   2090       return P.Error(NameLoc, "instruction expected to be numbered '%" +
   2091                      Twine(NumberedVals.size()) + "'");
   2092 
   2093     std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
   2094       ForwardRefValIDs.find(NameID);
   2095     if (FI != ForwardRefValIDs.end()) {
   2096       if (FI->second.first->getType() != Inst->getType())
   2097         return P.Error(NameLoc, "instruction forward referenced with type '" +
   2098                        getTypeString(FI->second.first->getType()) + "'");
   2099       FI->second.first->replaceAllUsesWith(Inst);
   2100       delete FI->second.first;
   2101       ForwardRefValIDs.erase(FI);
   2102     }
   2103 
   2104     NumberedVals.push_back(Inst);
   2105     return false;
   2106   }
   2107 
   2108   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
   2109   std::map<std::string, std::pair<Value*, LocTy> >::iterator
   2110     FI = ForwardRefVals.find(NameStr);
   2111   if (FI != ForwardRefVals.end()) {
   2112     if (FI->second.first->getType() != Inst->getType())
   2113       return P.Error(NameLoc, "instruction forward referenced with type '" +
   2114                      getTypeString(FI->second.first->getType()) + "'");
   2115     FI->second.first->replaceAllUsesWith(Inst);
   2116     delete FI->second.first;
   2117     ForwardRefVals.erase(FI);
   2118   }
   2119 
   2120   // Set the name on the instruction.
   2121   Inst->setName(NameStr);
   2122 
   2123   if (Inst->getName() != NameStr)
   2124     return P.Error(NameLoc, "multiple definition of local value named '" +
   2125                    NameStr + "'");
   2126   return false;
   2127 }
   2128 
   2129 /// GetBB - Get a basic block with the specified name or ID, creating a
   2130 /// forward reference record if needed.
   2131 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
   2132                                               LocTy Loc) {
   2133   return cast_or_null<BasicBlock>(GetVal(Name,
   2134                                         Type::getLabelTy(F.getContext()), Loc));
   2135 }
   2136 
   2137 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
   2138   return cast_or_null<BasicBlock>(GetVal(ID,
   2139                                         Type::getLabelTy(F.getContext()), Loc));
   2140 }
   2141 
   2142 /// DefineBB - Define the specified basic block, which is either named or
   2143 /// unnamed.  If there is an error, this returns null otherwise it returns
   2144 /// the block being defined.
   2145 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
   2146                                                  LocTy Loc) {
   2147   BasicBlock *BB;
   2148   if (Name.empty())
   2149     BB = GetBB(NumberedVals.size(), Loc);
   2150   else
   2151     BB = GetBB(Name, Loc);
   2152   if (BB == 0) return 0; // Already diagnosed error.
   2153 
   2154   // Move the block to the end of the function.  Forward ref'd blocks are
   2155   // inserted wherever they happen to be referenced.
   2156   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
   2157 
   2158   // Remove the block from forward ref sets.
   2159   if (Name.empty()) {
   2160     ForwardRefValIDs.erase(NumberedVals.size());
   2161     NumberedVals.push_back(BB);
   2162   } else {
   2163     // BB forward references are already in the function symbol table.
   2164     ForwardRefVals.erase(Name);
   2165   }
   2166 
   2167   return BB;
   2168 }
   2169 
   2170 //===----------------------------------------------------------------------===//
   2171 // Constants.
   2172 //===----------------------------------------------------------------------===//
   2173 
   2174 /// ParseValID - Parse an abstract value that doesn't necessarily have a
   2175 /// type implied.  For example, if we parse "4" we don't know what integer type
   2176 /// it has.  The value will later be combined with its type and checked for
   2177 /// sanity.  PFS is used to convert function-local operands of metadata (since
   2178 /// metadata operands are not just parsed here but also converted to values).
   2179 /// PFS can be null when we are not parsing metadata values inside a function.
   2180 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
   2181   ID.Loc = Lex.getLoc();
   2182   switch (Lex.getKind()) {
   2183   default: return TokError("expected value token");
   2184   case lltok::GlobalID:  // @42
   2185     ID.UIntVal = Lex.getUIntVal();
   2186     ID.Kind = ValID::t_GlobalID;
   2187     break;
   2188   case lltok::GlobalVar:  // @foo
   2189     ID.StrVal = Lex.getStrVal();
   2190     ID.Kind = ValID::t_GlobalName;
   2191     break;
   2192   case lltok::LocalVarID:  // %42
   2193     ID.UIntVal = Lex.getUIntVal();
   2194     ID.Kind = ValID::t_LocalID;
   2195     break;
   2196   case lltok::LocalVar:  // %foo
   2197     ID.StrVal = Lex.getStrVal();
   2198     ID.Kind = ValID::t_LocalName;
   2199     break;
   2200   case lltok::exclaim:   // !42, !{...}, or !"foo"
   2201     return ParseMetadataValue(ID, PFS);
   2202   case lltok::APSInt:
   2203     ID.APSIntVal = Lex.getAPSIntVal();
   2204     ID.Kind = ValID::t_APSInt;
   2205     break;
   2206   case lltok::APFloat:
   2207     ID.APFloatVal = Lex.getAPFloatVal();
   2208     ID.Kind = ValID::t_APFloat;
   2209     break;
   2210   case lltok::kw_true:
   2211     ID.ConstantVal = ConstantInt::getTrue(Context);
   2212     ID.Kind = ValID::t_Constant;
   2213     break;
   2214   case lltok::kw_false:
   2215     ID.ConstantVal = ConstantInt::getFalse(Context);
   2216     ID.Kind = ValID::t_Constant;
   2217     break;
   2218   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
   2219   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
   2220   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
   2221 
   2222   case lltok::lbrace: {
   2223     // ValID ::= '{' ConstVector '}'
   2224     Lex.Lex();
   2225     SmallVector<Constant*, 16> Elts;
   2226     if (ParseGlobalValueVector(Elts) ||
   2227         ParseToken(lltok::rbrace, "expected end of struct constant"))
   2228       return true;
   2229 
   2230     ID.ConstantStructElts = new Constant*[Elts.size()];
   2231     ID.UIntVal = Elts.size();
   2232     memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
   2233     ID.Kind = ValID::t_ConstantStruct;
   2234     return false;
   2235   }
   2236   case lltok::less: {
   2237     // ValID ::= '<' ConstVector '>'         --> Vector.
   2238     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
   2239     Lex.Lex();
   2240     bool isPackedStruct = EatIfPresent(lltok::lbrace);
   2241 
   2242     SmallVector<Constant*, 16> Elts;
   2243     LocTy FirstEltLoc = Lex.getLoc();
   2244     if (ParseGlobalValueVector(Elts) ||
   2245         (isPackedStruct &&
   2246          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
   2247         ParseToken(lltok::greater, "expected end of constant"))
   2248       return true;
   2249 
   2250     if (isPackedStruct) {
   2251       ID.ConstantStructElts = new Constant*[Elts.size()];
   2252       memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
   2253       ID.UIntVal = Elts.size();
   2254       ID.Kind = ValID::t_PackedConstantStruct;
   2255       return false;
   2256     }
   2257 
   2258     if (Elts.empty())
   2259       return Error(ID.Loc, "constant vector must not be empty");
   2260 
   2261     if (!Elts[0]->getType()->isIntegerTy() &&
   2262         !Elts[0]->getType()->isFloatingPointTy() &&
   2263         !Elts[0]->getType()->isPointerTy())
   2264       return Error(FirstEltLoc,
   2265             "vector elements must have integer, pointer or floating point type");
   2266 
   2267     // Verify that all the vector elements have the same type.
   2268     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
   2269       if (Elts[i]->getType() != Elts[0]->getType())
   2270         return Error(FirstEltLoc,
   2271                      "vector element #" + Twine(i) +
   2272                     " is not of type '" + getTypeString(Elts[0]->getType()));
   2273 
   2274     ID.ConstantVal = ConstantVector::get(Elts);
   2275     ID.Kind = ValID::t_Constant;
   2276     return false;
   2277   }
   2278   case lltok::lsquare: {   // Array Constant
   2279     Lex.Lex();
   2280     SmallVector<Constant*, 16> Elts;
   2281     LocTy FirstEltLoc = Lex.getLoc();
   2282     if (ParseGlobalValueVector(Elts) ||
   2283         ParseToken(lltok::rsquare, "expected end of array constant"))
   2284       return true;
   2285 
   2286     // Handle empty element.
   2287     if (Elts.empty()) {
   2288       // Use undef instead of an array because it's inconvenient to determine
   2289       // the element type at this point, there being no elements to examine.
   2290       ID.Kind = ValID::t_EmptyArray;
   2291       return false;
   2292     }
   2293 
   2294     if (!Elts[0]->getType()->isFirstClassType())
   2295       return Error(FirstEltLoc, "invalid array element type: " +
   2296                    getTypeString(Elts[0]->getType()));
   2297 
   2298     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
   2299 
   2300     // Verify all elements are correct type!
   2301     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
   2302       if (Elts[i]->getType() != Elts[0]->getType())
   2303         return Error(FirstEltLoc,
   2304                      "array element #" + Twine(i) +
   2305                      " is not of type '" + getTypeString(Elts[0]->getType()));
   2306     }
   2307 
   2308     ID.ConstantVal = ConstantArray::get(ATy, Elts);
   2309     ID.Kind = ValID::t_Constant;
   2310     return false;
   2311   }
   2312   case lltok::kw_c:  // c "foo"
   2313     Lex.Lex();
   2314     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
   2315                                                   false);
   2316     if (ParseToken(lltok::StringConstant, "expected string")) return true;
   2317     ID.Kind = ValID::t_Constant;
   2318     return false;
   2319 
   2320   case lltok::kw_asm: {
   2321     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
   2322     //             STRINGCONSTANT
   2323     bool HasSideEffect, AlignStack, AsmDialect;
   2324     Lex.Lex();
   2325     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
   2326         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
   2327         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
   2328         ParseStringConstant(ID.StrVal) ||
   2329         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
   2330         ParseToken(lltok::StringConstant, "expected constraint string"))
   2331       return true;
   2332     ID.StrVal2 = Lex.getStrVal();
   2333     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
   2334       (unsigned(AsmDialect)<<2);
   2335     ID.Kind = ValID::t_InlineAsm;
   2336     return false;
   2337   }
   2338 
   2339   case lltok::kw_blockaddress: {
   2340     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
   2341     Lex.Lex();
   2342 
   2343     ValID Fn, Label;
   2344     LocTy FnLoc, LabelLoc;
   2345 
   2346     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
   2347         ParseValID(Fn) ||
   2348         ParseToken(lltok::comma, "expected comma in block address expression")||
   2349         ParseValID(Label) ||
   2350         ParseToken(lltok::rparen, "expected ')' in block address expression"))
   2351       return true;
   2352 
   2353     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
   2354       return Error(Fn.Loc, "expected function name in blockaddress");
   2355     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
   2356       return Error(Label.Loc, "expected basic block name in blockaddress");
   2357 
   2358     // Make a global variable as a placeholder for this reference.
   2359     GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
   2360                                            false, GlobalValue::InternalLinkage,
   2361                                                 0, "");
   2362     ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
   2363     ID.ConstantVal = FwdRef;
   2364     ID.Kind = ValID::t_Constant;
   2365     return false;
   2366   }
   2367 
   2368   case lltok::kw_trunc:
   2369   case lltok::kw_zext:
   2370   case lltok::kw_sext:
   2371   case lltok::kw_fptrunc:
   2372   case lltok::kw_fpext:
   2373   case lltok::kw_bitcast:
   2374   case lltok::kw_uitofp:
   2375   case lltok::kw_sitofp:
   2376   case lltok::kw_fptoui:
   2377   case lltok::kw_fptosi:
   2378   case lltok::kw_inttoptr:
   2379   case lltok::kw_ptrtoint: {
   2380     unsigned Opc = Lex.getUIntVal();
   2381     Type *DestTy = 0;
   2382     Constant *SrcVal;
   2383     Lex.Lex();
   2384     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
   2385         ParseGlobalTypeAndValue(SrcVal) ||
   2386         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
   2387         ParseType(DestTy) ||
   2388         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
   2389       return true;
   2390     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
   2391       return Error(ID.Loc, "invalid cast opcode for cast from '" +
   2392                    getTypeString(SrcVal->getType()) + "' to '" +
   2393                    getTypeString(DestTy) + "'");
   2394     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
   2395                                                  SrcVal, DestTy);
   2396     ID.Kind = ValID::t_Constant;
   2397     return false;
   2398   }
   2399   case lltok::kw_extractvalue: {
   2400     Lex.Lex();
   2401     Constant *Val;
   2402     SmallVector<unsigned, 4> Indices;
   2403     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
   2404         ParseGlobalTypeAndValue(Val) ||
   2405         ParseIndexList(Indices) ||
   2406         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
   2407       return true;
   2408 
   2409     if (!Val->getType()->isAggregateType())
   2410       return Error(ID.Loc, "extractvalue operand must be aggregate type");
   2411     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   2412       return Error(ID.Loc, "invalid indices for extractvalue");
   2413     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
   2414     ID.Kind = ValID::t_Constant;
   2415     return false;
   2416   }
   2417   case lltok::kw_insertvalue: {
   2418     Lex.Lex();
   2419     Constant *Val0, *Val1;
   2420     SmallVector<unsigned, 4> Indices;
   2421     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
   2422         ParseGlobalTypeAndValue(Val0) ||
   2423         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
   2424         ParseGlobalTypeAndValue(Val1) ||
   2425         ParseIndexList(Indices) ||
   2426         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
   2427       return true;
   2428     if (!Val0->getType()->isAggregateType())
   2429       return Error(ID.Loc, "insertvalue operand must be aggregate type");
   2430     if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
   2431       return Error(ID.Loc, "invalid indices for insertvalue");
   2432     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
   2433     ID.Kind = ValID::t_Constant;
   2434     return false;
   2435   }
   2436   case lltok::kw_icmp:
   2437   case lltok::kw_fcmp: {
   2438     unsigned PredVal, Opc = Lex.getUIntVal();
   2439     Constant *Val0, *Val1;
   2440     Lex.Lex();
   2441     if (ParseCmpPredicate(PredVal, Opc) ||
   2442         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
   2443         ParseGlobalTypeAndValue(Val0) ||
   2444         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
   2445         ParseGlobalTypeAndValue(Val1) ||
   2446         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
   2447       return true;
   2448 
   2449     if (Val0->getType() != Val1->getType())
   2450       return Error(ID.Loc, "compare operands must have the same type");
   2451 
   2452     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
   2453 
   2454     if (Opc == Instruction::FCmp) {
   2455       if (!Val0->getType()->isFPOrFPVectorTy())
   2456         return Error(ID.Loc, "fcmp requires floating point operands");
   2457       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
   2458     } else {
   2459       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
   2460       if (!Val0->getType()->isIntOrIntVectorTy() &&
   2461           !Val0->getType()->getScalarType()->isPointerTy())
   2462         return Error(ID.Loc, "icmp requires pointer or integer operands");
   2463       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
   2464     }
   2465     ID.Kind = ValID::t_Constant;
   2466     return false;
   2467   }
   2468 
   2469   // Binary Operators.
   2470   case lltok::kw_add:
   2471   case lltok::kw_fadd:
   2472   case lltok::kw_sub:
   2473   case lltok::kw_fsub:
   2474   case lltok::kw_mul:
   2475   case lltok::kw_fmul:
   2476   case lltok::kw_udiv:
   2477   case lltok::kw_sdiv:
   2478   case lltok::kw_fdiv:
   2479   case lltok::kw_urem:
   2480   case lltok::kw_srem:
   2481   case lltok::kw_frem:
   2482   case lltok::kw_shl:
   2483   case lltok::kw_lshr:
   2484   case lltok::kw_ashr: {
   2485     bool NUW = false;
   2486     bool NSW = false;
   2487     bool Exact = false;
   2488     unsigned Opc = Lex.getUIntVal();
   2489     Constant *Val0, *Val1;
   2490     Lex.Lex();
   2491     LocTy ModifierLoc = Lex.getLoc();
   2492     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
   2493         Opc == Instruction::Mul || Opc == Instruction::Shl) {
   2494       if (EatIfPresent(lltok::kw_nuw))
   2495         NUW = true;
   2496       if (EatIfPresent(lltok::kw_nsw)) {
   2497         NSW = true;
   2498         if (EatIfPresent(lltok::kw_nuw))
   2499           NUW = true;
   2500       }
   2501     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
   2502                Opc == Instruction::LShr || Opc == Instruction::AShr) {
   2503       if (EatIfPresent(lltok::kw_exact))
   2504         Exact = true;
   2505     }
   2506     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
   2507         ParseGlobalTypeAndValue(Val0) ||
   2508         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
   2509         ParseGlobalTypeAndValue(Val1) ||
   2510         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
   2511       return true;
   2512     if (Val0->getType() != Val1->getType())
   2513       return Error(ID.Loc, "operands of constexpr must have same type");
   2514     if (!Val0->getType()->isIntOrIntVectorTy()) {
   2515       if (NUW)
   2516         return Error(ModifierLoc, "nuw only applies to integer operations");
   2517       if (NSW)
   2518         return Error(ModifierLoc, "nsw only applies to integer operations");
   2519     }
   2520     // Check that the type is valid for the operator.
   2521     switch (Opc) {
   2522     case Instruction::Add:
   2523     case Instruction::Sub:
   2524     case Instruction::Mul:
   2525     case Instruction::UDiv:
   2526     case Instruction::SDiv:
   2527     case Instruction::URem:
   2528     case Instruction::SRem:
   2529     case Instruction::Shl:
   2530     case Instruction::AShr:
   2531     case Instruction::LShr:
   2532       if (!Val0->getType()->isIntOrIntVectorTy())
   2533         return Error(ID.Loc, "constexpr requires integer operands");
   2534       break;
   2535     case Instruction::FAdd:
   2536     case Instruction::FSub:
   2537     case Instruction::FMul:
   2538     case Instruction::FDiv:
   2539     case Instruction::FRem:
   2540       if (!Val0->getType()->isFPOrFPVectorTy())
   2541         return Error(ID.Loc, "constexpr requires fp operands");
   2542       break;
   2543     default: llvm_unreachable("Unknown binary operator!");
   2544     }
   2545     unsigned Flags = 0;
   2546     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   2547     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
   2548     if (Exact) Flags |= PossiblyExactOperator::IsExact;
   2549     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
   2550     ID.ConstantVal = C;
   2551     ID.Kind = ValID::t_Constant;
   2552     return false;
   2553   }
   2554 
   2555   // Logical Operations
   2556   case lltok::kw_and:
   2557   case lltok::kw_or:
   2558   case lltok::kw_xor: {
   2559     unsigned Opc = Lex.getUIntVal();
   2560     Constant *Val0, *Val1;
   2561     Lex.Lex();
   2562     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
   2563         ParseGlobalTypeAndValue(Val0) ||
   2564         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
   2565         ParseGlobalTypeAndValue(Val1) ||
   2566         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
   2567       return true;
   2568     if (Val0->getType() != Val1->getType())
   2569       return Error(ID.Loc, "operands of constexpr must have same type");
   2570     if (!Val0->getType()->isIntOrIntVectorTy())
   2571       return Error(ID.Loc,
   2572                    "constexpr requires integer or integer vector operands");
   2573     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
   2574     ID.Kind = ValID::t_Constant;
   2575     return false;
   2576   }
   2577 
   2578   case lltok::kw_getelementptr:
   2579   case lltok::kw_shufflevector:
   2580   case lltok::kw_insertelement:
   2581   case lltok::kw_extractelement:
   2582   case lltok::kw_select: {
   2583     unsigned Opc = Lex.getUIntVal();
   2584     SmallVector<Constant*, 16> Elts;
   2585     bool InBounds = false;
   2586     Lex.Lex();
   2587     if (Opc == Instruction::GetElementPtr)
   2588       InBounds = EatIfPresent(lltok::kw_inbounds);
   2589     if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
   2590         ParseGlobalValueVector(Elts) ||
   2591         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
   2592       return true;
   2593 
   2594     if (Opc == Instruction::GetElementPtr) {
   2595       if (Elts.size() == 0 ||
   2596           !Elts[0]->getType()->getScalarType()->isPointerTy())
   2597         return Error(ID.Loc, "getelementptr requires pointer operand");
   2598 
   2599       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   2600       if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
   2601         return Error(ID.Loc, "invalid indices for getelementptr");
   2602       ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
   2603                                                       InBounds);
   2604     } else if (Opc == Instruction::Select) {
   2605       if (Elts.size() != 3)
   2606         return Error(ID.Loc, "expected three operands to select");
   2607       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
   2608                                                               Elts[2]))
   2609         return Error(ID.Loc, Reason);
   2610       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
   2611     } else if (Opc == Instruction::ShuffleVector) {
   2612       if (Elts.size() != 3)
   2613         return Error(ID.Loc, "expected three operands to shufflevector");
   2614       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   2615         return Error(ID.Loc, "invalid operands to shufflevector");
   2616       ID.ConstantVal =
   2617                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
   2618     } else if (Opc == Instruction::ExtractElement) {
   2619       if (Elts.size() != 2)
   2620         return Error(ID.Loc, "expected two operands to extractelement");
   2621       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
   2622         return Error(ID.Loc, "invalid extractelement operands");
   2623       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
   2624     } else {
   2625       assert(Opc == Instruction::InsertElement && "Unknown opcode");
   2626       if (Elts.size() != 3)
   2627       return Error(ID.Loc, "expected three operands to insertelement");
   2628       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   2629         return Error(ID.Loc, "invalid insertelement operands");
   2630       ID.ConstantVal =
   2631                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
   2632     }
   2633 
   2634     ID.Kind = ValID::t_Constant;
   2635     return false;
   2636   }
   2637   }
   2638 
   2639   Lex.Lex();
   2640   return false;
   2641 }
   2642 
   2643 /// ParseGlobalValue - Parse a global value with the specified type.
   2644 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
   2645   C = 0;
   2646   ValID ID;
   2647   Value *V = NULL;
   2648   bool Parsed = ParseValID(ID) ||
   2649                 ConvertValIDToValue(Ty, ID, V, NULL);
   2650   if (V && !(C = dyn_cast<Constant>(V)))
   2651     return Error(ID.Loc, "global values must be constants");
   2652   return Parsed;
   2653 }
   2654 
   2655 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
   2656   Type *Ty = 0;
   2657   return ParseType(Ty) ||
   2658          ParseGlobalValue(Ty, V);
   2659 }
   2660 
   2661 /// ParseGlobalValueVector
   2662 ///   ::= /*empty*/
   2663 ///   ::= TypeAndValue (',' TypeAndValue)*
   2664 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
   2665   // Empty list.
   2666   if (Lex.getKind() == lltok::rbrace ||
   2667       Lex.getKind() == lltok::rsquare ||
   2668       Lex.getKind() == lltok::greater ||
   2669       Lex.getKind() == lltok::rparen)
   2670     return false;
   2671 
   2672   Constant *C;
   2673   if (ParseGlobalTypeAndValue(C)) return true;
   2674   Elts.push_back(C);
   2675 
   2676   while (EatIfPresent(lltok::comma)) {
   2677     if (ParseGlobalTypeAndValue(C)) return true;
   2678     Elts.push_back(C);
   2679   }
   2680 
   2681   return false;
   2682 }
   2683 
   2684 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
   2685   assert(Lex.getKind() == lltok::lbrace);
   2686   Lex.Lex();
   2687 
   2688   SmallVector<Value*, 16> Elts;
   2689   if (ParseMDNodeVector(Elts, PFS) ||
   2690       ParseToken(lltok::rbrace, "expected end of metadata node"))
   2691     return true;
   2692 
   2693   ID.MDNodeVal = MDNode::get(Context, Elts);
   2694   ID.Kind = ValID::t_MDNode;
   2695   return false;
   2696 }
   2697 
   2698 /// ParseMetadataValue
   2699 ///  ::= !42
   2700 ///  ::= !{...}
   2701 ///  ::= !"string"
   2702 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
   2703   assert(Lex.getKind() == lltok::exclaim);
   2704   Lex.Lex();
   2705 
   2706   // MDNode:
   2707   // !{ ... }
   2708   if (Lex.getKind() == lltok::lbrace)
   2709     return ParseMetadataListValue(ID, PFS);
   2710 
   2711   // Standalone metadata reference
   2712   // !42
   2713   if (Lex.getKind() == lltok::APSInt) {
   2714     if (ParseMDNodeID(ID.MDNodeVal)) return true;
   2715     ID.Kind = ValID::t_MDNode;
   2716     return false;
   2717   }
   2718 
   2719   // MDString:
   2720   //   ::= '!' STRINGCONSTANT
   2721   if (ParseMDString(ID.MDStringVal)) return true;
   2722   ID.Kind = ValID::t_MDString;
   2723   return false;
   2724 }
   2725 
   2726 
   2727 //===----------------------------------------------------------------------===//
   2728 // Function Parsing.
   2729 //===----------------------------------------------------------------------===//
   2730 
   2731 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
   2732                                    PerFunctionState *PFS) {
   2733   if (Ty->isFunctionTy())
   2734     return Error(ID.Loc, "functions are not values, refer to them as pointers");
   2735 
   2736   switch (ID.Kind) {
   2737   case ValID::t_LocalID:
   2738     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   2739     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
   2740     return (V == 0);
   2741   case ValID::t_LocalName:
   2742     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   2743     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
   2744     return (V == 0);
   2745   case ValID::t_InlineAsm: {
   2746     PointerType *PTy = dyn_cast<PointerType>(Ty);
   2747     FunctionType *FTy =
   2748       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
   2749     if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
   2750       return Error(ID.Loc, "invalid type for inline asm constraint string");
   2751     V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
   2752                        (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
   2753     return false;
   2754   }
   2755   case ValID::t_MDNode:
   2756     if (!Ty->isMetadataTy())
   2757       return Error(ID.Loc, "metadata value must have metadata type");
   2758     V = ID.MDNodeVal;
   2759     return false;
   2760   case ValID::t_MDString:
   2761     if (!Ty->isMetadataTy())
   2762       return Error(ID.Loc, "metadata value must have metadata type");
   2763     V = ID.MDStringVal;
   2764     return false;
   2765   case ValID::t_GlobalName:
   2766     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
   2767     return V == 0;
   2768   case ValID::t_GlobalID:
   2769     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
   2770     return V == 0;
   2771   case ValID::t_APSInt:
   2772     if (!Ty->isIntegerTy())
   2773       return Error(ID.Loc, "integer constant must have integer type");
   2774     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
   2775     V = ConstantInt::get(Context, ID.APSIntVal);
   2776     return false;
   2777   case ValID::t_APFloat:
   2778     if (!Ty->isFloatingPointTy() ||
   2779         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
   2780       return Error(ID.Loc, "floating point constant invalid for type");
   2781 
   2782     // The lexer has no type info, so builds all half, float, and double FP
   2783     // constants as double.  Fix this here.  Long double does not need this.
   2784     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
   2785       bool Ignored;
   2786       if (Ty->isHalfTy())
   2787         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
   2788                               &Ignored);
   2789       else if (Ty->isFloatTy())
   2790         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
   2791                               &Ignored);
   2792     }
   2793     V = ConstantFP::get(Context, ID.APFloatVal);
   2794 
   2795     if (V->getType() != Ty)
   2796       return Error(ID.Loc, "floating point constant does not have type '" +
   2797                    getTypeString(Ty) + "'");
   2798 
   2799     return false;
   2800   case ValID::t_Null:
   2801     if (!Ty->isPointerTy())
   2802       return Error(ID.Loc, "null must be a pointer type");
   2803     V = ConstantPointerNull::get(cast<PointerType>(Ty));
   2804     return false;
   2805   case ValID::t_Undef:
   2806     // FIXME: LabelTy should not be a first-class type.
   2807     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   2808       return Error(ID.Loc, "invalid type for undef constant");
   2809     V = UndefValue::get(Ty);
   2810     return false;
   2811   case ValID::t_EmptyArray:
   2812     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
   2813       return Error(ID.Loc, "invalid empty array initializer");
   2814     V = UndefValue::get(Ty);
   2815     return false;
   2816   case ValID::t_Zero:
   2817     // FIXME: LabelTy should not be a first-class type.
   2818     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   2819       return Error(ID.Loc, "invalid type for null constant");
   2820     V = Constant::getNullValue(Ty);
   2821     return false;
   2822   case ValID::t_Constant:
   2823     if (ID.ConstantVal->getType() != Ty)
   2824       return Error(ID.Loc, "constant expression type mismatch");
   2825 
   2826     V = ID.ConstantVal;
   2827     return false;
   2828   case ValID::t_ConstantStruct:
   2829   case ValID::t_PackedConstantStruct:
   2830     if (StructType *ST = dyn_cast<StructType>(Ty)) {
   2831       if (ST->getNumElements() != ID.UIntVal)
   2832         return Error(ID.Loc,
   2833                      "initializer with struct type has wrong # elements");
   2834       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
   2835         return Error(ID.Loc, "packed'ness of initializer and type don't match");
   2836 
   2837       // Verify that the elements are compatible with the structtype.
   2838       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
   2839         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
   2840           return Error(ID.Loc, "element " + Twine(i) +
   2841                     " of struct initializer doesn't match struct element type");
   2842 
   2843       V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
   2844                                                ID.UIntVal));
   2845     } else
   2846       return Error(ID.Loc, "constant expression type mismatch");
   2847     return false;
   2848   }
   2849   llvm_unreachable("Invalid ValID");
   2850 }
   2851 
   2852 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
   2853   V = 0;
   2854   ValID ID;
   2855   return ParseValID(ID, PFS) ||
   2856          ConvertValIDToValue(Ty, ID, V, PFS);
   2857 }
   2858 
   2859 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
   2860   Type *Ty = 0;
   2861   return ParseType(Ty) ||
   2862          ParseValue(Ty, V, PFS);
   2863 }
   2864 
   2865 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
   2866                                       PerFunctionState &PFS) {
   2867   Value *V;
   2868   Loc = Lex.getLoc();
   2869   if (ParseTypeAndValue(V, PFS)) return true;
   2870   if (!isa<BasicBlock>(V))
   2871     return Error(Loc, "expected a basic block");
   2872   BB = cast<BasicBlock>(V);
   2873   return false;
   2874 }
   2875 
   2876 
   2877 /// FunctionHeader
   2878 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
   2879 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
   2880 ///       OptionalAlign OptGC
   2881 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
   2882   // Parse the linkage.
   2883   LocTy LinkageLoc = Lex.getLoc();
   2884   unsigned Linkage;
   2885 
   2886   unsigned Visibility;
   2887   AttrBuilder RetAttrs;
   2888   CallingConv::ID CC;
   2889   Type *RetType = 0;
   2890   LocTy RetTypeLoc = Lex.getLoc();
   2891   if (ParseOptionalLinkage(Linkage) ||
   2892       ParseOptionalVisibility(Visibility) ||
   2893       ParseOptionalCallingConv(CC) ||
   2894       ParseOptionalReturnAttrs(RetAttrs) ||
   2895       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
   2896     return true;
   2897 
   2898   // Verify that the linkage is ok.
   2899   switch ((GlobalValue::LinkageTypes)Linkage) {
   2900   case GlobalValue::ExternalLinkage:
   2901     break; // always ok.
   2902   case GlobalValue::DLLImportLinkage:
   2903   case GlobalValue::ExternalWeakLinkage:
   2904     if (isDefine)
   2905       return Error(LinkageLoc, "invalid linkage for function definition");
   2906     break;
   2907   case GlobalValue::PrivateLinkage:
   2908   case GlobalValue::LinkerPrivateLinkage:
   2909   case GlobalValue::LinkerPrivateWeakLinkage:
   2910   case GlobalValue::InternalLinkage:
   2911   case GlobalValue::AvailableExternallyLinkage:
   2912   case GlobalValue::LinkOnceAnyLinkage:
   2913   case GlobalValue::LinkOnceODRLinkage:
   2914   case GlobalValue::LinkOnceODRAutoHideLinkage:
   2915   case GlobalValue::WeakAnyLinkage:
   2916   case GlobalValue::WeakODRLinkage:
   2917   case GlobalValue::DLLExportLinkage:
   2918     if (!isDefine)
   2919       return Error(LinkageLoc, "invalid linkage for function declaration");
   2920     break;
   2921   case GlobalValue::AppendingLinkage:
   2922   case GlobalValue::CommonLinkage:
   2923     return Error(LinkageLoc, "invalid function linkage type");
   2924   }
   2925 
   2926   if (!FunctionType::isValidReturnType(RetType))
   2927     return Error(RetTypeLoc, "invalid function return type");
   2928 
   2929   LocTy NameLoc = Lex.getLoc();
   2930 
   2931   std::string FunctionName;
   2932   if (Lex.getKind() == lltok::GlobalVar) {
   2933     FunctionName = Lex.getStrVal();
   2934   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
   2935     unsigned NameID = Lex.getUIntVal();
   2936 
   2937     if (NameID != NumberedVals.size())
   2938       return TokError("function expected to be numbered '%" +
   2939                       Twine(NumberedVals.size()) + "'");
   2940   } else {
   2941     return TokError("expected function name");
   2942   }
   2943 
   2944   Lex.Lex();
   2945 
   2946   if (Lex.getKind() != lltok::lparen)
   2947     return TokError("expected '(' in function argument list");
   2948 
   2949   SmallVector<ArgInfo, 8> ArgList;
   2950   bool isVarArg;
   2951   AttrBuilder FuncAttrs;
   2952   std::vector<unsigned> FwdRefAttrGrps;
   2953   LocTy NoBuiltinLoc;
   2954   std::string Section;
   2955   unsigned Alignment;
   2956   std::string GC;
   2957   bool UnnamedAddr;
   2958   LocTy UnnamedAddrLoc;
   2959 
   2960   if (ParseArgumentList(ArgList, isVarArg) ||
   2961       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
   2962                          &UnnamedAddrLoc) ||
   2963       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
   2964                                  NoBuiltinLoc) ||
   2965       (EatIfPresent(lltok::kw_section) &&
   2966        ParseStringConstant(Section)) ||
   2967       ParseOptionalAlignment(Alignment) ||
   2968       (EatIfPresent(lltok::kw_gc) &&
   2969        ParseStringConstant(GC)))
   2970     return true;
   2971 
   2972   if (FuncAttrs.contains(Attribute::NoBuiltin))
   2973     return Error(NoBuiltinLoc, "'nobuiltin' attribute not valid on function");
   2974 
   2975   // If the alignment was parsed as an attribute, move to the alignment field.
   2976   if (FuncAttrs.hasAlignmentAttr()) {
   2977     Alignment = FuncAttrs.getAlignment();
   2978     FuncAttrs.removeAttribute(Attribute::Alignment);
   2979   }
   2980 
   2981   // Okay, if we got here, the function is syntactically valid.  Convert types
   2982   // and do semantic checks.
   2983   std::vector<Type*> ParamTypeList;
   2984   SmallVector<AttributeSet, 8> Attrs;
   2985 
   2986   if (RetAttrs.hasAttributes())
   2987     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   2988                                       AttributeSet::ReturnIndex,
   2989                                       RetAttrs));
   2990 
   2991   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   2992     ParamTypeList.push_back(ArgList[i].Ty);
   2993     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   2994       AttrBuilder B(ArgList[i].Attrs, i + 1);
   2995       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   2996     }
   2997   }
   2998 
   2999   if (FuncAttrs.hasAttributes())
   3000     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3001                                       AttributeSet::FunctionIndex,
   3002                                       FuncAttrs));
   3003 
   3004   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   3005 
   3006   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
   3007     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
   3008 
   3009   FunctionType *FT =
   3010     FunctionType::get(RetType, ParamTypeList, isVarArg);
   3011   PointerType *PFT = PointerType::getUnqual(FT);
   3012 
   3013   Fn = 0;
   3014   if (!FunctionName.empty()) {
   3015     // If this was a definition of a forward reference, remove the definition
   3016     // from the forward reference table and fill in the forward ref.
   3017     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
   3018       ForwardRefVals.find(FunctionName);
   3019     if (FRVI != ForwardRefVals.end()) {
   3020       Fn = M->getFunction(FunctionName);
   3021       if (!Fn)
   3022         return Error(FRVI->second.second, "invalid forward reference to "
   3023                      "function as global value!");
   3024       if (Fn->getType() != PFT)
   3025         return Error(FRVI->second.second, "invalid forward reference to "
   3026                      "function '" + FunctionName + "' with wrong type!");
   3027 
   3028       ForwardRefVals.erase(FRVI);
   3029     } else if ((Fn = M->getFunction(FunctionName))) {
   3030       // Reject redefinitions.
   3031       return Error(NameLoc, "invalid redefinition of function '" +
   3032                    FunctionName + "'");
   3033     } else if (M->getNamedValue(FunctionName)) {
   3034       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
   3035     }
   3036 
   3037   } else {
   3038     // If this is a definition of a forward referenced function, make sure the
   3039     // types agree.
   3040     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
   3041       = ForwardRefValIDs.find(NumberedVals.size());
   3042     if (I != ForwardRefValIDs.end()) {
   3043       Fn = cast<Function>(I->second.first);
   3044       if (Fn->getType() != PFT)
   3045         return Error(NameLoc, "type of definition and forward reference of '@" +
   3046                      Twine(NumberedVals.size()) + "' disagree");
   3047       ForwardRefValIDs.erase(I);
   3048     }
   3049   }
   3050 
   3051   if (Fn == 0)
   3052     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
   3053   else // Move the forward-reference to the correct spot in the module.
   3054     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
   3055 
   3056   if (FunctionName.empty())
   3057     NumberedVals.push_back(Fn);
   3058 
   3059   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
   3060   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
   3061   Fn->setCallingConv(CC);
   3062   Fn->setAttributes(PAL);
   3063   Fn->setUnnamedAddr(UnnamedAddr);
   3064   Fn->setAlignment(Alignment);
   3065   Fn->setSection(Section);
   3066   if (!GC.empty()) Fn->setGC(GC.c_str());
   3067   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
   3068 
   3069   // Add all of the arguments we parsed to the function.
   3070   Function::arg_iterator ArgIt = Fn->arg_begin();
   3071   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
   3072     // If the argument has a name, insert it into the argument symbol table.
   3073     if (ArgList[i].Name.empty()) continue;
   3074 
   3075     // Set the name, if it conflicted, it will be auto-renamed.
   3076     ArgIt->setName(ArgList[i].Name);
   3077 
   3078     if (ArgIt->getName() != ArgList[i].Name)
   3079       return Error(ArgList[i].Loc, "redefinition of argument '%" +
   3080                    ArgList[i].Name + "'");
   3081   }
   3082 
   3083   return false;
   3084 }
   3085 
   3086 
   3087 /// ParseFunctionBody
   3088 ///   ::= '{' BasicBlock+ '}'
   3089 ///
   3090 bool LLParser::ParseFunctionBody(Function &Fn) {
   3091   if (Lex.getKind() != lltok::lbrace)
   3092     return TokError("expected '{' in function body");
   3093   Lex.Lex();  // eat the {.
   3094 
   3095   int FunctionNumber = -1;
   3096   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
   3097 
   3098   PerFunctionState PFS(*this, Fn, FunctionNumber);
   3099 
   3100   // We need at least one basic block.
   3101   if (Lex.getKind() == lltok::rbrace)
   3102     return TokError("function body requires at least one basic block");
   3103 
   3104   while (Lex.getKind() != lltok::rbrace)
   3105     if (ParseBasicBlock(PFS)) return true;
   3106 
   3107   // Eat the }.
   3108   Lex.Lex();
   3109 
   3110   // Verify function is ok.
   3111   return PFS.FinishFunction();
   3112 }
   3113 
   3114 /// ParseBasicBlock
   3115 ///   ::= LabelStr? Instruction*
   3116 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
   3117   // If this basic block starts out with a name, remember it.
   3118   std::string Name;
   3119   LocTy NameLoc = Lex.getLoc();
   3120   if (Lex.getKind() == lltok::LabelStr) {
   3121     Name = Lex.getStrVal();
   3122     Lex.Lex();
   3123   }
   3124 
   3125   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
   3126   if (BB == 0) return true;
   3127 
   3128   std::string NameStr;
   3129 
   3130   // Parse the instructions in this block until we get a terminator.
   3131   Instruction *Inst;
   3132   SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
   3133   do {
   3134     // This instruction may have three possibilities for a name: a) none
   3135     // specified, b) name specified "%foo =", c) number specified: "%4 =".
   3136     LocTy NameLoc = Lex.getLoc();
   3137     int NameID = -1;
   3138     NameStr = "";
   3139 
   3140     if (Lex.getKind() == lltok::LocalVarID) {
   3141       NameID = Lex.getUIntVal();
   3142       Lex.Lex();
   3143       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
   3144         return true;
   3145     } else if (Lex.getKind() == lltok::LocalVar) {
   3146       NameStr = Lex.getStrVal();
   3147       Lex.Lex();
   3148       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
   3149         return true;
   3150     }
   3151 
   3152     switch (ParseInstruction(Inst, BB, PFS)) {
   3153     default: llvm_unreachable("Unknown ParseInstruction result!");
   3154     case InstError: return true;
   3155     case InstNormal:
   3156       BB->getInstList().push_back(Inst);
   3157 
   3158       // With a normal result, we check to see if the instruction is followed by
   3159       // a comma and metadata.
   3160       if (EatIfPresent(lltok::comma))
   3161         if (ParseInstructionMetadata(Inst, &PFS))
   3162           return true;
   3163       break;
   3164     case InstExtraComma:
   3165       BB->getInstList().push_back(Inst);
   3166 
   3167       // If the instruction parser ate an extra comma at the end of it, it
   3168       // *must* be followed by metadata.
   3169       if (ParseInstructionMetadata(Inst, &PFS))
   3170         return true;
   3171       break;
   3172     }
   3173 
   3174     // Set the name on the instruction.
   3175     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
   3176   } while (!isa<TerminatorInst>(Inst));
   3177 
   3178   return false;
   3179 }
   3180 
   3181 //===----------------------------------------------------------------------===//
   3182 // Instruction Parsing.
   3183 //===----------------------------------------------------------------------===//
   3184 
   3185 /// ParseInstruction - Parse one of the many different instructions.
   3186 ///
   3187 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
   3188                                PerFunctionState &PFS) {
   3189   lltok::Kind Token = Lex.getKind();
   3190   if (Token == lltok::Eof)
   3191     return TokError("found end of file when expecting more instructions");
   3192   LocTy Loc = Lex.getLoc();
   3193   unsigned KeywordVal = Lex.getUIntVal();
   3194   Lex.Lex();  // Eat the keyword.
   3195 
   3196   switch (Token) {
   3197   default:                    return Error(Loc, "expected instruction opcode");
   3198   // Terminator Instructions.
   3199   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
   3200   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
   3201   case lltok::kw_br:          return ParseBr(Inst, PFS);
   3202   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
   3203   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
   3204   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
   3205   case lltok::kw_resume:      return ParseResume(Inst, PFS);
   3206   // Binary Operators.
   3207   case lltok::kw_add:
   3208   case lltok::kw_sub:
   3209   case lltok::kw_mul:
   3210   case lltok::kw_shl: {
   3211     bool NUW = EatIfPresent(lltok::kw_nuw);
   3212     bool NSW = EatIfPresent(lltok::kw_nsw);
   3213     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
   3214 
   3215     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   3216 
   3217     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
   3218     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
   3219     return false;
   3220   }
   3221   case lltok::kw_fadd:
   3222   case lltok::kw_fsub:
   3223   case lltok::kw_fmul:
   3224   case lltok::kw_fdiv:
   3225   case lltok::kw_frem: {
   3226     FastMathFlags FMF = EatFastMathFlagsIfPresent();
   3227     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
   3228     if (Res != 0)
   3229       return Res;
   3230     if (FMF.any())
   3231       Inst->setFastMathFlags(FMF);
   3232     return 0;
   3233   }
   3234 
   3235   case lltok::kw_sdiv:
   3236   case lltok::kw_udiv:
   3237   case lltok::kw_lshr:
   3238   case lltok::kw_ashr: {
   3239     bool Exact = EatIfPresent(lltok::kw_exact);
   3240 
   3241     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   3242     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
   3243     return false;
   3244   }
   3245 
   3246   case lltok::kw_urem:
   3247   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
   3248   case lltok::kw_and:
   3249   case lltok::kw_or:
   3250   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
   3251   case lltok::kw_icmp:
   3252   case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
   3253   // Casts.
   3254   case lltok::kw_trunc:
   3255   case lltok::kw_zext:
   3256   case lltok::kw_sext:
   3257   case lltok::kw_fptrunc:
   3258   case lltok::kw_fpext:
   3259   case lltok::kw_bitcast:
   3260   case lltok::kw_uitofp:
   3261   case lltok::kw_sitofp:
   3262   case lltok::kw_fptoui:
   3263   case lltok::kw_fptosi:
   3264   case lltok::kw_inttoptr:
   3265   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
   3266   // Other.
   3267   case lltok::kw_select:         return ParseSelect(Inst, PFS);
   3268   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
   3269   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
   3270   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
   3271   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
   3272   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
   3273   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
   3274   case lltok::kw_call:           return ParseCall(Inst, PFS, false);
   3275   case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
   3276   // Memory.
   3277   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
   3278   case lltok::kw_load:           return ParseLoad(Inst, PFS);
   3279   case lltok::kw_store:          return ParseStore(Inst, PFS);
   3280   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
   3281   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
   3282   case lltok::kw_fence:          return ParseFence(Inst, PFS);
   3283   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
   3284   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
   3285   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
   3286   }
   3287 }
   3288 
   3289 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
   3290 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
   3291   if (Opc == Instruction::FCmp) {
   3292     switch (Lex.getKind()) {
   3293     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
   3294     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
   3295     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
   3296     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
   3297     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
   3298     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
   3299     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
   3300     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
   3301     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
   3302     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
   3303     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
   3304     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
   3305     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
   3306     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
   3307     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
   3308     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
   3309     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
   3310     }
   3311   } else {
   3312     switch (Lex.getKind()) {
   3313     default: return TokError("expected icmp predicate (e.g. 'eq')");
   3314     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
   3315     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
   3316     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
   3317     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
   3318     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
   3319     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
   3320     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
   3321     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
   3322     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
   3323     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
   3324     }
   3325   }
   3326   Lex.Lex();
   3327   return false;
   3328 }
   3329 
   3330 //===----------------------------------------------------------------------===//
   3331 // Terminator Instructions.
   3332 //===----------------------------------------------------------------------===//
   3333 
   3334 /// ParseRet - Parse a return instruction.
   3335 ///   ::= 'ret' void (',' !dbg, !1)*
   3336 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
   3337 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
   3338                         PerFunctionState &PFS) {
   3339   SMLoc TypeLoc = Lex.getLoc();
   3340   Type *Ty = 0;
   3341   if (ParseType(Ty, true /*void allowed*/)) return true;
   3342 
   3343   Type *ResType = PFS.getFunction().getReturnType();
   3344 
   3345   if (Ty->isVoidTy()) {
   3346     if (!ResType->isVoidTy())
   3347       return Error(TypeLoc, "value doesn't match function result type '" +
   3348                    getTypeString(ResType) + "'");
   3349 
   3350     Inst = ReturnInst::Create(Context);
   3351     return false;
   3352   }
   3353 
   3354   Value *RV;
   3355   if (ParseValue(Ty, RV, PFS)) return true;
   3356 
   3357   if (ResType != RV->getType())
   3358     return Error(TypeLoc, "value doesn't match function result type '" +
   3359                  getTypeString(ResType) + "'");
   3360 
   3361   Inst = ReturnInst::Create(Context, RV);
   3362   return false;
   3363 }
   3364 
   3365 
   3366 /// ParseBr
   3367 ///   ::= 'br' TypeAndValue
   3368 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3369 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
   3370   LocTy Loc, Loc2;
   3371   Value *Op0;
   3372   BasicBlock *Op1, *Op2;
   3373   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
   3374 
   3375   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
   3376     Inst = BranchInst::Create(BB);
   3377     return false;
   3378   }
   3379 
   3380   if (Op0->getType() != Type::getInt1Ty(Context))
   3381     return Error(Loc, "branch condition must have 'i1' type");
   3382 
   3383   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
   3384       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
   3385       ParseToken(lltok::comma, "expected ',' after true destination") ||
   3386       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
   3387     return true;
   3388 
   3389   Inst = BranchInst::Create(Op1, Op2, Op0);
   3390   return false;
   3391 }
   3392 
   3393 /// ParseSwitch
   3394 ///  Instruction
   3395 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
   3396 ///  JumpTable
   3397 ///    ::= (TypeAndValue ',' TypeAndValue)*
   3398 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
   3399   LocTy CondLoc, BBLoc;
   3400   Value *Cond;
   3401   BasicBlock *DefaultBB;
   3402   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
   3403       ParseToken(lltok::comma, "expected ',' after switch condition") ||
   3404       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
   3405       ParseToken(lltok::lsquare, "expected '[' with switch table"))
   3406     return true;
   3407 
   3408   if (!Cond->getType()->isIntegerTy())
   3409     return Error(CondLoc, "switch condition must have integer type");
   3410 
   3411   // Parse the jump table pairs.
   3412   SmallPtrSet<Value*, 32> SeenCases;
   3413   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
   3414   while (Lex.getKind() != lltok::rsquare) {
   3415     Value *Constant;
   3416     BasicBlock *DestBB;
   3417 
   3418     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
   3419         ParseToken(lltok::comma, "expected ',' after case value") ||
   3420         ParseTypeAndBasicBlock(DestBB, PFS))
   3421       return true;
   3422 
   3423     if (!SeenCases.insert(Constant))
   3424       return Error(CondLoc, "duplicate case value in switch");
   3425     if (!isa<ConstantInt>(Constant))
   3426       return Error(CondLoc, "case value is not a constant integer");
   3427 
   3428     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
   3429   }
   3430 
   3431   Lex.Lex();  // Eat the ']'.
   3432 
   3433   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
   3434   for (unsigned i = 0, e = Table.size(); i != e; ++i)
   3435     SI->addCase(Table[i].first, Table[i].second);
   3436   Inst = SI;
   3437   return false;
   3438 }
   3439 
   3440 /// ParseIndirectBr
   3441 ///  Instruction
   3442 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
   3443 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
   3444   LocTy AddrLoc;
   3445   Value *Address;
   3446   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
   3447       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
   3448       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
   3449     return true;
   3450 
   3451   if (!Address->getType()->isPointerTy())
   3452     return Error(AddrLoc, "indirectbr address must have pointer type");
   3453 
   3454   // Parse the destination list.
   3455   SmallVector<BasicBlock*, 16> DestList;
   3456 
   3457   if (Lex.getKind() != lltok::rsquare) {
   3458     BasicBlock *DestBB;
   3459     if (ParseTypeAndBasicBlock(DestBB, PFS))
   3460       return true;
   3461     DestList.push_back(DestBB);
   3462 
   3463     while (EatIfPresent(lltok::comma)) {
   3464       if (ParseTypeAndBasicBlock(DestBB, PFS))
   3465         return true;
   3466       DestList.push_back(DestBB);
   3467     }
   3468   }
   3469 
   3470   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
   3471     return true;
   3472 
   3473   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
   3474   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
   3475     IBI->addDestination(DestList[i]);
   3476   Inst = IBI;
   3477   return false;
   3478 }
   3479 
   3480 
   3481 /// ParseInvoke
   3482 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
   3483 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
   3484 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
   3485   LocTy CallLoc = Lex.getLoc();
   3486   AttrBuilder RetAttrs, FnAttrs;
   3487   std::vector<unsigned> FwdRefAttrGrps;
   3488   LocTy NoBuiltinLoc;
   3489   CallingConv::ID CC;
   3490   Type *RetType = 0;
   3491   LocTy RetTypeLoc;
   3492   ValID CalleeID;
   3493   SmallVector<ParamInfo, 16> ArgList;
   3494 
   3495   BasicBlock *NormalBB, *UnwindBB;
   3496   if (ParseOptionalCallingConv(CC) ||
   3497       ParseOptionalReturnAttrs(RetAttrs) ||
   3498       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   3499       ParseValID(CalleeID) ||
   3500       ParseParameterList(ArgList, PFS) ||
   3501       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
   3502                                  NoBuiltinLoc) ||
   3503       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
   3504       ParseTypeAndBasicBlock(NormalBB, PFS) ||
   3505       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
   3506       ParseTypeAndBasicBlock(UnwindBB, PFS))
   3507     return true;
   3508 
   3509   // If RetType is a non-function pointer type, then this is the short syntax
   3510   // for the call, which means that RetType is just the return type.  Infer the
   3511   // rest of the function argument types from the arguments that are present.
   3512   PointerType *PFTy = 0;
   3513   FunctionType *Ty = 0;
   3514   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
   3515       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
   3516     // Pull out the types of all of the arguments...
   3517     std::vector<Type*> ParamTypes;
   3518     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   3519       ParamTypes.push_back(ArgList[i].V->getType());
   3520 
   3521     if (!FunctionType::isValidReturnType(RetType))
   3522       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   3523 
   3524     Ty = FunctionType::get(RetType, ParamTypes, false);
   3525     PFTy = PointerType::getUnqual(Ty);
   3526   }
   3527 
   3528   // Look up the callee.
   3529   Value *Callee;
   3530   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
   3531 
   3532   // Set up the Attribute for the function.
   3533   SmallVector<AttributeSet, 8> Attrs;
   3534   if (RetAttrs.hasAttributes())
   3535     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3536                                       AttributeSet::ReturnIndex,
   3537                                       RetAttrs));
   3538 
   3539   SmallVector<Value*, 8> Args;
   3540 
   3541   // Loop through FunctionType's arguments and ensure they are specified
   3542   // correctly.  Also, gather any parameter attributes.
   3543   FunctionType::param_iterator I = Ty->param_begin();
   3544   FunctionType::param_iterator E = Ty->param_end();
   3545   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   3546     Type *ExpectedTy = 0;
   3547     if (I != E) {
   3548       ExpectedTy = *I++;
   3549     } else if (!Ty->isVarArg()) {
   3550       return Error(ArgList[i].Loc, "too many arguments specified");
   3551     }
   3552 
   3553     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   3554       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   3555                    getTypeString(ExpectedTy) + "'");
   3556     Args.push_back(ArgList[i].V);
   3557     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   3558       AttrBuilder B(ArgList[i].Attrs, i + 1);
   3559       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   3560     }
   3561   }
   3562 
   3563   if (I != E)
   3564     return Error(CallLoc, "not enough parameters specified for call");
   3565 
   3566   if (FnAttrs.hasAttributes())
   3567     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3568                                       AttributeSet::FunctionIndex,
   3569                                       FnAttrs));
   3570 
   3571   // Finish off the Attribute and check them
   3572   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   3573 
   3574   InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
   3575   II->setCallingConv(CC);
   3576   II->setAttributes(PAL);
   3577   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
   3578   Inst = II;
   3579   return false;
   3580 }
   3581 
   3582 /// ParseResume
   3583 ///   ::= 'resume' TypeAndValue
   3584 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
   3585   Value *Exn; LocTy ExnLoc;
   3586   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
   3587     return true;
   3588 
   3589   ResumeInst *RI = ResumeInst::Create(Exn);
   3590   Inst = RI;
   3591   return false;
   3592 }
   3593 
   3594 //===----------------------------------------------------------------------===//
   3595 // Binary Operators.
   3596 //===----------------------------------------------------------------------===//
   3597 
   3598 /// ParseArithmetic
   3599 ///  ::= ArithmeticOps TypeAndValue ',' Value
   3600 ///
   3601 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
   3602 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
   3603 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
   3604                                unsigned Opc, unsigned OperandType) {
   3605   LocTy Loc; Value *LHS, *RHS;
   3606   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   3607       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
   3608       ParseValue(LHS->getType(), RHS, PFS))
   3609     return true;
   3610 
   3611   bool Valid;
   3612   switch (OperandType) {
   3613   default: llvm_unreachable("Unknown operand type!");
   3614   case 0: // int or FP.
   3615     Valid = LHS->getType()->isIntOrIntVectorTy() ||
   3616             LHS->getType()->isFPOrFPVectorTy();
   3617     break;
   3618   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
   3619   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
   3620   }
   3621 
   3622   if (!Valid)
   3623     return Error(Loc, "invalid operand type for instruction");
   3624 
   3625   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   3626   return false;
   3627 }
   3628 
   3629 /// ParseLogical
   3630 ///  ::= ArithmeticOps TypeAndValue ',' Value {
   3631 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
   3632                             unsigned Opc) {
   3633   LocTy Loc; Value *LHS, *RHS;
   3634   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   3635       ParseToken(lltok::comma, "expected ',' in logical operation") ||
   3636       ParseValue(LHS->getType(), RHS, PFS))
   3637     return true;
   3638 
   3639   if (!LHS->getType()->isIntOrIntVectorTy())
   3640     return Error(Loc,"instruction requires integer or integer vector operands");
   3641 
   3642   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   3643   return false;
   3644 }
   3645 
   3646 
   3647 /// ParseCompare
   3648 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
   3649 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
   3650 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
   3651                             unsigned Opc) {
   3652   // Parse the integer/fp comparison predicate.
   3653   LocTy Loc;
   3654   unsigned Pred;
   3655   Value *LHS, *RHS;
   3656   if (ParseCmpPredicate(Pred, Opc) ||
   3657       ParseTypeAndValue(LHS, Loc, PFS) ||
   3658       ParseToken(lltok::comma, "expected ',' after compare value") ||
   3659       ParseValue(LHS->getType(), RHS, PFS))
   3660     return true;
   3661 
   3662   if (Opc == Instruction::FCmp) {
   3663     if (!LHS->getType()->isFPOrFPVectorTy())
   3664       return Error(Loc, "fcmp requires floating point operands");
   3665     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   3666   } else {
   3667     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
   3668     if (!LHS->getType()->isIntOrIntVectorTy() &&
   3669         !LHS->getType()->getScalarType()->isPointerTy())
   3670       return Error(Loc, "icmp requires integer operands");
   3671     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   3672   }
   3673   return false;
   3674 }
   3675 
   3676 //===----------------------------------------------------------------------===//
   3677 // Other Instructions.
   3678 //===----------------------------------------------------------------------===//
   3679 
   3680 
   3681 /// ParseCast
   3682 ///   ::= CastOpc TypeAndValue 'to' Type
   3683 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
   3684                          unsigned Opc) {
   3685   LocTy Loc;
   3686   Value *Op;
   3687   Type *DestTy = 0;
   3688   if (ParseTypeAndValue(Op, Loc, PFS) ||
   3689       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
   3690       ParseType(DestTy))
   3691     return true;
   3692 
   3693   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
   3694     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
   3695     return Error(Loc, "invalid cast opcode for cast from '" +
   3696                  getTypeString(Op->getType()) + "' to '" +
   3697                  getTypeString(DestTy) + "'");
   3698   }
   3699   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
   3700   return false;
   3701 }
   3702 
   3703 /// ParseSelect
   3704 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3705 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
   3706   LocTy Loc;
   3707   Value *Op0, *Op1, *Op2;
   3708   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3709       ParseToken(lltok::comma, "expected ',' after select condition") ||
   3710       ParseTypeAndValue(Op1, PFS) ||
   3711       ParseToken(lltok::comma, "expected ',' after select value") ||
   3712       ParseTypeAndValue(Op2, PFS))
   3713     return true;
   3714 
   3715   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
   3716     return Error(Loc, Reason);
   3717 
   3718   Inst = SelectInst::Create(Op0, Op1, Op2);
   3719   return false;
   3720 }
   3721 
   3722 /// ParseVA_Arg
   3723 ///   ::= 'va_arg' TypeAndValue ',' Type
   3724 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
   3725   Value *Op;
   3726   Type *EltTy = 0;
   3727   LocTy TypeLoc;
   3728   if (ParseTypeAndValue(Op, PFS) ||
   3729       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
   3730       ParseType(EltTy, TypeLoc))
   3731     return true;
   3732 
   3733   if (!EltTy->isFirstClassType())
   3734     return Error(TypeLoc, "va_arg requires operand with first class type");
   3735 
   3736   Inst = new VAArgInst(Op, EltTy);
   3737   return false;
   3738 }
   3739 
   3740 /// ParseExtractElement
   3741 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
   3742 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
   3743   LocTy Loc;
   3744   Value *Op0, *Op1;
   3745   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3746       ParseToken(lltok::comma, "expected ',' after extract value") ||
   3747       ParseTypeAndValue(Op1, PFS))
   3748     return true;
   3749 
   3750   if (!ExtractElementInst::isValidOperands(Op0, Op1))
   3751     return Error(Loc, "invalid extractelement operands");
   3752 
   3753   Inst = ExtractElementInst::Create(Op0, Op1);
   3754   return false;
   3755 }
   3756 
   3757 /// ParseInsertElement
   3758 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3759 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
   3760   LocTy Loc;
   3761   Value *Op0, *Op1, *Op2;
   3762   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3763       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3764       ParseTypeAndValue(Op1, PFS) ||
   3765       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3766       ParseTypeAndValue(Op2, PFS))
   3767     return true;
   3768 
   3769   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
   3770     return Error(Loc, "invalid insertelement operands");
   3771 
   3772   Inst = InsertElementInst::Create(Op0, Op1, Op2);
   3773   return false;
   3774 }
   3775 
   3776 /// ParseShuffleVector
   3777 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3778 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
   3779   LocTy Loc;
   3780   Value *Op0, *Op1, *Op2;
   3781   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3782       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
   3783       ParseTypeAndValue(Op1, PFS) ||
   3784       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
   3785       ParseTypeAndValue(Op2, PFS))
   3786     return true;
   3787 
   3788   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
   3789     return Error(Loc, "invalid shufflevector operands");
   3790 
   3791   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
   3792   return false;
   3793 }
   3794 
   3795 /// ParsePHI
   3796 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
   3797 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
   3798   Type *Ty = 0;  LocTy TypeLoc;
   3799   Value *Op0, *Op1;
   3800 
   3801   if (ParseType(Ty, TypeLoc) ||
   3802       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   3803       ParseValue(Ty, Op0, PFS) ||
   3804       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3805       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   3806       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   3807     return true;
   3808 
   3809   bool AteExtraComma = false;
   3810   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
   3811   while (1) {
   3812     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
   3813 
   3814     if (!EatIfPresent(lltok::comma))
   3815       break;
   3816 
   3817     if (Lex.getKind() == lltok::MetadataVar) {
   3818       AteExtraComma = true;
   3819       break;
   3820     }
   3821 
   3822     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   3823         ParseValue(Ty, Op0, PFS) ||
   3824         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3825         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   3826         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   3827       return true;
   3828   }
   3829 
   3830   if (!Ty->isFirstClassType())
   3831     return Error(TypeLoc, "phi node must have first class type");
   3832 
   3833   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
   3834   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
   3835     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
   3836   Inst = PN;
   3837   return AteExtraComma ? InstExtraComma : InstNormal;
   3838 }
   3839 
   3840 /// ParseLandingPad
   3841 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
   3842 /// Clause
   3843 ///   ::= 'catch' TypeAndValue
   3844 ///   ::= 'filter'
   3845 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
   3846 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
   3847   Type *Ty = 0; LocTy TyLoc;
   3848   Value *PersFn; LocTy PersFnLoc;
   3849 
   3850   if (ParseType(Ty, TyLoc) ||
   3851       ParseToken(lltok::kw_personality, "expected 'personality'") ||
   3852       ParseTypeAndValue(PersFn, PersFnLoc, PFS))
   3853     return true;
   3854 
   3855   LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
   3856   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
   3857 
   3858   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
   3859     LandingPadInst::ClauseType CT;
   3860     if (EatIfPresent(lltok::kw_catch))
   3861       CT = LandingPadInst::Catch;
   3862     else if (EatIfPresent(lltok::kw_filter))
   3863       CT = LandingPadInst::Filter;
   3864     else
   3865       return TokError("expected 'catch' or 'filter' clause type");
   3866 
   3867     Value *V; LocTy VLoc;
   3868     if (ParseTypeAndValue(V, VLoc, PFS)) {
   3869       delete LP;
   3870       return true;
   3871     }
   3872 
   3873     // A 'catch' type expects a non-array constant. A filter clause expects an
   3874     // array constant.
   3875     if (CT == LandingPadInst::Catch) {
   3876       if (isa<ArrayType>(V->getType()))
   3877         Error(VLoc, "'catch' clause has an invalid type");
   3878     } else {
   3879       if (!isa<ArrayType>(V->getType()))
   3880         Error(VLoc, "'filter' clause has an invalid type");
   3881     }
   3882 
   3883     LP->addClause(V);
   3884   }
   3885 
   3886   Inst = LP;
   3887   return false;
   3888 }
   3889 
   3890 /// ParseCall
   3891 ///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
   3892 ///       ParameterList OptionalAttrs
   3893 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
   3894                          bool isTail) {
   3895   AttrBuilder RetAttrs, FnAttrs;
   3896   std::vector<unsigned> FwdRefAttrGrps;
   3897   LocTy NoBuiltinLoc;
   3898   CallingConv::ID CC;
   3899   Type *RetType = 0;
   3900   LocTy RetTypeLoc;
   3901   ValID CalleeID;
   3902   SmallVector<ParamInfo, 16> ArgList;
   3903   LocTy CallLoc = Lex.getLoc();
   3904 
   3905   if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
   3906       ParseOptionalCallingConv(CC) ||
   3907       ParseOptionalReturnAttrs(RetAttrs) ||
   3908       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   3909       ParseValID(CalleeID) ||
   3910       ParseParameterList(ArgList, PFS) ||
   3911       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
   3912                                  NoBuiltinLoc))
   3913     return true;
   3914 
   3915   // If RetType is a non-function pointer type, then this is the short syntax
   3916   // for the call, which means that RetType is just the return type.  Infer the
   3917   // rest of the function argument types from the arguments that are present.
   3918   PointerType *PFTy = 0;
   3919   FunctionType *Ty = 0;
   3920   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
   3921       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
   3922     // Pull out the types of all of the arguments...
   3923     std::vector<Type*> ParamTypes;
   3924     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   3925       ParamTypes.push_back(ArgList[i].V->getType());
   3926 
   3927     if (!FunctionType::isValidReturnType(RetType))
   3928       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   3929 
   3930     Ty = FunctionType::get(RetType, ParamTypes, false);
   3931     PFTy = PointerType::getUnqual(Ty);
   3932   }
   3933 
   3934   // Look up the callee.
   3935   Value *Callee;
   3936   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
   3937 
   3938   // Set up the Attribute for the function.
   3939   SmallVector<AttributeSet, 8> Attrs;
   3940   if (RetAttrs.hasAttributes())
   3941     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3942                                       AttributeSet::ReturnIndex,
   3943                                       RetAttrs));
   3944 
   3945   SmallVector<Value*, 8> Args;
   3946 
   3947   // Loop through FunctionType's arguments and ensure they are specified
   3948   // correctly.  Also, gather any parameter attributes.
   3949   FunctionType::param_iterator I = Ty->param_begin();
   3950   FunctionType::param_iterator E = Ty->param_end();
   3951   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   3952     Type *ExpectedTy = 0;
   3953     if (I != E) {
   3954       ExpectedTy = *I++;
   3955     } else if (!Ty->isVarArg()) {
   3956       return Error(ArgList[i].Loc, "too many arguments specified");
   3957     }
   3958 
   3959     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   3960       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   3961                    getTypeString(ExpectedTy) + "'");
   3962     Args.push_back(ArgList[i].V);
   3963     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   3964       AttrBuilder B(ArgList[i].Attrs, i + 1);
   3965       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   3966     }
   3967   }
   3968 
   3969   if (I != E)
   3970     return Error(CallLoc, "not enough parameters specified for call");
   3971 
   3972   if (FnAttrs.hasAttributes())
   3973     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3974                                       AttributeSet::FunctionIndex,
   3975                                       FnAttrs));
   3976 
   3977   // Finish off the Attribute and check them
   3978   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   3979 
   3980   CallInst *CI = CallInst::Create(Callee, Args);
   3981   CI->setTailCall(isTail);
   3982   CI->setCallingConv(CC);
   3983   CI->setAttributes(PAL);
   3984   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
   3985   Inst = CI;
   3986   return false;
   3987 }
   3988 
   3989 //===----------------------------------------------------------------------===//
   3990 // Memory Instructions.
   3991 //===----------------------------------------------------------------------===//
   3992 
   3993 /// ParseAlloc
   3994 ///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
   3995 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
   3996   Value *Size = 0;
   3997   LocTy SizeLoc;
   3998   unsigned Alignment = 0;
   3999   Type *Ty = 0;
   4000   if (ParseType(Ty)) return true;
   4001 
   4002   bool AteExtraComma = false;
   4003   if (EatIfPresent(lltok::comma)) {
   4004     if (Lex.getKind() == lltok::kw_align) {
   4005       if (ParseOptionalAlignment(Alignment)) return true;
   4006     } else if (Lex.getKind() == lltok::MetadataVar) {
   4007       AteExtraComma = true;
   4008     } else {
   4009       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
   4010           ParseOptionalCommaAlign(Alignment, AteExtraComma))
   4011         return true;
   4012     }
   4013   }
   4014 
   4015   if (Size && !Size->getType()->isIntegerTy())
   4016     return Error(SizeLoc, "element count must have integer type");
   4017 
   4018   Inst = new AllocaInst(Ty, Size, Alignment);
   4019   return AteExtraComma ? InstExtraComma : InstNormal;
   4020 }
   4021 
   4022 /// ParseLoad
   4023 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
   4024 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
   4025 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   4026 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
   4027   Value *Val; LocTy Loc;
   4028   unsigned Alignment = 0;
   4029   bool AteExtraComma = false;
   4030   bool isAtomic = false;
   4031   AtomicOrdering Ordering = NotAtomic;
   4032   SynchronizationScope Scope = CrossThread;
   4033 
   4034   if (Lex.getKind() == lltok::kw_atomic) {
   4035     isAtomic = true;
   4036     Lex.Lex();
   4037   }
   4038 
   4039   bool isVolatile = false;
   4040   if (Lex.getKind() == lltok::kw_volatile) {
   4041     isVolatile = true;
   4042     Lex.Lex();
   4043   }
   4044 
   4045   if (ParseTypeAndValue(Val, Loc, PFS) ||
   4046       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   4047       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   4048     return true;
   4049 
   4050   if (!Val->getType()->isPointerTy() ||
   4051       !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
   4052     return Error(Loc, "load operand must be a pointer to a first class type");
   4053   if (isAtomic && !Alignment)
   4054     return Error(Loc, "atomic load must have explicit non-zero alignment");
   4055   if (Ordering == Release || Ordering == AcquireRelease)
   4056     return Error(Loc, "atomic load cannot use Release ordering");
   4057 
   4058   Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
   4059   return AteExtraComma ? InstExtraComma : InstNormal;
   4060 }
   4061 
   4062 /// ParseStore
   4063 
   4064 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
   4065 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
   4066 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   4067 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
   4068   Value *Val, *Ptr; LocTy Loc, PtrLoc;
   4069   unsigned Alignment = 0;
   4070   bool AteExtraComma = false;
   4071   bool isAtomic = false;
   4072   AtomicOrdering Ordering = NotAtomic;
   4073   SynchronizationScope Scope = CrossThread;
   4074 
   4075   if (Lex.getKind() == lltok::kw_atomic) {
   4076     isAtomic = true;
   4077     Lex.Lex();
   4078   }
   4079 
   4080   bool isVolatile = false;
   4081   if (Lex.getKind() == lltok::kw_volatile) {
   4082     isVolatile = true;
   4083     Lex.Lex();
   4084   }
   4085 
   4086   if (ParseTypeAndValue(Val, Loc, PFS) ||
   4087       ParseToken(lltok::comma, "expected ',' after store operand") ||
   4088       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   4089       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   4090       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   4091     return true;
   4092 
   4093   if (!Ptr->getType()->isPointerTy())
   4094     return Error(PtrLoc, "store operand must be a pointer");
   4095   if (!Val->getType()->isFirstClassType())
   4096     return Error(Loc, "store operand must be a first class value");
   4097   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   4098     return Error(Loc, "stored value and pointer type do not match");
   4099   if (isAtomic && !Alignment)
   4100     return Error(Loc, "atomic store must have explicit non-zero alignment");
   4101   if (Ordering == Acquire || Ordering == AcquireRelease)
   4102     return Error(Loc, "atomic store cannot use Acquire ordering");
   4103 
   4104   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
   4105   return AteExtraComma ? InstExtraComma : InstNormal;
   4106 }
   4107 
   4108 /// ParseCmpXchg
   4109 ///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
   4110 ///       'singlethread'? AtomicOrdering
   4111 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
   4112   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
   4113   bool AteExtraComma = false;
   4114   AtomicOrdering Ordering = NotAtomic;
   4115   SynchronizationScope Scope = CrossThread;
   4116   bool isVolatile = false;
   4117 
   4118   if (EatIfPresent(lltok::kw_volatile))
   4119     isVolatile = true;
   4120 
   4121   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   4122       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
   4123       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
   4124       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
   4125       ParseTypeAndValue(New, NewLoc, PFS) ||
   4126       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   4127     return true;
   4128 
   4129   if (Ordering == Unordered)
   4130     return TokError("cmpxchg cannot be unordered");
   4131   if (!Ptr->getType()->isPointerTy())
   4132     return Error(PtrLoc, "cmpxchg operand must be a pointer");
   4133   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
   4134     return Error(CmpLoc, "compare value and pointer type do not match");
   4135   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
   4136     return Error(NewLoc, "new value and pointer type do not match");
   4137   if (!New->getType()->isIntegerTy())
   4138     return Error(NewLoc, "cmpxchg operand must be an integer");
   4139   unsigned Size = New->getType()->getPrimitiveSizeInBits();
   4140   if (Size < 8 || (Size & (Size - 1)))
   4141     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
   4142                          " integer");
   4143 
   4144   AtomicCmpXchgInst *CXI =
   4145     new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
   4146   CXI->setVolatile(isVolatile);
   4147   Inst = CXI;
   4148   return AteExtraComma ? InstExtraComma : InstNormal;
   4149 }
   4150 
   4151 /// ParseAtomicRMW
   4152 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
   4153 ///       'singlethread'? AtomicOrdering
   4154 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
   4155   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
   4156   bool AteExtraComma = false;
   4157   AtomicOrdering Ordering = NotAtomic;
   4158   SynchronizationScope Scope = CrossThread;
   4159   bool isVolatile = false;
   4160   AtomicRMWInst::BinOp Operation;
   4161 
   4162   if (EatIfPresent(lltok::kw_volatile))
   4163     isVolatile = true;
   4164 
   4165   switch (Lex.getKind()) {
   4166   default: return TokError("expected binary operation in atomicrmw");
   4167   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
   4168   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
   4169   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
   4170   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
   4171   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
   4172   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
   4173   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
   4174   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
   4175   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
   4176   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
   4177   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
   4178   }
   4179   Lex.Lex();  // Eat the operation.
   4180 
   4181   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   4182       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
   4183       ParseTypeAndValue(Val, ValLoc, PFS) ||
   4184       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   4185     return true;
   4186 
   4187   if (Ordering == Unordered)
   4188     return TokError("atomicrmw cannot be unordered");
   4189   if (!Ptr->getType()->isPointerTy())
   4190     return Error(PtrLoc, "atomicrmw operand must be a pointer");
   4191   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   4192     return Error(ValLoc, "atomicrmw value and pointer type do not match");
   4193   if (!Val->getType()->isIntegerTy())
   4194     return Error(ValLoc, "atomicrmw operand must be an integer");
   4195   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
   4196   if (Size < 8 || (Size & (Size - 1)))
   4197     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
   4198                          " integer");
   4199 
   4200   AtomicRMWInst *RMWI =
   4201     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
   4202   RMWI->setVolatile(isVolatile);
   4203   Inst = RMWI;
   4204   return AteExtraComma ? InstExtraComma : InstNormal;
   4205 }
   4206 
   4207 /// ParseFence
   4208 ///   ::= 'fence' 'singlethread'? AtomicOrdering
   4209 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
   4210   AtomicOrdering Ordering = NotAtomic;
   4211   SynchronizationScope Scope = CrossThread;
   4212   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   4213     return true;
   4214 
   4215   if (Ordering == Unordered)
   4216     return TokError("fence cannot be unordered");
   4217   if (Ordering == Monotonic)
   4218     return TokError("fence cannot be monotonic");
   4219 
   4220   Inst = new FenceInst(Context, Ordering, Scope);
   4221   return InstNormal;
   4222 }
   4223 
   4224 /// ParseGetElementPtr
   4225 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
   4226 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
   4227   Value *Ptr = 0;
   4228   Value *Val = 0;
   4229   LocTy Loc, EltLoc;
   4230 
   4231   bool InBounds = EatIfPresent(lltok::kw_inbounds);
   4232 
   4233   if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
   4234 
   4235   if (!Ptr->getType()->getScalarType()->isPointerTy())
   4236     return Error(Loc, "base of getelementptr must be a pointer");
   4237 
   4238   SmallVector<Value*, 16> Indices;
   4239   bool AteExtraComma = false;
   4240   while (EatIfPresent(lltok::comma)) {
   4241     if (Lex.getKind() == lltok::MetadataVar) {
   4242       AteExtraComma = true;
   4243       break;
   4244     }
   4245     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
   4246     if (!Val->getType()->getScalarType()->isIntegerTy())
   4247       return Error(EltLoc, "getelementptr index must be an integer");
   4248     if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
   4249       return Error(EltLoc, "getelementptr index type missmatch");
   4250     if (Val->getType()->isVectorTy()) {
   4251       unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
   4252       unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
   4253       if (ValNumEl != PtrNumEl)
   4254         return Error(EltLoc,
   4255           "getelementptr vector index has a wrong number of elements");
   4256     }
   4257     Indices.push_back(Val);
   4258   }
   4259 
   4260   if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
   4261     return Error(Loc, "invalid getelementptr indices");
   4262   Inst = GetElementPtrInst::Create(Ptr, Indices);
   4263   if (InBounds)
   4264     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
   4265   return AteExtraComma ? InstExtraComma : InstNormal;
   4266 }
   4267 
   4268 /// ParseExtractValue
   4269 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
   4270 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
   4271   Value *Val; LocTy Loc;
   4272   SmallVector<unsigned, 4> Indices;
   4273   bool AteExtraComma;
   4274   if (ParseTypeAndValue(Val, Loc, PFS) ||
   4275       ParseIndexList(Indices, AteExtraComma))
   4276     return true;
   4277 
   4278   if (!Val->getType()->isAggregateType())
   4279     return Error(Loc, "extractvalue operand must be aggregate type");
   4280 
   4281   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   4282     return Error(Loc, "invalid indices for extractvalue");
   4283   Inst = ExtractValueInst::Create(Val, Indices);
   4284   return AteExtraComma ? InstExtraComma : InstNormal;
   4285 }
   4286 
   4287 /// ParseInsertValue
   4288 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
   4289 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
   4290   Value *Val0, *Val1; LocTy Loc0, Loc1;
   4291   SmallVector<unsigned, 4> Indices;
   4292   bool AteExtraComma;
   4293   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
   4294       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
   4295       ParseTypeAndValue(Val1, Loc1, PFS) ||
   4296       ParseIndexList(Indices, AteExtraComma))
   4297     return true;
   4298 
   4299   if (!Val0->getType()->isAggregateType())
   4300     return Error(Loc0, "insertvalue operand must be aggregate type");
   4301 
   4302   if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
   4303     return Error(Loc0, "invalid indices for insertvalue");
   4304   Inst = InsertValueInst::Create(Val0, Val1, Indices);
   4305   return AteExtraComma ? InstExtraComma : InstNormal;
   4306 }
   4307 
   4308 //===----------------------------------------------------------------------===//
   4309 // Embedded metadata.
   4310 //===----------------------------------------------------------------------===//
   4311 
   4312 /// ParseMDNodeVector
   4313 ///   ::= Element (',' Element)*
   4314 /// Element
   4315 ///   ::= 'null' | TypeAndValue
   4316 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
   4317                                  PerFunctionState *PFS) {
   4318   // Check for an empty list.
   4319   if (Lex.getKind() == lltok::rbrace)
   4320     return false;
   4321 
   4322   do {
   4323     // Null is a special case since it is typeless.
   4324     if (EatIfPresent(lltok::kw_null)) {
   4325       Elts.push_back(0);
   4326       continue;
   4327     }
   4328 
   4329     Value *V = 0;
   4330     if (ParseTypeAndValue(V, PFS)) return true;
   4331     Elts.push_back(V);
   4332   } while (EatIfPresent(lltok::comma));
   4333 
   4334   return false;
   4335 }
   4336